If cow_file_range_inline() failed, when called from compress_file_range(),
we were tagging the locked page for writeback, end its writeback and unlock it,
but not marking it with an error nor setting AS_EIO in inode's mapping flags.
This made it impossible for a caller of filemap_fdatawrite_range (writepages)
or filemap_fdatawait_range() to know that an error happened. And the return
value of compress_file_range() is useless because it's returned to a workqueue
task and not to the task calling filemap_fdatawrite_range (writepages).
This change applies on top of the previous patchset starting at the patch
titled:
"[1/5] Btrfs: set page and mapping error on compressed write failure"
Which changed extent_clear_unlock_delalloc() to use SetPageError and
mapping_set_error().
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
To avoid duplicating this double filemap_fdatawrite_range() call for
inodes with async extents (compressed writes) so often.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
For compressed writes, after doing the first filemap_fdatawrite_range() we
don't get the pages tagged for writeback immediately. Instead we create
a workqueue task, which is run by other kthread, and keep the pages locked.
That other kthread compresses data, creates the respective ordered extent/s,
tags the pages for writeback and unlocks them. Therefore we need a second
call to filemap_fdatawrite_range() if we have compressed writes, as this
second call will wait for the pages to become unlocked, then see they became
tagged for writeback and finally wait for the writeback to finish.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
Its return value is useless, its single caller ignores it and can't do
anything with it anyway, since it's a workqueue task and not the task
calling filemap_fdatawrite_range (writepages) nor filemap_fdatawait_range().
Failure is communicated to such functions via start and end of writeback
with the respective pages tagged with an error and AS_EIO flag set in the
inode's imapping.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
Steps to reproduce:
# mkfs.btrfs -f /dev/sdb
# mount -t btrfs /dev/sdb /mnt -o compress=lzo
# dd if=/dev/zero of=/mnt/data bs=$((33*4096)) count=1
after previous steps, inode will be detected as bad compression ratio,
and NOCOMPRESS flag will be set for that inode.
Reason is that compress have a max limit pages every time(128K), if a
132k write in, it will be splitted into two write(128k+4k), this bug
is a leftover for commit 68bb462d42a(Btrfs: don't compress for a small write)
Fix this problem by checking every time before compression, if it is a
small write(<=blocksize), we bail out and fall into nocompression directly.
Signed-off-by: Wang Shilong <wangshilong1991@gmail.com>
Reviewed-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
Its return value is completely ignored by its single caller and it's
useless anyway, since errors are indicated through SetPageError and
the bit AS_EIO set in the flags of the inode's mapping. The caller
can't do anything with the value, as it's invoked from a workqueue
task and not by the task calling filemap_fdatawrite_range (which calls
the writepages address space callback, which in turn calls the inode's
fill_delalloc callback).
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
If we had an error when processing one of the async extents from our list,
we were not processing the remaining async extents, meaning we would leak
those async_extent structs, never release the pages with the compressed
data and never unlock and clear the dirty flag from the inode's pages (those
that correspond to the uncompressed content).
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
In inode.c:submit_compressed_extents(), if we fail before calling
btrfs_submit_compressed_write(), or when that function fails, we
were freeing the async_extent structure without releasing its pages
and freeing the pages array.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
In inode.c:submit_compressed_extents(), before calling btrfs_submit_compressed_write()
we start writeback for all pages, clear their dirty flag, unlock them, etc, but if
btrfs_submit_compressed_write() fails (at the moment it can only fail with -ENOMEM),
we never end the writeback on the pages, so any filemap_fdatawait_range() call will
hang forever. We were also not calling the writepage end io hook, which means the
corresponding ordered extent will never complete and all its waiters will block
forever, such as a full fsync (via btrfs_wait_ordered_range()).
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
If we fail in submit_compressed_extents() before calling btrfs_submit_compressed_write(),
we start and end the writeback for the pages (clear their dirty flag, unlock them, etc)
but we don't tag the pages, nor the inode's mapping, with an error. This makes it
impossible for a caller of filemap_fdatawait_range() (fsync, or transaction commit
for e.g.) know that there was an error.
Note that the return value of submit_compressed_extents() is useless, as that function
is executed by a workqueue task and not directly by the fill_delalloc callback. This
means the writepage/s callbacks of the inode's address space operations don't get that
return value.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
This reverts commit 9c3b306e1c.
Switching only one commit root during a transaction is wrong because it
leads the fs into an inconsistent state. All commit roots should be
switched at once, at transaction commit time, otherwise backref walking
can often miss important references that were only accessible through
the old commit root. Plus, the root item for the snapshot's root wasn't
getting updated and preventing the next transaction commit to do it.
This made several users get into random corruption issues after creation
of readonly snapshots.
A regression test for xfstests will follow soon.
Cc: stable@vger.kernel.org # 3.17
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
Previous commit: btrfs: Fix and enhance merge_extent_mapping() to insert
best fitted extent map
is using wrong condition to judgement whether the range is a subset of a
existing extent map.
This may cause bug in btrfs no-holes mode.
This patch will correct the judgment and fix the bug.
Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
There are the branch hints that obviously depend on the data being
processed, the CPU predictor will do better job according to the actual
load. It also does not make sense to use the hints in slow paths that do
a lot of other operations like locking, waiting or IO.
Signed-off-by: David Sterba <dsterba@suse.cz>
When doing log replay we may have to update inodes, which traditionally goes
through our delayed inode stuff. This will try to move space over from the
trans handle, but we don't reserve space in our trans handle on replay since we
don't know how much we will need, so instead we try to flush. But because we
have a trans handle open we won't flush anything, so if we are out of reserve
space we will simply return ENOSPC. Since we know that if an operation made it
into the log then we definitely had space before the box bought the farm then we
don't need to worry about doing this space reservation. Use the
fs_info->log_root_recovering flag to skip the delayed inode stuff and update the
item directly. Thanks,
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
The following commit enhanced the merge_extent_mapping() to reduce
fragment in extent map tree, but it can't handle case which existing
lies before map_start:
51f39 btrfs: Use right extent length when inserting overlap extent map.
[BUG]
When existing extent map's start is before map_start,
the em->len will be minus, which will corrupt the extent map and fail to
insert the new extent map.
