-----BEGIN PGP SIGNATURE-----
iQEzBAABCAAdFiEEK2m5VNv+CHkogTfJ8vlZVpUNgaMFAloI8AUACgkQ8vlZVpUN
gaMdjgf8CCW7UhPjoZYwF8sUNtAaX9+JZT1maOcXUhpJ3vRQiRn+AzRH6yBYMm79
+NZBwVlk4dlEe55Wh4yFIStMAstqzCrke4C9CSbExjgHNsJdU4znyYuLRMbLfyO0
6c4NObiAIKJdW1/te1aN90keGC6min8pBZot+FqZsRr+Kq2+IOtM43JAv7efOLev
v3LCjUf9JKxatoB8tgw4AJRa1p18p7D2APWTG05VlFq63TjhVIYNvvwcQlizLwGY
cuEq3X59FbFdX06fJnucujU3WP3ES4/3rhufBK4NNaec5e5dbnH2KlAx7J5SyMIZ
0qUFB/dmXDSb3gsfScSGo1F71Ad0CA==
=asAm
-----END PGP SIGNATURE-----
Merge tag 'fscrypt-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tytso/fscrypt
Pull fscrypt updates from Ted Ts'o:
"Lots of cleanups, mostly courtesy by Eric Biggers"
* tag 'fscrypt-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tytso/fscrypt:
fscrypt: lock mutex before checking for bounce page pool
fscrypt: add a documentation file for filesystem-level encryption
ext4: switch to fscrypt_prepare_setattr()
ext4: switch to fscrypt_prepare_lookup()
ext4: switch to fscrypt_prepare_rename()
ext4: switch to fscrypt_prepare_link()
ext4: switch to fscrypt_file_open()
fscrypt: new helper function - fscrypt_prepare_setattr()
fscrypt: new helper function - fscrypt_prepare_lookup()
fscrypt: new helper function - fscrypt_prepare_rename()
fscrypt: new helper function - fscrypt_prepare_link()
fscrypt: new helper function - fscrypt_file_open()
fscrypt: new helper function - fscrypt_require_key()
fscrypt: remove unneeded empty fscrypt_operations structs
fscrypt: remove ->is_encrypted()
fscrypt: switch from ->is_encrypted() to IS_ENCRYPTED()
fs, fscrypt: add an S_ENCRYPTED inode flag
fscrypt: clean up include file mess
Many source files in the tree are missing licensing information, which
makes it harder for compliance tools to determine the correct license.
By default all files without license information are under the default
license of the kernel, which is GPL version 2.
Update the files which contain no license information with the 'GPL-2.0'
SPDX license identifier. The SPDX identifier is a legally binding
shorthand, which can be used instead of the full boiler plate text.
This patch is based on work done by Thomas Gleixner and Kate Stewart and
Philippe Ombredanne.
How this work was done:
Patches were generated and checked against linux-4.14-rc6 for a subset of
the use cases:
- file had no licensing information it it.
- file was a */uapi/* one with no licensing information in it,
- file was a */uapi/* one with existing licensing information,
Further patches will be generated in subsequent months to fix up cases
where non-standard license headers were used, and references to license
had to be inferred by heuristics based on keywords.
The analysis to determine which SPDX License Identifier to be applied to
a file was done in a spreadsheet of side by side results from of the
output of two independent scanners (ScanCode & Windriver) producing SPDX
tag:value files created by Philippe Ombredanne. Philippe prepared the
base worksheet, and did an initial spot review of a few 1000 files.
The 4.13 kernel was the starting point of the analysis with 60,537 files
assessed. Kate Stewart did a file by file comparison of the scanner
results in the spreadsheet to determine which SPDX license identifier(s)
to be applied to the file. She confirmed any determination that was not
immediately clear with lawyers working with the Linux Foundation.
Criteria used to select files for SPDX license identifier tagging was:
- Files considered eligible had to be source code files.
- Make and config files were included as candidates if they contained >5
lines of source
- File already had some variant of a license header in it (even if <5
lines).
All documentation files were explicitly excluded.
The following heuristics were used to determine which SPDX license
identifiers to apply.
- when both scanners couldn't find any license traces, file was
considered to have no license information in it, and the top level
COPYING file license applied.
For non */uapi/* files that summary was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 11139
and resulted in the first patch in this series.
If that file was a */uapi/* path one, it was "GPL-2.0 WITH
Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 WITH Linux-syscall-note 930
and resulted in the second patch in this series.
- if a file had some form of licensing information in it, and was one
of the */uapi/* ones, it was denoted with the Linux-syscall-note if
any GPL family license was found in the file or had no licensing in
it (per prior point). Results summary:
SPDX license identifier # files
---------------------------------------------------|------
GPL-2.0 WITH Linux-syscall-note 270
GPL-2.0+ WITH Linux-syscall-note 169
((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21
((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17
LGPL-2.1+ WITH Linux-syscall-note 15
GPL-1.0+ WITH Linux-syscall-note 14
((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5
LGPL-2.0+ WITH Linux-syscall-note 4
LGPL-2.1 WITH Linux-syscall-note 3
((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3
((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1
and that resulted in the third patch in this series.
- when the two scanners agreed on the detected license(s), that became
the concluded license(s).
