On ARM, we currently only change the value of the stack canary when
switching tasks if the kernel was built for UP. On SMP kernels, this
is impossible since the stack canary value is obtained via a global
symbol reference, which means
a) all running tasks on all CPUs must use the same value
b) we can only modify the value when no kernel stack frames are live
on any CPU, which is effectively never.
So instead, use a GCC plugin to add a RTL pass that replaces each
reference to the address of the __stack_chk_guard symbol with an
expression that produces the address of the 'stack_canary' field
that is added to struct thread_info. This way, each task will use
its own randomized value.
Cc: Russell King <linux@armlinux.org.uk>
Cc: Kees Cook <keescook@chromium.org>
Cc: Emese Revfy <re.emese@gmail.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Laura Abbott <labbott@redhat.com>
Cc: kernel-hardening@lists.openwall.com
Acked-by: Nicolas Pitre <nico@linaro.org>
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Kees Cook <keescook@chromium.org>
Commit cafa0010cd ("Raise the minimum required gcc version to 4.6")
recently exposed a brittle part of the build for supporting non-gcc
compilers.
Both Clang and ICC define __GNUC__, __GNUC_MINOR__, and
__GNUC_PATCHLEVEL__ for quick compatibility with code bases that haven't
added compiler specific checks for __clang__ or __INTEL_COMPILER.
This is brittle, as they happened to get compatibility by posing as a
certain version of GCC. This broke when upgrading the minimal version
of GCC required to build the kernel, to a version above what ICC and
Clang claim to be.
Rather than always including compiler-gcc.h then undefining or
redefining macros in compiler-intel.h or compiler-clang.h, let's
separate out the compiler specific macro definitions into mutually
exclusive headers, do more proper compiler detection, and keep shared
definitions in compiler_types.h.
Fixes: cafa0010cd ("Raise the minimum required gcc version to 4.6")
Reported-by: Masahiro Yamada <yamada.masahiro@socionext.com>
Suggested-by: Eli Friedman <efriedma@codeaurora.org>
Suggested-by: Joe Perches <joe@perches.com>
Signed-off-by: Nick Desaulniers <ndesaulniers@google.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The changes to automatically test for working stack protector compiler
support in the Kconfig files removed the special STACKPROTECTOR_AUTO
option that picked the strongest stack protector that the compiler
supported.
That was all a nice cleanup - it makes no sense to have the AUTO case
now that the Kconfig phase can just determine the compiler support
directly.
HOWEVER.
It also meant that doing "make oldconfig" would now _disable_ the strong
stackprotector if you had AUTO enabled, because in a legacy config file,
the sane stack protector configuration would look like
CONFIG_HAVE_CC_STACKPROTECTOR=y
# CONFIG_CC_STACKPROTECTOR_NONE is not set
# CONFIG_CC_STACKPROTECTOR_REGULAR is not set
# CONFIG_CC_STACKPROTECTOR_STRONG is not set
CONFIG_CC_STACKPROTECTOR_AUTO=y
and when you ran this through "make oldconfig" with the Kbuild changes,
it would ask you about the regular CONFIG_CC_STACKPROTECTOR (that had
been renamed from CONFIG_CC_STACKPROTECTOR_REGULAR to just
CONFIG_CC_STACKPROTECTOR), but it would think that the STRONG version
used to be disabled (because it was really enabled by AUTO), and would
disable it in the new config, resulting in:
CONFIG_HAVE_CC_STACKPROTECTOR=y
CONFIG_CC_HAS_STACKPROTECTOR_NONE=y
CONFIG_CC_STACKPROTECTOR=y
# CONFIG_CC_STACKPROTECTOR_STRONG is not set
CONFIG_CC_HAS_SANE_STACKPROTECTOR=y
That's dangerously subtle - people could suddenly find themselves with
the weaker stack protector setup without even realizing.
The solution here is to just rename not just the old RECULAR stack
protector option, but also the strong one. This does that by just
removing the CC_ prefix entirely for the user choices, because it really
is not about the compiler support (the compiler support now instead
automatially impacts _visibility_ of the options to users).
This results in "make oldconfig" actually asking the user for their
choice, so that we don't have any silent subtle security model changes.
The end result would generally look like this:
CONFIG_HAVE_CC_STACKPROTECTOR=y
CONFIG_CC_HAS_STACKPROTECTOR_NONE=y
CONFIG_STACKPROTECTOR=y
CONFIG_STACKPROTECTOR_STRONG=y
CONFIG_CC_HAS_SANE_STACKPROTECTOR=y
where the "CC_" versions really are about internal compiler
infrastructure, not the user selections.
Acked-by: Masahiro Yamada <yamada.masahiro@socionext.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
ARMv8R/M architecture defines new memory protection scheme - PMSAv8
which is not compatible with PMSAv7.