This will happen when someone get a large extent map, but when it is
going to insert it into extent map tree, some one has already commit
some write and split the huge extent into small parts.
[REPRODUCER]
It is very easy to tiger using filebench with randomrw personality.
It is about 100% to reproduce when using 8G preallocated file in 60s
randonrw test.
[FIX]
This patch can now handle any existing extent position.
Since it does not directly use existing->start, now it will find the
previous and next extent around map_start.
So the old existing->start < map_start bug will never happen again.
[ENHANCE]
This patch will insert the best fitted extent map into extent map tree,
other than the oldest [map_start, map_start + sectorsize) or the
relatively newer but not perfect [map_start, existing->start).
The patch will first search existing extent that does not intersects with
the desired map range [map_start, map_start + len).
The existing extent will be either before or behind map_start, and based
on the existing extent, we can find out the previous and next extent
around map_start.
So the best fitted extent would be [prev->end, next->start).
For prev or next is not found, em->start would be prev->end and em->end
wold be next->start.
With this patch, the fragment in extent map tree should be reduced much
more than the 51f39 commit and reduce an unneeded extent map tree search.
Reported-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
After the data is written successfully, we should cleanup the read failure record
in that range because
- If we set data COW for the file, the range that the failure record pointed to is
mapped to a new place, so it is invalid.
- If we set no data COW for the file, and if there is no error during writting,
the corrupted data is corrected, so the failure record can be removed. And if
some errors happen on the mirrors, we also needn't worry about it because the
failure record will be recreated if we read the same place again.
Sometimes, we may fail to correct the data, so the failure records will be left
in the tree, we need free them when we free the inode or the memory leak happens.
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
This patch implement data repair function when direct read fails.
The detail of the implementation is:
- When we find the data is not right, we try to read the data from the other
mirror.
- When the io on the mirror ends, we will insert the endio work into the
dedicated btrfs workqueue, not common read endio workqueue, because the
original endio work is still blocked in the btrfs endio workqueue, if we
insert the endio work of the io on the mirror into that workqueue, deadlock
would happen.
- After we get right data, we write it back to the corrupted mirror.
- And if the data on the new mirror is still corrupted, we will try next
mirror until we read right data or all the mirrors are traversed.
- After the above work, we set the uptodate flag according to the result.
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
Direct IO splits the original bio to several sub-bios because of the limit of
raid stripe, and the filesystem will wait for all sub-bios and then run final
end io process.
But it was very hard to implement the data repair when dio read failure happens,
because at the final end io function, we didn't know which mirror the data was
read from. So in order to implement the data repair, we have to move the file data
check in the final end io function to the sub-bio end io function, in which we can
get the mirror number of the device we access. This patch did this work as the
first step of the direct io data repair implementation.
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
The current code would load checksum data for several times when we split
a whole direct read io because of the limit of the raid stripe, it would
make us search the csum tree for several times. In fact, it just wasted time,
and made the contention of the csum tree root be more serious. This patch
improves this problem by loading the data at once.
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
Btrfs could still inline file data if its size is same as
page size, so don't skip max value here.
Signed-off-by: Wang Shilong <wangsl.fnst@cn.fujitsu.com>
Reviewed-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Chris Mason <clm@fb.com>
If flag NOCOMPRESS is set which means bad compression ratio,
we could avoid call cow_file_range_async() for this case earlier.
Signed-off-by: Wang Shilong <wangsl.fnst@cn.fujitsu.com>
Reviewed-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Chris Mason <clm@fb.com>
If a file's compression ratios is bad, we will set NOCOMPRESS
flag for it, and it will skip compression for that inode next time.
However, if we remount fs to COMPRESS_FORCE, it still should try
if we could compress pages for that inode, this patch fix wrong
check for this problem.
Signed-off-by: Wang Shilong <wangsl.fnst@cn.fujitsu.com>
Reviewed-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Chris Mason <clm@fb.com>
We were returning with 0 (success) because we weren't extracting the
error code from em (PTR_ERR(em)). Fix it.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: Satoru Takeuchi <takeuchi_satoru@jp.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
Btrfs defragment will utilize COW feature, which means this
did not work for nodatacow option, this problem was detected
by xfstests generic/018 with nodatacow mount option.
Fix this problem by forcing cow for a extent with state
@EXTETN_DEFRAG setting.
Signed-off-by: Wang Shilong <wangsl.fnst@cn.fujitsu.com>
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
btrfs_set_key_type and btrfs_key_type are used inconsistently along with
open coded variants. Other members of btrfs_key are accessed directly
without any helpers anyway.
Signed-off-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Chris Mason <clm@fb.com>
Pull btrfs fixes from Chris Mason:
"Filipe is doing a careful pass through fsync problems, and these are
the fixes so far. I'll have one more for rc6 that we're still
testing.
My big commit is fixing up some inode hash races that Al Viro found
(thanks Al)"
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs:
Btrfs: use insert_inode_locked4 for inode creation
Btrfs: fix fsync data loss after a ranged fsync
Btrfs: kfree()ing ERR_PTRs
Btrfs: fix crash while doing a ranged fsync
Btrfs: fix corruption after write/fsync failure + fsync + log recovery
Btrfs: fix autodefrag with compression
Btrfs was inserting inodes into the hash table before we had fully
set the inode up on disk. This leaves us open to rare races that allow
two different inodes in memory for the same [root, inode] pair.
This patch fixes things by using insert_inode_locked4 to insert an I_NEW
inode and unlock_new_inode when we're ready for the rest of the kernel
to use the inode.
It also makes sure to init the operations pointers on the inode before
going into the error handling paths.
Signed-off-by: Chris Mason <clm@fb.com>
Reported-by: Al Viro <viro@zeniv.linux.org.uk>
While doing a ranged fsync, that is, one whose range doesn't cover the
whole possible file range (0 to LLONG_MAX), we can crash under certain
circumstances with a trace like the following:
[41074.641913] invalid opcode: 0000 [#1] SMP DEBUG_PAGEALLOC
(...)
[41074.642692] CPU: 0 PID: 24580 Comm: fsx Not tainted 3.16.0-fdm-btrfs-next-45+ #1
(...)