- when there was disagreement between the two scanners (one detected a
license but the other didn't, or they both detected different
licenses) a manual inspection of the file occurred.
- In most cases a manual inspection of the information in the file
resulted in a clear resolution of the license that should apply (and
which scanner probably needed to revisit its heuristics).
- When it was not immediately clear, the license identifier was
confirmed with lawyers working with the Linux Foundation.
- If there was any question as to the appropriate license identifier,
the file was flagged for further research and to be revisited later
in time.
In total, over 70 hours of logged manual review was done on the
spreadsheet to determine the SPDX license identifiers to apply to the
source files by Kate, Philippe, Thomas and, in some cases, confirmation
by lawyers working with the Linux Foundation.
Kate also obtained a third independent scan of the 4.13 code base from
FOSSology, and compared selected files where the other two scanners
disagreed against that SPDX file, to see if there was new insights. The
Windriver scanner is based on an older version of FOSSology in part, so
they are related.
Thomas did random spot checks in about 500 files from the spreadsheets
for the uapi headers and agreed with SPDX license identifier in the
files he inspected. For the non-uapi files Thomas did random spot checks
in about 15000 files.
In initial set of patches against 4.14-rc6, 3 files were found to have
copy/paste license identifier errors, and have been fixed to reflect the
correct identifier.
Additionally Philippe spent 10 hours this week doing a detailed manual
inspection and review of the 12,461 patched files from the initial patch
version early this week with:
- a full scancode scan run, collecting the matched texts, detected
license ids and scores
- reviewing anything where there was a license detected (about 500+
files) to ensure that the applied SPDX license was correct
- reviewing anything where there was no detection but the patch license
was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied
SPDX license was correct
This produced a worksheet with 20 files needing minor correction. This
worksheet was then exported into 3 different .csv files for the
different types of files to be modified.
These .csv files were then reviewed by Greg. Thomas wrote a script to
parse the csv files and add the proper SPDX tag to the file, in the
format that the file expected. This script was further refined by Greg
based on the output to detect more types of files automatically and to
distinguish between header and source .c files (which need different
comment types.) Finally Greg ran the script using the .csv files to
generate the patches.
Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Introduce a helper function which prepares to look up the given dentry
in the given directory. If the directory is encrypted, it handles
loading the directory's encryption key, setting the dentry's ->d_op to
fscrypt_d_ops, and setting DCACHE_ENCRYPTED_WITH_KEY if the directory's
encryption key is available.
Note: once all filesystems switch over to this, we'll be able to move
fscrypt_d_ops and fscrypt_set_encrypted_dentry() to fscrypt_private.h.
Acked-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
Introduce a helper function which prepares to rename a file into a
possibly encrypted directory. It handles loading the encryption keys
for the source and target directories if needed, and it handles
enforcing that if the target directory (and the source directory for a
cross-rename) is encrypted, then the file being moved into the directory
has the same encryption policy as its containing directory.
Acked-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
Introduce a helper function which prepares to link an inode into a
possibly-encrypted directory. It handles setting up the target
directory's encryption key, then verifying that the link won't violate
the constraint that all files in an encrypted directory tree use the
same encryption policy.
Acked-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
Add a helper function which prepares to open a regular file which may be
encrypted. It handles setting up the file's encryption key, then
checking that the file's encryption policy matches that of its parent
directory (if the parent directory is encrypted). It may be set as the
->open() method or it can be called from another ->open() method.
Acked-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
Filesystems have to include different header files based on whether they
are compiled with encryption support or not. That's nasty and messy.
Instead, rationalise the headers so we have a single include fscrypt.h
and let it decide what internal implementation to include based on the
__FS_HAS_ENCRYPTION define. Filesystems set __FS_HAS_ENCRYPTION to 1
before including linux/fscrypt.h if they are built with encryption
support. Otherwise, they must set __FS_HAS_ENCRYPTION to 0.
Add guards to prevent fscrypt_supp.h and fscrypt_notsupp.h from being
directly included by filesystems.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
[EB: use 1 and 0 rather than defined/undefined]
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
fscrypt_free_filename() only needs to do a kfree() of crypto_buf.name,
which works well as an inline function. We can skip setting the various
pointers to NULL, since no user cares about it (the name is always freed
just before it goes out of scope).
Signed-off-by: Eric Biggers <ebiggers@google.com>
Reviewed-by: David Gstir <david@sigma-star.at>
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
As I noted on the mailing list, it's easier than I originally thought to
create intentional collisions in the digested names. Unfortunately it's
not too easy to solve this, so for now just fix the comment to not lie.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
Introduce a helper function fscrypt_match_name() which tests whether a
fscrypt_name matches a directory entry. Also clean up the magic numbers
and document things properly.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
Previously, each filesystem configured without encryption support would
define all the public fscrypt functions to their notsupp_* stubs. This
list of #defines had to be updated in every filesystem whenever a change
was made to the public fscrypt functions. To make things more
maintainable now that we have three filesystems using fscrypt, split the
old header fscrypto.h into several new headers. fscrypt_supp.h contains
the real declarations and is included by filesystems when configured
with encryption support, whereas fscrypt_notsupp.h contains the inline
stubs and is included by filesystems when configured without encryption
support. fscrypt_common.h contains common declarations needed by both.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Theodore Ts'o <tytso@mit.edu>