Key differences to PMSAv7 are:
- Region geometry is defined by base and limit addresses
- Addresses need to be either 32 or 64 byte aligned
- No region priority due to overlapping regions are not allowed
- It is unified, i.e. no distinction between data/instruction regions
- Memory attributes are controlled via MAIR
This patch implements support for PMSAv8 MPU defined by ARMv8R/M
architecture.
Signed-off-by: Vladimir Murzin <vladimir.murzin@arm.com>
Signed-off-by: Russell King <rmk+kernel@armlinux.org.uk>
We are going to support different MPU which programming model is not
compatible to PMSAv7, so move PMSAv7 MPU under it's own namespace.
Tested-by: Szemz? András <sza@esh.hu>
Tested-by: Alexandre TORGUE <alexandre.torgue@st.com>
Signed-off-by: Vladimir Murzin <vladimir.murzin@arm.com>
Signed-off-by: Russell King <rmk+kernel@armlinux.org.uk>
Currently, there are several issues with how MPU is setup:
1. We won't boot if MPU is missing
2. We won't boot if use XIP
3. Further extension of MPU setup requires asm skills
The 1st point can be relaxed, so we can continue with boot CPU even if
MPU is missed and fail boot for secondaries only. To address the 2nd
point we could create region covering CONFIG_XIP_PHYS_ADDR - _end and
that might work for the first stage of MPU enable, but due to MPU's
alignment requirement we could cover too much, IOW we need more
flexibility in how we're partitioning memory regions... and it'd be
hardly possible to archive because of the 3rd point.
This patch is trying to address 1st and 3rd issues and paves the path
for 2nd and further improvements.
The most visible change introduced with this patch is that we start
using mpu_rgn_info array (as it was supposed?), so change in MPU setup
done by boot CPU is recorded there and feed to secondaries. It
allows us to keep minimal region setup for boot CPU and do the rest in
C. Since we start programming MPU regions in C evaluation of MPU
constrains (number of regions supported and minimal region order) can
be done once, which in turn open possibility to free-up "probe"
region early.
Tested-by: Szemző András <sza@esh.hu>
Tested-by: Alexandre TORGUE <alexandre.torgue@st.com>
Tested-by: Benjamin Gaignard <benjamin.gaignard@linaro.org>
Signed-off-by: Vladimir Murzin <vladimir.murzin@arm.com>
Signed-off-by: Russell King <rmk+kernel@armlinux.org.uk>
Signal handlers are not direct function pointers but pointers to function
descriptor in that case. Therefore we must retrieve the actual function
address and load the GOT value into r9 from the descriptor before branching
to the actual handler.
If a restorer is provided, we also have to load its address and GOT from
its descriptor. That descriptor address and the code to load it is pushed
onto the stack to be executed as soon as the signal handler returns.
However, to be compatible with NX stacks, the FDPIC bounce code is also
copied to the signal page along with the other code stubs. Therefore this
code must get at the descriptor address whether it executes from the stack
or the signal page. To do so we use the stack pointer which points at the
signal stack frame where the descriptor address was stored. Because the
rt signal frame is different from the simpler frame, two versions of the
bounce code are needed, and two variants (ARM and Thumb) as well. The
asm-offsets facility is used to determine the actual offset in the signal
frame for each version, meaning that struct sigframe and rt_sigframe had
to be moved to a separate file.
Signed-off-by: Nicolas Pitre <nico@linaro.org>
Acked-by: Mickael GUENE <mickael.guene@st.com>
Tested-by: Vincent Abriou <vincent.abriou@st.com>
Tested-by: Andras Szemzo <szemzo.andras@gmail.com>
When we enter an exception, the current address limit should not apply
to the exception context: if the exception context wishes to access
kernel space via the user accessors (eg, perf code), it must explicitly
request such access.
Acked-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Russell King <rmk+kernel@armlinux.org.uk>
Since the privileged mode pt_regs are an extended version of the saved
userland pt_regs, introduce a new svc_pt_regs structure to describe this
layout.
Acked-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Russell King <rmk+kernel@armlinux.org.uk>
S_FRAME_SIZE is no longer the size of the kernel stack frame, so this
name is misleading. It is the size of the kernel pt_regs structure.
Name it so.
Acked-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Russell King <rmk+kernel@armlinux.org.uk>
This field was never populated, and the panic code already
does something similar. Delete the related code.
Acked-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Since we don't have much assembler left, most of the KVM stuff
in asm-offsets.c is now superfluous. Let's get rid of it.
Acked-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Continuing our rework of the CPU context, we now move the GP
registers into the CPU context structure.
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Continuing our rework of the CPU context, we now move the CP15
array into the CPU context structure. As this causes quite a bit
of churn, we introduce the vcpu_cp15() macro that abstract the
location of the actual array. This will probably help next time
we have to revisit that code.