[41074.643886] RIP: 0010:[<ffffffffa01ecc99>] [<ffffffffa01ecc99>] btrfs_ordered_update_i_size+0x279/0x2b0 [btrfs]
(...)
[41074.644919] Stack:
(...)
[41074.644919] Call Trace:
[41074.644919] [<ffffffffa01db531>] btrfs_truncate_inode_items+0x3f1/0xa10 [btrfs]
[41074.644919] [<ffffffffa01eb54f>] ? btrfs_get_logged_extents+0x4f/0x80 [btrfs]
[41074.644919] [<ffffffffa02137a9>] btrfs_log_inode+0x2f9/0x970 [btrfs]
[41074.644919] [<ffffffff81090875>] ? sched_clock_local+0x25/0xa0
[41074.644919] [<ffffffff8164a55e>] ? mutex_unlock+0xe/0x10
[41074.644919] [<ffffffff810af51d>] ? trace_hardirqs_on+0xd/0x10
[41074.644919] [<ffffffffa0214b4f>] btrfs_log_inode_parent+0x1ef/0x560 [btrfs]
[41074.644919] [<ffffffff811d0c55>] ? dget_parent+0x5/0x180
[41074.644919] [<ffffffffa0215d11>] btrfs_log_dentry_safe+0x51/0x80 [btrfs]
[41074.644919] [<ffffffffa01e2d1a>] btrfs_sync_file+0x1ba/0x3e0 [btrfs]
[41074.644919] [<ffffffff811eda6b>] vfs_fsync_range+0x1b/0x30
(...)
The necessary conditions that lead to such crash are:
* an incremental fsync (when the inode doesn't have the
BTRFS_INODE_NEEDS_FULL_SYNC flag set) happened for our file and it logged
a file extent item ending at offset X;
* the file got the flag BTRFS_INODE_NEEDS_FULL_SYNC set in its inode, due
to a file truncate operation that reduces the file to a size smaller
than X;
* a ranged fsync call happens (via an msync for example), with a range that
doesn't cover the whole file and the end of this range, lets call it Y, is
smaller than X;
* btrfs_log_inode, sees the flag BTRFS_INODE_NEEDS_FULL_SYNC set and
calls btrfs_truncate_inode_items() to remove all items from the log
tree that are associated with our file;
* btrfs_truncate_inode_items() removes all of the inode's items, and the lowest
file extent item it removed is the one ending at offset X, where X > 0 and
X > Y - before returning, it calls btrfs_ordered_update_i_size() with an offset
parameter set to X;
* btrfs_ordered_update_i_size() sees that X is greater then the current ordered
size (btrfs_inode's disk_i_size) and then it assumes there can't be any ongoing
ordered operation with a range covering the offset X, calling a BUG_ON() if
such ordered operation exists. This assumption is made because the disk_i_size
is only increased after the corresponding file extent item is added to the
btree (btrfs_finish_ordered_io);
* But because our fsync covers only a limited range, such an ordered extent might
exist, and our fsync callback (btrfs_sync_file) doesn't wait for such ordered
extent to finish when calling btrfs_wait_ordered_range();
And then by the time btrfs_ordered_update_i_size() is called, via:
btrfs_sync_file() ->
btrfs_log_dentry_safe() ->
btrfs_log_inode_parent() ->
btrfs_log_inode() ->
btrfs_truncate_inode_items() ->
btrfs_ordered_update_i_size()
We hit the BUG_ON(), which could never happen if the fsync range covered the whole
possible file range (0 to LLONG_MAX), as we would wait for all ordered extents to
finish before calling btrfs_truncate_inode_items().
So just don't call btrfs_ordered_update_i_size() if we're removing the inode's items
from a log tree, which isn't supposed to change the in memory inode's disk_i_size.
Issue found while running xfstests/generic/127 (happens very rarely for me), more
specifically via the fsx calls that use memory mapped IO (and issue msync calls).
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
While writing to a file, in inode.c:cow_file_range() (and same applies to
submit_compressed_extents()), after reserving an extent for the file data,
we create a new extent map for the written range and insert it into the
extent map cache. After that, we create an ordered operation, but if it
fails (due to a transient/temporary-ENOMEM), we return without dropping
that extent map, which points to a reserved extent that is freed when we
return. A subsequent incremental fsync (when the btrfs inode doesn't have
the flag BTRFS_INODE_NEEDS_FULL_SYNC) considers this extent map valid and
logs a file extent item based on that extent map, which points to a disk
extent that doesn't contain valid data - it was freed by us earlier, at this
point it might contain any random/garbage data.
Therefore, if we reach an error condition when cowing a file range after
we added the new extent map to the cache, drop it from the cache before
returning.
Some sequence of steps that lead to this:
$ mkfs.btrfs -f /dev/sdd
$ mount -o commit=9999 /dev/sdd /mnt
$ cd /mnt
$ xfs_io -f -c "pwrite -S 0x01 -b 4096 0 4096" -c "fsync" foo
$ xfs_io -c "pwrite -S 0x02 -b 4096 4096 4096"
$ sync
$ od -t x1 foo
0000000 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01
*
0010000 02 02 02 02 02 02 02 02 02 02 02 02 02 02 02 02
*
0020000
$ xfs_io -c "pwrite -S 0xa1 -b 4096 0 4096" foo
# Now this write + fsync fail with -ENOMEM, which was returned by
# btrfs_add_ordered_extent() in inode.c:cow_file_range().
$ xfs_io -c "pwrite -S 0xff -b 4096 4096 4096" foo
$ xfs_io -c "fsync" foo
fsync: Cannot allocate memory
# Now do a new write + fsync, which will succeed. Our previous
# -ENOMEM was a transient/temporary error.
$ xfs_io -c "pwrite -S 0xee -b 4096 16384 4096" foo
$ xfs_io -c "fsync" foo
# Our file content (in page cache) is now:
$ od -t x1 foo
0000000 a1 a1 a1 a1 a1 a1 a1 a1 a1 a1 a1 a1 a1 a1 a1 a1
*
0010000 ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff
*
0020000 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
*
0040000 ee ee ee ee ee ee ee ee ee ee ee ee ee ee ee ee
*
0050000
# Now reboot the machine, and mount the fs, so that fsync log replay
# takes place.
# The file content is now weird, in particular the first 8Kb, which
# do not match our data before nor after the sync command above.
$ od -t x1 foo
0000000 ee ee ee ee ee ee ee ee ee ee ee ee ee ee ee ee
*
0010000 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01
*
0020000 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
*
0040000 ee ee ee ee ee ee ee ee ee ee ee ee ee ee ee ee
*
0050000
# In fact these first 4Kb are a duplicate of the last 4kb block.
# The last write got an extent map/file extent item that points to
# the same disk extent that we got in the write+fsync that failed
# with the -ENOMEM error. btrfs-debug-tree and btrfsck allow us to
# verify that:
$ btrfs-debug-tree /dev/sdd
(...)
item 6 key (257 EXTENT_DATA 0) itemoff 15819 itemsize 53
extent data disk byte 12582912 nr 8192
extent data offset 0 nr 8192 ram 8192
item 7 key (257 EXTENT_DATA 8192) itemoff 15766 itemsize 53
extent data disk byte 0 nr 0
extent data offset 0 nr 8192 ram 8192
item 8 key (257 EXTENT_DATA 16384) itemoff 15713 itemsize 53
extent data disk byte 12582912 nr 4096
extent data offset 0 nr 4096 ram 4096
$ umount /dev/sdd
$ btrfsck /dev/sdd
Checking filesystem on /dev/sdd
UUID: db5e60e1-050d-41e6-8c7f-3d742dea5d8f
checking extents
extent item 12582912 has multiple extent items
ref mismatch on [12582912 4096] extent item 1, found 2
Backref bytes do not match extent backref, bytenr=12582912, ref bytes=4096, backref bytes=8192
backpointer mismatch on [12582912 4096]
Errors found in extent allocation tree or chunk allocation
checking free space cache
checking fs roots
root 5 inode 257 errors 1000, some csum missing
found 131074 bytes used err is 1
total csum bytes: 4
total tree bytes: 131072
total fs tree bytes: 32768
total extent tree bytes: 16384
btree space waste bytes: 123404
file data blocks allocated: 274432
referenced 274432
Btrfs v3.14.1-96-gcc7fd5a-dirty
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
Pull btrfs fixes from Chris Mason:
"The biggest of these comes from Liu Bo, who tracked down a hang we've
been hitting since moving to kernel workqueues (it's a btrfs bug, not
in the generic code). His patch needs backporting to 3.16 and 3.15
stable, which I'll send once this is in.
Otherwise these are assorted fixes. Most were integrated last week
during KS, but I wanted to give everyone the chance to test the
result, so I waited for rc2 to come out before sending"
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs: (24 commits)
Btrfs: fix task hang under heavy compressed write
Btrfs: fix filemap_flush call in btrfs_file_release
Btrfs: fix crash on endio of reading corrupted block
btrfs: fix leak in qgroup_subtree_accounting() error path
btrfs: Use right extent length when inserting overlap extent map.
Btrfs: clone, don't create invalid hole extent map
Btrfs: don't monopolize a core when evicting inode
Btrfs: fix hole detection during file fsync
Btrfs: ensure tmpfile inode is always persisted with link count of 0
Btrfs: race free update of commit root for ro snapshots
Btrfs: fix regression of btrfs device replace
Btrfs: don't consider the missing device when allocating new chunks
Btrfs: Fix wrong device size when we are resizing the device
Btrfs: don't write any data into a readonly device when scrub
Btrfs: Fix the problem that the replace destroys the seed filesystem
btrfs: Return right extent when fiemap gives unaligned offset and len.
Btrfs: fix wrong extent mapping for DirectIO
Btrfs: fix wrong write range for filemap_fdatawrite_range()
Btrfs: fix wrong missing device counter decrease
Btrfs: fix unzeroed members in fs_devices when creating a fs from seed fs
...
This has been reported and discussed for a long time, and this hang occurs in
both 3.15 and 3.16.
Btrfs now migrates to use kernel workqueue, but it introduces this hang problem.
Btrfs has a kind of work queued as an ordered way, which means that its
ordered_func() must be processed in the way of FIFO, so it usually looks like --
normal_work_helper(arg)
work = container_of(arg, struct btrfs_work, normal_work);
work->func() <---- (we name it work X)
for ordered_work in wq->ordered_list
ordered_work->ordered_func()
ordered_work->ordered_free()
The hang is a rare case, first when we find free space, we get an uncached block
group, then we go to read its free space cache inode for free space information,
so it will
file a readahead request
btrfs_readpages()
for page that is not in page cache
__do_readpage()
submit_extent_page()
btrfs_submit_bio_hook()
btrfs_bio_wq_end_io()
submit_bio()
end_workqueue_bio() <--(ret by the 1st endio)
queue a work(named work Y) for the 2nd
also the real endio()
So the hang occurs when work Y's work_struct and work X's work_struct happens
to share the same address.
A bit more explanation,
A,B,C -- struct btrfs_work
arg -- struct work_struct
kthread:
worker_thread()
pick up a work_struct from @worklist
process_one_work(arg)
worker->current_work = arg; <-- arg is A->normal_work
worker->current_func(arg)
normal_work_helper(arg)
A = container_of(arg, struct btrfs_work, normal_work);
A->func()
A->ordered_func()
A->ordered_free() <-- A gets freed
B->ordered_func()
submit_compressed_extents()
find_free_extent()
load_free_space_inode()
... <-- (the above readhead stack)
end_workqueue_bio()
btrfs_queue_work(work C)
B->ordered_free()
As if work A has a high priority in wq->ordered_list and there are more ordered
works queued after it, such as B->ordered_func(), its memory could have been
freed before normal_work_helper() returns, which means that kernel workqueue
code worker_thread() still has worker->current_work pointer to be work
A->normal_work's, ie. arg's address.
Meanwhile, work C is allocated after work A is freed, work C->normal_work
and work A->normal_work are likely to share the same address(I confirmed this
with ftrace output, so I'm not just guessing, it's rare though).