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
In order to turn the WS code into something that looks a bit
more like the arm64 version, move the VFP registers into a
CPU context container for both the host and the guest.
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Pull exec domain removal from Richard Weinberger:
"This series removes execution domain support from Linux.
The idea behind exec domains was to support different ABIs. The
feature was never complete nor stable. Let's rip it out and make the
kernel signal handling code less complicated"
* 'exec_domain_rip_v2' of git://git.kernel.org/pub/scm/linux/kernel/git/rw/misc: (27 commits)
arm64: Removed unused variable
sparc: Fix execution domain removal
Remove rest of exec domains.
arch: Remove exec_domain from remaining archs
arc: Remove signal translation and exec_domain
xtensa: Remove signal translation and exec_domain
xtensa: Autogenerate offsets in struct thread_info
x86: Remove signal translation and exec_domain
unicore32: Remove signal translation and exec_domain
um: Remove signal translation and exec_domain
tile: Remove signal translation and exec_domain
sparc: Remove signal translation and exec_domain
sh: Remove signal translation and exec_domain
s390: Remove signal translation and exec_domain
mn10300: Remove signal translation and exec_domain
microblaze: Remove signal translation and exec_domain
m68k: Remove signal translation and exec_domain
m32r: Remove signal translation and exec_domain
m32r: Autogenerate offsets in struct thread_info
frv: Remove signal translation and exec_domain
...
Pull ARM updates from Russell King:
"Included in this update are both some long term fixes and some new
features.
Fixes:
- An integer overflow in the calculation of ELF_ET_DYN_BASE.
- Avoiding OOMs for high-order IOMMU allocations
- SMP requires the data cache to be enabled for synchronisation
primitives to work, so prevent the CPU_DCACHE_DISABLE option being
visible on SMP builds.
- A bug going back 10+ years in the noMMU ARM94* CPU support code,
where it corrupts registers. Found by folk getting Linux running
on their cameras.
- Versatile Express needs an errata workaround enabled for CPU
hot-unplug to work.
Features:
- Clean up module linker by handling out of range relocations
separately from relocation cases we don't handle.
- Fix a long term bug in the pci_mmap_page_range() code, which we
hope won't impact userspace (we hope there's no users of the
existing broken interface.)
- Don't map DMA coherent allocations when we don't have a MMU.
- Drop experimental status for SMP_ON_UP.
- Warn when DT doesn't specify ePAPR mandatory cache properties.
- Add documentation concerning how we find the start of physical
memory for AUTO_ZRELADDR kernels, detailing why we have chosen the
mask and the implications of changing it.
- Updates from Ard Biesheuvel to address some issues with large
kernels (such as allyesconfig) failing to link.
- Allow hibernation to work on modern (ARMv7) CPUs - this appears to
have never worked in the past on these CPUs.
- Enable IRQ_SHOW_LEVEL, which changes the /proc/interrupts output
format (hopefully without userspace breaking... let's hope that if
it causes someone a problem, they tell us.)
- Fix tegra-ahb DT offsets.
- Rework ARM errata 643719 code (and ARMv7 flush_cache_louis()/
flush_dcache_all()) code to be more efficient, and enable this
errata workaround by default for ARMv7+SMP CPUs. This complements
the Versatile Express fix above.
- Rework ARMv7 context code for errata 430973, so that only Cortex A8
CPUs are impacted by the branch target buffer flush when this
errata is enabled. Also update the help text to indicate that all
r1p* A8 CPUs are impacted.
- Switch ARM to the generic show_mem() implementation, it conveys all
the information which we were already reporting.
- Prevent slow timer sources being used for udelay() - timers running
at less than 1MHz are not useful for this, and can cause udelay()
to return immediately, without any wait. Using such a slow timer
is silly.
- VDSO support for 32-bit ARM, mainly for gettimeofday() using the
ARM architected timer.
- Perf support for Scorpion performance monitoring units"
vdso semantic conflict fixed up as per linux-next.
* 'for-linus' of git://ftp.arm.linux.org.uk/~rmk/linux-arm: (52 commits)
ARM: update errata 430973 documentation to cover Cortex A8 r1p*
ARM: ensure delay timer has sufficient accuracy for delays
ARM: switch to use the generic show_mem() implementation
ARM: proc-v7: avoid errata 430973 workaround for non-Cortex A8 CPUs
ARM: enable ARM errata 643719 workaround by default
ARM: cache-v7: optimise test for Cortex A9 r0pX devices
ARM: cache-v7: optimise branches in v7_flush_cache_louis
ARM: cache-v7: consolidate initialisation of cache level index
ARM: cache-v7: shift CLIDR to extract appropriate field before masking
ARM: cache-v7: use movw/movt instructions
ARM: allow 16-bit instructions in ALT_UP()
ARM: proc-arm94*.S: fix setup function
ARM: vexpress: fix CPU hotplug with CT9x4 tile.