When another kthread picks up work C->normal_work to process, and finds our
kthread is processing it(see find_worker_executing_work()), it'll think
work C as a collision and skip then, which ends up nobody processing work C.
So the situation is that our kthread is waiting forever on work C.
Besides, there're other cases that can lead to deadlock, but the real problem
is that all btrfs workqueue shares one work->func, -- normal_work_helper,
so this makes each workqueue to have its own helper function, but only a
wraper pf normal_work_helper.
With this patch, I no long hit the above hang.
Signed-off-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: Chris Mason <clm@fb.com>
When current btrfs finds that a new extent map is going to be insereted
but failed with -EEXIST, it will try again to insert the extent map
but with the length of sectorsize.
This is OK if we don't enable 'no-holes' feature since all extent space
is continuous, we will not go into the not found->insert routine.
But if we enable 'no-holes' feature, it will make things out of control.
e.g. in 4K sectorsize, we pass the following args to btrfs_get_extent():
btrfs_get_extent() args: start: 27874 len 4100
28672 27874 28672 27874+4100 32768
|-----------------------|
|---------hole--------------------|---------data----------|
1) not found and insert
Since no extent map containing the range, btrfs_get_extent() will go
into the not_found and insert routine, which will try to insert the
extent map (27874, 27847 + 4100).
2) first overlap
But it overlaps with (28672, 32768) extent, so -EEXIST will be returned
by add_extent_mapping().
3) retry but still overlap
After catching the -EEXIST, then btrfs_get_extent() will try insert it
again but with 4K length, which still overlaps, so -EEXIST will be
returned.
This makes the following patch fail to punch hole.
d77815461f btrfs: Avoid trucating page or punching hole in a already existed hole.
This patch will use the right length, which is the (exsisting->start -
em->start) to insert, making the above patch works in 'no-holes' mode.
Also, some small code style problems in above patch is fixed too.
Reported-by: Filipe David Manana <fdmanana@gmail.com>
Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Reviewed-by: Filipe David Manana <fdmanana@suse.com>
Tested-by: Filipe David Manana <fdmanana@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
If an inode has a very large number of extent maps, we can spend
a lot of time freeing them, which triggers a soft lockup warning.
Therefore reschedule if we need to when freeing the extent maps
while evicting the inode.
I could trigger this all the time by running xfstests/generic/299 on
a file system with the no-holes feature enabled. That test creates
an inode with 11386677 extent maps.
$ mkfs.btrfs -f -O no-holes $TEST_DEV
$ MKFS_OPTIONS="-O no-holes" ./check generic/299
generic/299 382s ...
Message from syslogd@debian-vm3 at Aug 7 10:44:29 ...
kernel:[85304.208017] BUG: soft lockup - CPU#0 stuck for 22s! [umount:25330]
384s
Ran: generic/299
Passed all 1 tests
$ dmesg
(...)
[86304.300017] BUG: soft lockup - CPU#0 stuck for 23s! [umount:25330]
(...)
[86304.300036] Call Trace:
[86304.300036] [<ffffffff81698ba9>] __slab_free+0x54/0x295
[86304.300036] [<ffffffffa02ee9cc>] ? free_extent_map+0x5c/0xb0 [btrfs]
[86304.300036] [<ffffffff811a6cd2>] kmem_cache_free+0x282/0x2a0
[86304.300036] [<ffffffffa02ee9cc>] free_extent_map+0x5c/0xb0 [btrfs]
[86304.300036] [<ffffffffa02e3775>] btrfs_evict_inode+0xd5/0x660 [btrfs]
[86304.300036] [<ffffffff811e7c8d>] ? __inode_wait_for_writeback+0x6d/0xc0
[86304.300036] [<ffffffff816a389b>] ? _raw_spin_unlock+0x2b/0x40
[86304.300036] [<ffffffff811d8cbb>] evict+0xab/0x180
[86304.300036] [<ffffffff811d8dce>] dispose_list+0x3e/0x60
[86304.300036] [<ffffffff811d9b04>] evict_inodes+0xf4/0x110
[86304.300036] [<ffffffff811bd953>] generic_shutdown_super+0x53/0x110
[86304.300036] [<ffffffff811bdaa6>] kill_anon_super+0x16/0x30
[86304.300036] [<ffffffffa02a78ba>] btrfs_kill_super+0x1a/0xa0 [btrfs]
[86304.300036] [<ffffffff811bd3a9>] deactivate_locked_super+0x59/0x80
[86304.300036] [<ffffffff811be44e>] deactivate_super+0x4e/0x70
[86304.300036] [<ffffffff811dec14>] mntput_no_expire+0x174/0x1f0
[86304.300036] [<ffffffff811deab7>] ? mntput_no_expire+0x17/0x1f0
[86304.300036] [<ffffffff811e0517>] SyS_umount+0x97/0x100
(...)
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: Satoru Takeuchi <takeuchi_satoru@jp.fujitsu.com>
Tested-by: Satoru Takeuchi <takeuchi_satoru@jp.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
If we open a file with O_TMPFILE, don't do any further operation on
it (so that the inode item isn't updated) and then force a transaction
commit, we get a persisted inode item with a link count of 1, and not 0
as it should be.
Steps to reproduce it (requires a modern xfs_io with -T support):
$ mkfs.btrfs -f /dev/sdd
$ mount -o /dev/sdd /mnt
$ xfs_io -T /mnt &
$ sync
Then btrfs-debug-tree shows the inode item with a link count of 1:
$ btrfs-debug-tree /dev/sdd
(...)
fs tree key (FS_TREE ROOT_ITEM 0)
leaf 29556736 items 4 free space 15851 generation 6 owner 5
fs uuid f164d01b-1b92-481d-a4e4-435fb0f843d0
chunk uuid 0e3d0e56-bcca-4a1c-aa5f-cec2c6f4f7a6
item 0 key (256 INODE_ITEM 0) itemoff 16123 itemsize 160
inode generation 3 transid 6 size 0 block group 0 mode 40755 links 1
item 1 key (256 INODE_REF 256) itemoff 16111 itemsize 12
inode ref index 0 namelen 2 name: ..
item 2 key (257 INODE_ITEM 0) itemoff 15951 itemsize 160
inode generation 6 transid 6 size 0 block group 0 mode 100600 links 1
item 3 key (ORPHAN ORPHAN_ITEM 257) itemoff 15951 itemsize 0
orphan item
checksum tree key (CSUM_TREE ROOT_ITEM 0)
(...)