ARM: 8276/1: Make CPU_DCACHE_DISABLE depend on !SMP
ARM: 8335/1: Documentation: DT bindings: Tegra AHB: document the legacy base address
ARM: 8334/1: amba: tegra-ahb: detect and correct bogus base address
ARM: 8333/1: amba: tegra-ahb: fix register offsets in the macros
ARM: 8339/1: Enable CONFIG_GENERIC_IRQ_SHOW_LEVEL
ARM: 8338/1: kexec: Relax SMP validation to improve DT compatibility
ARM: 8337/1: mm: Do not invoke OOM for higher order IOMMU DMA allocations
...
As execution domain support is gone we can remove
signal translation from the signal code and remove
exec_domain from thread_info.
Signed-off-by: Richard Weinberger <richard@nod.at>
Place VDSO-related user-space code in arch/arm/kernel/vdso/.
It is almost completely written in C with some assembly helpers to
load the data page address, sample the counter, and fall back to
system calls when necessary.
The VDSO can service gettimeofday and clock_gettime when
CONFIG_ARM_ARCH_TIMER is enabled and the architected timer is present
(and correctly configured). It reads the CP15-based virtual counter
to compute high-resolution timestamps.
Of particular note is that a post-processing step ("vdsomunge") is
necessary to produce a shared object which is architecturally allowed
to be used by both soft- and hard-float EABI programs.
The 2012 edition of the ARM ABI defines Tag_ABI_VFP_args = 3 "Code is
compatible with both the base and VFP variants; the user did not
permit non-variadic functions to pass FP parameters/results."
Unfortunately current toolchains do not support this tag, which is
ideally what we would use.
The best available option is to ensure that both EF_ARM_ABI_FLOAT_SOFT
and EF_ARM_ABI_FLOAT_HARD are unset in the ELF header's e_flags,
indicating that the shared object is "old" and should be accepted for
backward compatibility's sake. While binutils < 2.24 appear to
produce a vdso.so with both flags clear, 2.24 always sets
EF_ARM_ABI_FLOAT_SOFT, with no way to inhibit this behavior. So we
have to fix things up with a custom post-processing step.
In fact, the VDSO code in glibc does much less validation (including
checking these flags) than the code for handling conventional
file-backed shared libraries, so this is a bit moot unless glibc's
VDSO code becomes more strict.
Signed-off-by: Nathan Lynch <nathan_lynch@mentor.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
We can definitely decide at run-time whether to use the GIC and timers
or not, and the extra code and data structures that we allocate space
for is really negligable with this config option, so I don't think it's
worth the extra complexity of always having to define stub static
inlines. The !CONFIG_KVM_ARM_VGIC/TIMER case is pretty much an untested
code path anyway, so we're better off just getting rid of it.
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
These stock GCC versions miscompile the kernel by incorrectly optimising
the function epilogue code - by first increasing the stack pointer, and
then loading entries from below the stack. This means that an opportune
interrupt or exception will corrupt the current function's saved state,
which may result in the parent function seeing different register
values.
As this bug has been known to result in corrupted filesystems, and these
buggy compiler versions seem to be frequently used, we have little
option but to blacklist these compiler versions.
Distributions may have fixed PR58854, but as their compilers are totally
indistinguishable from the buggy versions, it is unfortunate that this
also results in those also being blacklisted. Given the filesystem
corruption potential of the original, this is the lesser evil. People
who want to build with their fixed compiler versions will need to adjust
the kernel source. (Distros need to think about the implications of
fixing such a compiler bug, and consider how to ensure that their fixed
compiler versions can be detected if they wish to avoid this.)
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
In order to make way for the GICv3 registers, move the v2-specific
registers to their own structure.
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
So far, KVM/ARM used a fixed HCR configuration per guest, except for
the VI/VF/VA bits to control the interrupt in absence of VGIC.
With the upcoming need to dynamically reconfigure trapping, it becomes
necessary to allow the HCR to be changed on a per-vcpu basis.
The fix here is to mimic what KVM/arm64 already does: a per vcpu HCR
field, initialized at setup time.
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Current implementation of cpu_{suspend}/cpu_{resume} relies on the MPIDR
to index the array of pointers where the context is saved and restored.
The current approach works as long as the MPIDR can be considered a
linear index, so that the pointers array can simply be dereferenced by
using the MPIDR[7:0] value.
On ARM multi-cluster systems, where the MPIDR may not be a linear index,
to properly dereference the stack pointer array, a mapping function should
be applied to it so that it can be used for arrays look-ups.
This patch adds code in the cpu_{suspend}/cpu_{resume} implementation
that relies on shifting and ORing hashing method to map a MPIDR value to a
set of buckets precomputed at boot to have a collision free mapping from
MPIDR to context pointers.
The hashing algorithm must be simple, fast, and implementable with few
instructions since in the cpu_resume path the mapping is carried out with
the MMU off and the I-cache off, hence code and data are fetched from DRAM
with no-caching available. Simplicity is counterbalanced with a little
increase of memory (allocated dynamically) for stack pointers buckets, that
should be anyway fairly limited on most systems.
Memory for context pointers is allocated in a early_initcall with
size precomputed and stashed previously in kernel data structures.
Memory for context pointers is allocated through kmalloc; this
guarantees contiguous physical addresses for the allocated memory which
is fundamental to the correct functioning of the resume mechanism that
relies on the context pointer array to be a chunk of contiguous physical
memory. Virtual to physical address conversion for the context pointer
array base is carried out at boot to avoid fiddling with virt_to_phys
conversions in the cpu_resume path which is quite fragile and should be
optimized to execute as few instructions as possible.
Virtual and physical context pointer base array addresses are stashed in a
struct that is accessible from assembly using values generated through the
asm-offsets.c mechanism.
Cc: Will Deacon <will.deacon@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Russell King <linux@arm.linux.org.uk>
Cc: Colin Cross <ccross@android.com>
Cc: Santosh Shilimkar <santosh.shilimkar@ti.com>
Cc: Daniel Lezcano <daniel.lezcano@linaro.org>
Cc: Amit Kucheria <amit.kucheria@linaro.org>
Signed-off-by: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
Reviewed-by: Dave Martin <Dave.Martin@arm.com>
Reviewed-by: Nicolas Pitre <nico@linaro.org>
Tested-by: Shawn Guo <shawn.guo@linaro.org>
Tested-by: Kevin Hilman <khilman@linaro.org>
Tested-by: Stephen Warren <swarren@wwwdotorg.org>
Pull kvm updates from Gleb Natapov:
"Highlights of the updates are:
general:
- new emulated device API
- legacy device assignment is now optional
- irqfd interface is more generic and can be shared between arches
x86:
- VMCS shadow support and other nested VMX improvements
- APIC virtualization and Posted Interrupt hardware support
- Optimize mmio spte zapping
ppc:
- BookE: in-kernel MPIC emulation with irqfd support
- Book3S: in-kernel XICS emulation (incomplete)
- Book3S: HV: migration fixes
- BookE: more debug support preparation
- BookE: e6500 support
ARM:
- reworking of Hyp idmaps
s390:
- ioeventfd for virtio-ccw
And many other bug fixes, cleanups and improvements"
* tag 'kvm-3.10-1' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (204 commits)
kvm: Add compat_ioctl for device control API
KVM: x86: Account for failing enable_irq_window for NMI window request
KVM: PPC: Book3S: Add API for in-kernel XICS emulation
kvm/ppc/mpic: fix missing unlock in set_base_addr()
kvm/ppc: Hold srcu lock when calling kvm_io_bus_read/write
kvm/ppc/mpic: remove users
kvm/ppc/mpic: fix mmio region lists when multiple guests used
kvm/ppc/mpic: remove default routes from documentation
kvm: KVM_CAP_IOMMU only available with device assignment
ARM: KVM: iterate over all CPUs for CPU compatibility check
KVM: ARM: Fix spelling in error message
ARM: KVM: define KVM_ARM_MAX_VCPUS unconditionally
KVM: ARM: Fix API documentation for ONE_REG encoding
ARM: KVM: promote vfp_host pointer to generic host cpu context
ARM: KVM: add architecture specific hook for capabilities
ARM: KVM: perform HYP initilization for hotplugged CPUs
ARM: KVM: switch to a dual-step HYP init code
ARM: KVM: rework HYP page table freeing
ARM: KVM: enforce maximum size for identity mapped code
ARM: KVM: move to a KVM provided HYP idmap
...
We use the vfp_host pointer to store the host VFP context, should
the guest start using VFP itself.
Actually, we can use this pointer in a more generic way to store
CPU speficic data, and arm64 is using it to dump the whole host
state before switching to the guest.
Simply rename the vfp_host field to host_cpu_context, and the
corresponding type to kvm_cpu_context_t. No change in functionnality.
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <cdall@cs.columbia.edu>
Instead of requiring the first man to be elected in advance (which
can be suboptimal in some situations), this patch uses a per-
cluster mutex to co-ordinate selection of the first man.
This should also make it more feasible to reuse this code path for
asynchronous cluster resume (as in CPUidle scenarios).
We must ensure that the vlock data doesn't share a cacheline with
anything else, or dirty cache eviction could corrupt it.