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
This is a better solution for the problem addressed in the following
commit:
Btrfs: update commit root on snapshot creation after orphan cleanup
(3821f34888)
The previous solution wasn't the best because of 2 reasons:
1) It added another full transaction commit, which is more expensive
than just swapping the commit root with the root;
2) If a reboot happened after the first transaction commit (the one
that creates the snapshot) and before the second transaction commit,
then we would end up with the same problem if a send using that
snapshot was requested before the first transaction commit after
the reboot.
This change addresses those 2 issues. The second issue is addressed by
switching the commit root in the dentry lookup VFS callback, which is
also called by the snapshot/subvol creation ioctl and performs orphan
cleanup if needed. Like the vfs, the ioctl locks the parent inode too,
preventing race issues between a dentry lookup and snapshot creation.
Cc: Alex Lyakas <alex.btrfs@zadarastorage.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
btrfs_next_leaf() will use current leaf's last key to search
and then return a bigger one. So it may still return a file extent
item that is smaller than expected value and we will
get an overflow here for @em->len.
This is easy to reproduce for Btrfs Direct writting, it did not
cause any problem, because writting will re-insert right mapping later.
However, by hacking code to make DIO support compression, wrong extent
mapping is kept and it encounter merging failure(EEXIST) quickly.
Fix this problem by looping to find next file extent item that is bigger
than @start or we could not find anything more.
Signed-off-by: Wang Shilong <wangsl.fnst@cn.fujitsu.com>
Reviewed-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Chris Mason <clm@fb.com>
filemap_fdatawrite_range() expect the third arg to be @end
not @len, fix it.
Signed-off-by: Wang Shilong <wangsl.fnst@cn.fujitsu.com>
Reviewed-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Chris Mason <clm@fb.com>
The caller of btrfs_submit_direct_hook() will put the original dio bio
when btrfs_submit_direct_hook() return a error number, so we needn't
put the original bio in btrfs_submit_direct_hook().
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
Pull btrfs updates from Chris Mason:
"These are all fixes I'd like to get out to a broader audience.
The biggest of the bunch is Mark's quota fix, which is also in the
SUSE kernel, and makes our subvolume quotas dramatically more
accurate.
I've been running xfstests with these against your current git
overnight, but I'm queueing up longer tests as well"
* 'for-linus2' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs:
btrfs: disable strict file flushes for renames and truncates
Btrfs: fix csum tree corruption, duplicate and outdated checksums
Btrfs: Fix memory corruption by ulist_add_merge() on 32bit arch
Btrfs: fix compressed write corruption on enospc
btrfs: correctly handle return from ulist_add
btrfs: qgroup: account shared subtrees during snapshot delete
Btrfs: read lock extent buffer while walking backrefs
Btrfs: __btrfs_mod_ref should always use no_quota
btrfs: adjust statfs calculations according to raid profiles
Truncates and renames are often used to replace old versions of a file
with new versions. Applications often expect this to be an atomic
replacement, even if they haven't done anything to make sure the new
version is fully on disk.
Btrfs has strict flushing in place to make sure that renaming over an
old file with a new file will fully flush out the new file before
allowing the transaction commit with the rename to complete.
This ordering means the commit code needs to be able to lock file pages,
and there are a few paths in the filesystem where we will try to end a
transaction with the page lock held. It's rare, but these things can
deadlock.
This patch removes the ordered flushes and switches to a best effort
filemap_flush like ext4 uses. It's not perfect, but it should fix the
deadlocks.
Signed-off-by: Chris Mason <clm@fb.com>
When failing to allocate space for the whole compressed extent, we'll
fallback to uncompressed IO, but we've forgotten to redirty the pages
which belong to this compressed extent, and these 'clean' pages will
simply skip 'submit' part and go to endio directly, at last we got data
corruption as we write nothing.
Signed-off-by: Liu Bo <bo.li.liu@oracle.com>
Tested-By: Martin Steigerwald <martin@lichtvoll.de>
Signed-off-by: Chris Mason <clm@fb.com>
RENAME_NOREPLACE is trivial to implement for most filesystems: switch over
to ->rename2() and check for the supported flags. The rest is done by the
VFS.
Signed-off-by: Miklos Szeredi <mszeredi@suse.cz>
Cc: Chris Mason <clm@fb.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Pull btrfs fixes from Chris Mason:
"This fixes some lockups in btrfs reported with rc1. It probably has
some performance impact because it is backing off our spinning locks
more often and switching to a blocking lock. I'll be able to nail
that down next week, but for now I want to get the lockups taken care
of.
Otherwise some more stack reduction and assorted fixes"
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs:
Btrfs: fix wrong error handle when the device is missing or is not writeable
Btrfs: fix deadlock when mounting a degraded fs
Btrfs: use bio_endio_nodec instead of open code
Btrfs: fix NULL pointer crash when running balance and scrub concurrently
btrfs: Skip scrubbing removed chunks to avoid -ENOENT.
Btrfs: fix broken free space cache after the system crashed
Btrfs: make free space cache write out functions more readable
Btrfs: remove unused wait queue in struct extent_buffer
Btrfs: fix deadlocks with trylock on tree nodes
When we mounted the filesystem after the crash, we got the following
message:
BTRFS error (device xxx): block group xxxx has wrong amount of free space
BTRFS error (device xxx): failed to load free space cache for block group xxx
It is because we didn't update the metadata of the allocated space (in extent
tree) until the file data was written into the disk. During this time, there was
no information about the allocated spaces in either the extent tree nor the
free space cache. when we wrote out the free space cache at this time (commit
transaction), those spaces were lost. In fact, only the free space that is
used to store the file data had this problem, the others didn't because
the metadata of them is updated in the same transaction context.
There are many methods which can fix the above problem
- track the allocated space, and write it out when we write out the free
space cache
- account the size of the allocated space that is used to store the file
data, if the size is not zero, don't write out the free space cache.
The first one is complex and may make the performance drop down.
This patch chose the second method, we use a per-block-group variant to
account the size of that allocated space. Besides that, we also introduce
a per-block-group read-write semaphore to avoid the race between
the allocation and the free space cache write out.
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
Pull vfs updates from Al Viro:
"This the bunch that sat in -next + lock_parent() fix. This is the
minimal set; there's more pending stuff.
In particular, I really hope to get acct.c fixes merged this cycle -
we need that to deal sanely with delayed-mntput stuff. In the next
pile, hopefully - that series is fairly short and localized
(kernel/acct.c, fs/super.c and fs/namespace.c). In this pile: more
iov_iter work. Most of prereqs for ->splice_write with sane locking
order are there and Kent's dio rewrite would also fit nicely on top of
this pile"
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs: (70 commits)
lock_parent: don't step on stale ->d_parent of all-but-freed one
kill generic_file_splice_write()
ceph: switch to iter_file_splice_write()
shmem: switch to iter_file_splice_write()
nfs: switch to iter_splice_write_file()
fs/splice.c: remove unneeded exports
ocfs2: switch to iter_file_splice_write()
->splice_write() via ->write_iter()
bio_vec-backed iov_iter
optimize copy_page_{to,from}_iter()
bury generic_file_aio_{read,write}
lustre: get rid of messing with iovecs
ceph: switch to ->write_iter()
ceph_sync_direct_write: stop poking into iov_iter guts
ceph_sync_read: stop poking into iov_iter guts
new helper: copy_page_from_iter()
fuse: switch to ->write_iter()
btrfs: switch to ->write_iter()
ocfs2: switch to ->write_iter()
xfs: switch to ->write_iter()
...
Pull btrfs updates from Chris Mason:
"The biggest change here is Josef's rework of the btrfs quota
accounting, which improves the in-memory tracking of delayed extent
operations.
I had been working on Btrfs stack usage for a while, mostly because it
had become impossible to do long stress runs with slab, lockdep and
pagealloc debugging turned on without blowing the stack. Even though
you upgraded us to a nice king sized stack, I kept most of the
patches.
We also have some very hard to find corruption fixes, an awesome sysfs
use after free, and the usual assortment of optimizations, cleanups
and other fixes"
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs: (80 commits)
Btrfs: convert smp_mb__{before,after}_clear_bit
Btrfs: fix scrub_print_warning to handle skinny metadata extents
Btrfs: make fsync work after cloning into a file
Btrfs: use right type to get real comparison
Btrfs: don't check nodes for extent items
Btrfs: don't release invalid page in btrfs_page_exists_in_range()
Btrfs: make sure we retry if page is a retriable exception
Btrfs: make sure we retry if we couldn't get the page
btrfs: replace EINVAL with EOPNOTSUPP for dev_replace raid56
trivial: fs/btrfs/ioctl.c: fix typo s/substract/subtract/
Btrfs: fix leaf corruption after __btrfs_drop_extents
Btrfs: ensure btrfs_prev_leaf doesn't miss 1 item
Btrfs: fix clone to deal with holes when NO_HOLES feature is enabled
btrfs: free delayed node outside of root->inode_lock
btrfs: replace EINVAL with ERANGE for resize when ULLONG_MAX
Btrfs: fix transaction leak during fsync call
btrfs: Avoid trucating page or punching hole in a already existed hole.
Btrfs: update commit root on snapshot creation after orphan cleanup
Btrfs: ioctl, don't re-lock extent range when not necessary
Btrfs: avoid visiting all extent items when cloning a range
...
When cloning into a file, we were correctly replacing the extent
items in the target range and removing the extent maps. However
we weren't replacing the extent maps with new ones that point to
the new extents - as a consequence, an incremental fsync (when the
inode doesn't have the full sync flag) was a NOOP, since it relies
on the existence of extent maps in the modified list of the inode's
extent map tree, which was empty. Therefore add new extent maps to
reflect the target clone range.
A test case for xfstests follows.
Signed-off-by: Filipe David Borba Manana <fdmanana@gmail.com>
Signed-off-by: Chris Mason <clm@fb.com>
In inode.c:btrfs_page_exists_in_range(), if the page we got from
the radix tree is an exception entry, which can't be retried, we
exit the loop with a non-NULL page and then call page_cache_release
against it, which is not ok since it's not a valid page. This could
also make us return true when we shouldn't.
Signed-off-by: Filipe David Borba Manana <fdmanana@gmail.com>
Signed-off-by: Chris Mason <clm@fb.com>
In inode.c:btrfs_page_exists_in_range(), if the page we get from the
radix tree is an exception which should make us retry, set page to
NULL in order to really retry, because otherwise we don't get another
loop iteration executed (page != NULL makes the while loop exit).
This also was making us call page_cache_release after exiting the loop,
which isn't correct because page doesn't point to a valid page, and
possibly return true from the function when we shouldn't.
Signed-off-by: Filipe David Borba Manana <fdmanana@gmail.com>
Signed-off-by: Chris Mason <clm@fb.com>
In inode.c:btrfs_page_exists_in_range(), if we can't get the page
we need to retry. However we weren't retrying because we weren't
setting page to NULL, which makes the while loop exit immediately
and will make us call page_cache_release after exiting the loop
which is incorrect because our page get didn't succeed. This could
also make us return true when we shouldn't.
Signed-off-by: Filipe David Borba Manana <fdmanana@gmail.com>
Signed-off-by: Chris Mason <clm@fb.com>
Delayed extent operations are triggered during transaction commits.
The goal is to queue up a healthly batch of changes to the extent
allocation tree and run through them in bulk.
This farms them off to async helper threads. The goal is to have the
bulk of the delayed operations being done in the background, but this is
also important to limit our stack footprint.
Signed-off-by: Chris Mason <clm@fb.com>
__extent_writepage has two unrelated parts. First it does the delayed
allocation dance and second it does the mapping and IO for the page
we're actually writing.
This splits it up into those two parts so the stack from one doesn't
impact the stack from the other.