Signed-off-by: Dave Martin <dave.martin@linaro.org>
Signed-off-by: Nicolas Pitre <nicolas.pitre@linaro.org>
Reviewed-by: Santosh Shilimkar <santosh.shilimkar@ti.com>
Reviewed-by: Will Deacon <will.deacon@arm.com>
This provides helper methods to coordinate between CPUs coming down
and CPUs going up, as well as documentation on the used algorithms,
so that cluster teardown and setup
operations are not done for a cluster simultaneously.
For use in the power_down() implementation:
* __mcpm_cpu_going_down(unsigned int cluster, unsigned int cpu)
* __mcpm_outbound_enter_critical(unsigned int cluster)
* __mcpm_outbound_leave_critical(unsigned int cluster)
* __mcpm_cpu_down(unsigned int cluster, unsigned int cpu)
The power_up_setup() helper should do platform-specific setup in
preparation for turning the CPU on, such as invalidating local caches
or entering coherency. It must be assembler for now, since it must
run before the MMU can be switched on. It is passed the affinity level
for which initialization should be performed.
Because the mcpm_sync_struct content is looked-up and modified
with the cache enabled or disabled depending on the code path, it is
crucial to always ensure proper cache maintenance to update main memory
right away. The sync_cache_*() helpers are used to that end.
Also, in order to prevent a cached writer from interfering with an
adjacent non-cached writer, we ensure each state variable is located to
a separate cache line.
Thanks to Nicolas Pitre and Achin Gupta for the help with this
patch.
Signed-off-by: Dave Martin <dave.martin@linaro.org>
Signed-off-by: Nicolas Pitre <nico@linaro.org>
Reviewed-by: Will Deacon <will.deacon@arm.com>
Instead of directly accessing the fault registers, use proper accessors
so the core code can be shared.
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
mm->context.id is updated under asid_lock when a new ASID is allocated
to an mm_struct. However, it is also read without the lock when a task
is being scheduled and checking whether or not the current ASID
generation is up-to-date.
If two threads of the same process are being scheduled in parallel and
the bottom bits of the generation in their mm->context.id match the
current generation (that is, the mm_struct has not been used for ~2^24
rollovers) then the non-atomic, lockless access to mm->context.id may
yield the incorrect ASID.
This patch fixes this issue by making mm->context.id and atomic64_t,
ensuring that the generation is always read consistently. For code that
only requires access to the ASID bits (e.g. TLB flushing by mm), then
the value is accessed directly, which GCC converts to an ldrb.
Cc: <stable@vger.kernel.org> # 3.8
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
Do the necessary save/restore dance for the timers in the world
switch code. In the process, allow the guest to read the physical
counter, which is useful for its own clock_event_device.
Reviewed-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Christoffer Dall <c.dall@virtualopensystems.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Enable the VGIC control interface to be save-restored on world switch.
Reviewed-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Christoffer Dall <c.dall@virtualopensystems.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Provides complete world-switch implementation to switch to other guests
running in non-secure modes. Includes Hyp exception handlers that
capture necessary exception information and stores the information on
the VCPU and KVM structures.
The following Hyp-ABI is also documented in the code:
Hyp-ABI: Calling HYP-mode functions from host (in SVC mode):
Switching to Hyp mode is done through a simple HVC #0 instruction. The
exception vector code will check that the HVC comes from VMID==0 and if
so will push the necessary state (SPSR, lr_usr) on the Hyp stack.
- r0 contains a pointer to a HYP function
- r1, r2, and r3 contain arguments to the above function.
- The HYP function will be called with its arguments in r0, r1 and r2.
On HYP function return, we return directly to SVC.
A call to a function executing in Hyp mode is performed like the following:
<svc code>
ldr r0, =BSYM(my_hyp_fn)
ldr r1, =my_param
hvc #0 ; Call my_hyp_fn(my_param) from HYP mode
<svc code>
Otherwise, the world-switch is pretty straight-forward. All state that
can be modified by the guest is first backed up on the Hyp stack and the
VCPU values is loaded onto the hardware. State, which is not loaded, but
theoretically modifiable by the guest is protected through the
virtualiation features to generate a trap and cause software emulation.
Upon guest returns, all state is restored from hardware onto the VCPU
struct and the original state is restored from the Hyp-stack onto the
hardware.
SMP support using the VMPIDR calculated on the basis of the host MPIDR
and overriding the low bits with KVM vcpu_id contributed by Marc Zyngier.
Reuse of VMIDs has been implemented by Antonios Motakis and adapated from
a separate patch into the appropriate patches introducing the
functionality. Note that the VMIDs are stored per VM as required by the ARM
architecture reference manual.
To support VFP/NEON we trap those instructions using the HPCTR. When
we trap, we switch the FPU. After a guest exit, the VFP state is
returned to the host. When disabling access to floating point
instructions, we also mask FPEXC_EN in order to avoid the guest
receiving Undefined instruction exceptions before we have a chance to
switch back the floating point state. We are reusing vfp_hard_struct,
so we depend on VFPv3 being enabled in the host kernel, if not, we still
trap cp10 and cp11 in order to inject an undefined instruction exception
whenever the guest tries to use VFP/NEON. VFP/NEON developed by
Antionios Motakis and Rusty Russell.
Aborts that are permission faults, and not stage-1 page table walk, do
not report the faulting address in the HPFAR. We have to resolve the
IPA, and store it just like the HPFAR register on the VCPU struct. If
the IPA cannot be resolved, it means another CPU is playing with the
page tables, and we simply restart the guest. This quirk was fixed by
Marc Zyngier.
Reviewed-by: Will Deacon <will.deacon@arm.com>
Reviewed-by: Marcelo Tosatti <mtosatti@redhat.com>
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
Signed-off-by: Antonios Motakis <a.motakis@virtualopensystems.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <c.dall@virtualopensystems.com>
There is no point reserving space at the bottom of the kernel stack for
per-thread crunch state, and per-thread VFP state if these are not being
supported by the kernel being built. Remove these members from the
thread union when these features are disabled.
Reported-by: Tim Bird <tim.bird@am.sony.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
we save the l2x0 registers at the first initialization, and platform codes
can get them to restore l2x0 status after wakeup.
Cc: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
Signed-off-by: Barry Song <Baohua.Song@csr.com>
Reviewed-by: Santosh Shilimkar <santosh.shilimkar@ti.com>
Tested-by: Shawn Guo <shawn.guo@linaro.org>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
Fix a hole in the VFP thread migration. Lets define two threads.
Thread 1, we'll call 'interesting_thread' which is a thread which is
running on CPU0, using VFP (so vfp_current_hw_state[0] =
&interesting_thread->vfpstate) and gets migrated off to CPU1, where
it continues execution of VFP instructions.
Thread 2, we'll call 'new_cpu0_thread' which is the thread which takes
over on CPU0. This has also been using VFP, and last used VFP on CPU0,
but doesn't use it again.
The following code will be executed twice:
cpu = thread->cpu;
/*
* On SMP, if VFP is enabled, save the old state in
* case the thread migrates to a different CPU. The
* restoring is done lazily.
*/
if ((fpexc & FPEXC_EN) && vfp_current_hw_state[cpu]) {
vfp_save_state(vfp_current_hw_state[cpu], fpexc);
vfp_current_hw_state[cpu]->hard.cpu = cpu;
}
/*
* Thread migration, just force the reloading of the
* state on the new CPU in case the VFP registers
* contain stale data.
*/
if (thread->vfpstate.hard.cpu != cpu)
vfp_current_hw_state[cpu] = NULL;
The first execution will be on CPU0 to switch away from 'interesting_thread'.
interesting_thread->cpu will be 0.
So, vfp_current_hw_state[0] points at interesting_thread->vfpstate.
The hardware state will be saved, along with the CPU number (0) that
it was executing on.
'thread' will be 'new_cpu0_thread' with new_cpu0_thread->cpu = 0.
Also, because it was executing on CPU0, new_cpu0_thread->vfpstate.hard.cpu = 0,
and so the thread migration check is not triggered.
This means that vfp_current_hw_state[0] remains pointing at interesting_thread.
The second execution will be on CPU1 to switch _to_ 'interesting_thread'.
So, 'thread' will be 'interesting_thread' and interesting_thread->cpu now
will be 1. The previous thread executing on CPU1 is not relevant to this
so we shall ignore that.
We get to the thread migration check. Here, we discover that
interesting_thread->vfpstate.hard.cpu = 0, yet interesting_thread->cpu is
now 1, indicating thread migration. We set vfp_current_hw_state[1] to
NULL.
So, at this point vfp_current_hw_state[] contains the following:
[0] = &interesting_thread->vfpstate
[1] = NULL
Our interesting thread now executes a VFP instruction, takes a fault
which loads the state into the VFP hardware. Now, through the assembly
we now have:
[0] = &interesting_thread->vfpstate
[1] = &interesting_thread->vfpstate
CPU1 stops due to ptrace (and so saves its VFP state) using the thread
switch code above), and CPU0 calls vfp_sync_hwstate().
if (vfp_current_hw_state[cpu] == &thread->vfpstate) {
vfp_save_state(&thread->vfpstate, fpexc | FPEXC_EN);
BANG, we corrupt interesting_thread's VFP state by overwriting the
more up-to-date state saved by CPU1 with the old VFP state from CPU0.
Fix this by ensuring that we have sane semantics for the various state
describing variables:
1. vfp_current_hw_state[] points to the current owner of the context
information stored in each CPUs hardware, or NULL if that state
information is invalid.
2. thread->vfpstate.hard.cpu always contains the most recent CPU number
which the state was loaded into or NR_CPUS if no CPU owns the state.
So, for a particular CPU to be a valid owner of the VFP state for a
particular thread t, two things must be true:
vfp_current_hw_state[cpu] == &t->vfpstate && t->vfpstate.hard.cpu == cpu.
and that is valid from the moment a CPU loads the saved VFP context
into the hardware. This gives clear and consistent semantics to
interpreting these variables.
This patch also fixes thread copying, ensuring that t->vfpstate.hard.cpu
is invalidated, otherwise CPU0 may believe it was the last owner. The
hole can happen thus:
- thread1 runs on CPU2 using VFP, migrates to CPU3, exits and thread_info
freed.
- New thread allocated from a previously running thread on CPU2, reusing
memory for thread1 and copying vfp.hard.cpu.
At this point, the following are true:
new_thread1->vfpstate.hard.cpu == 2
&new_thread1->vfpstate == vfp_current_hw_state[2]
Lastly, this also addresses thread flushing in a similar way to thread
copying. Hole is:
- thread runs on CPU0, using VFP, migrates to CPU1 but does not use VFP.
- thread calls execve(), so thread flush happens, leaving
vfp_current_hw_state[0] intact. This vfpstate is memset to 0 causing
thread->vfpstate.hard.cpu = 0.
- thread migrates back to CPU0 before using VFP.
At this point, the following are true:
thread->vfpstate.hard.cpu == 0
&thread->vfpstate == vfp_current_hw_state[0]
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
This adds core support for saving and restoring CPU coprocessor
registers for suspend/resume support. This contains support for suspend
with ARM920, ARM926, SA11x0, PXA25x, PXA27x, PXA3xx, V6 and V7 CPUs.
Tested on Assabet and Tegra 2.
Tested-by: Colin Cross <ccross@android.com>
Tested-by: Kukjin Kim <kgene.kim@samsung.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
This allows the cache/processor/fault glue to be more easily used
from assembler code. Tested on Assabet and Tegra 2.
Tested-by: Colin Cross <ccross@android.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
Since we're now using addruart to establish the debug mapping, we can
remove the io_pg_offst and phys_io members of struct machine_desc.
The various declarations were removed using the following script:
grep -rl MACHINE_START arch/arm | xargs \
sed -i '/MACHINE_START/,/MACHINE_END/ { /\.\(phys_io\|io_pg_offst\)/d }'
[ Initial patch was from Jeremy Kerr, example script from Russell King ]
Signed-off-by: Nicolas Pitre <nicolas.pitre@linaro.org>
Acked-by: Eric Miao <eric.miao at canonical.com>
A new random value for the canary is stored in the task struct whenever
a new task is forked. This is meant to allow for different canary values
per task. On ARM, GCC expects the canary value to be found in a global
variable called __stack_chk_guard. So this variable has to be updated
with the value stored in the task struct whenever a task switch occurs.
Because the variable GCC expects is global, this cannot work on SMP
unfortunately. So, on SMP, the same initial canary value is kept
throughout, making this feature a bit less effective although it is still
useful.
One way to overcome this GCC limitation would be to locate the
__stack_chk_guard variable into a memory page of its own for each CPU,
and then use TLB locking to have each CPU see its own page at the same
virtual address for each of them.
Signed-off-by: Nicolas Pitre <nicolas.pitre@linaro.org>
Signed-off-by: Christoph Lameter <clameter@sgi.com>
Cc: Russell King <rmk@arm.linux.org.uk>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This patch adds a prefetch abort handler similar to the data abort one
and renames the latter for consistency. Initial implementation by Paul
Brook with some renaming by Catalin Marinas.
Signed-off-by: Paul Brook <paul@codesourcery.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Presently, we check for the minimum ARM architecture that we're
building for to determine whether we need ASID support. This is
wrong - if we're going to support a range of CPUs which include
ARMv6 or higher, we need the ASID.
Convert the checks to use a new configuration symbol, and arrange
for ARMv6 and higher CPU entries to select it.
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
These files want to provide/access ELF hwcap information, so should
be including asm/elf.h rather than asm/procinfo.h
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
On some CPUs, bit 4 of section mappings means "update the
cache when written to". On others, this bit is required to
be one, and others it's required to be zero. Finally, on
ARMv6 and above, setting it turns on "no execute" and prevents
speculative prefetches.
With all these combinations, no one value fits all CPUs, so we
have to pick a value depending on the CPU type, and the area
we're mapping.
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
Patch from Lennert Buytenhek
Add the necessary kernel bits for crunch task switching.
Signed-off-by: Lennert Buytenhek <buytenh@wantstofly.org>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>