Signed-off-by: Chris Mason <clm@fb.com>
In these instances, we are trying to determine if a page has been accessed
since we began the operation for the sake of retry. This is easily
accomplished by doing a gang lookup in the page mapping radix tree, and it
saves us the dependency on the flag (so that we might eventually delete
it).
btrfs_page_exists_in_range borrows heavily from find_get_page, replacing
the radix tree look up with a gang lookup of 1, so that we can find the
next highest page >= index and see if it falls into our lock range.
Signed-off-by: Chris Mason <clm@fb.com>
Signed-off-by: Alex Gartrell <agartrell@fb.com>
I've noticed an extra line after "use no compression", but search
revealed much more in messages of more critical levels and rare errors.
Signed-off-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Chris Mason <clm@fb.com>
This implements the tmpfile callback of struct inode_operations, introduced
in the linux kernel 3.11, and implemented already by some filesystems. This
callback is invoked by the VFS when the flag O_TMPFILE is passed to the open
system call.
Signed-off-by: Filipe David Borba Manana <fdmanana@gmail.com>
Signed-off-by: Chris Mason <clm@fb.com>
Reviewed-by: David Sterba <dsterba@suse.cz>
uncompress_inline() is dropping the error from btrfs_decompress() after
testing it and zeroing the page that was supposed to hold decompressed
data. This can silently turn compressed inline data in to zeros if
decompression fails due to corrupt compressed data or memory allocation
failure.
I verified this by manually forcing the error from btrfs_decompress()
for a silly named copy of od:
if (!strcmp(current->comm, "failod"))
ret = -ENOMEM;
# od -x /mnt/btrfs/dir/80 | head -1
0000000 3031 3038 310a 2d30 6f70 6e69 0a74 3031
# echo 3 > /proc/sys/vm/drop_caches
# cp $(which od) /tmp/failod
# /tmp/failod -x /mnt/btrfs/dir/80 | head -1
0000000 0000 0000 0000 0000 0000 0000 0000 0000
The fix is to pass the error to its caller. Which still has a BUG_ON().
So we fix that too.
There seems to be no reason for the zeroing of the page on the error
from btrfs_decompress() but not from the allocation error a few lines
above. So the page zeroing is removed.
Signed-off-by: Zach Brown <zab@redhat.com>
Reviewed-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Chris Mason <clm@fb.com>
Pull second set of btrfs updates from Chris Mason:
"The most important changes here are from Josef, fixing a btrfs
regression in 3.14 that can cause corruptions in the extent allocation
tree when snapshots are in use.
Josef also fixed some deadlocks in send/recv and other assorted races
when balance is running"
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs: (23 commits)
Btrfs: fix compile warnings on on avr32 platform
btrfs: allow mounting btrfs subvolumes with different ro/rw options
btrfs: export global block reserve size as space_info
btrfs: fix crash in remount(thread_pool=) case
Btrfs: abort the transaction when we don't find our extent ref
Btrfs: fix EINVAL checks in btrfs_clone
Btrfs: fix unlock in __start_delalloc_inodes()
Btrfs: scrub raid56 stripes in the right way
Btrfs: don't compress for a small write
Btrfs: more efficient io tree navigation on wait_extent_bit
Btrfs: send, build path string only once in send_hole
btrfs: filter invalid arg for btrfs resize
Btrfs: send, fix data corruption due to incorrect hole detection
Btrfs: kmalloc() doesn't return an ERR_PTR
Btrfs: fix snapshot vs nocow writting
btrfs: Change the expanding write sequence to fix snapshot related bug.
btrfs: make device scan less noisy
btrfs: fix lockdep warning with reclaim lock inversion
Btrfs: hold the commit_root_sem when getting the commit root during send
Btrfs: remove transaction from send
...
This patch fix a regression caused by the following patch:
Btrfs: don't flush all delalloc inodes when we doesn't get s_umount lock
break while loop will make us call @spin_unlock() without
calling @spin_lock() before, fix it.
Signed-off-by: Wang Shilong <wangsl.fnst@cn.fujitsu.com>
Reviewed-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Chris Mason <clm@fb.com>
To compress a small file range(<=blocksize) that is not
an inline extent can not save disk space at all. skip it can
save us some cpu time.
This patch can also fix wrong setting nocompression flag for
inode, say a case when @total_in is 4096, and then we get
@total_compressed 52,because we do aligment to page cache size
firstly, and then we get into conclusion @total_in=@total_compressed
thus we will clear this inode's compression flag.
An exception comes from inserting inline extent failure but we
still have @total_compressed < @total_in,so we will still reset
inode's flag, this is ok, because we don't have good compression
effect.
Signed-off-by: Wang Shilong <wangsl.fnst@cn.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
While running fsstress and snapshots concurrently, we will hit something
like followings:
Thread 1 Thread 2
|->fallocate
|->write pages
|->join transaction
|->add ordered extent
|->end transaction
|->flushing data
|->creating pending snapshots
|->write data into src root's
fallocated space
After above work flows finished, we will get a state that source and
snapshot root share same space, but source root have written data into
fallocated space, this will make fsck fail to verify checksums for
snapshot root's preallocating file extent data.Nocow writting also
has this same problem.
Fix this problem by syncing snapshots with nocow writting:
1.for nocow writting,if there are pending snapshots, we will
fall into COW way.
2.if there are pending nocow writes, snapshots for this root
will be blocked until nocow writting finish.
Reported-by: Gui Hecheng <guihc.fnst@cn.fujitsu.com>
Signed-off-by: Wang Shilong <wangsl.fnst@cn.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
Pull btrfs changes from Chris Mason:
"This is a pretty long stream of bug fixes and performance fixes.
Qu Wenruo has replaced the btrfs async threads with regular kernel
workqueues. We'll keep an eye out for performance differences, but
it's nice to be using more generic code for this.
We still have some corruption fixes and other patches coming in for
the merge window, but this batch is tested and ready to go"
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs: (108 commits)
Btrfs: fix a crash of clone with inline extents's split
btrfs: fix uninit variable warning
Btrfs: take into account total references when doing backref lookup
Btrfs: part 2, fix incremental send's decision to delay a dir move/rename
Btrfs: fix incremental send's decision to delay a dir move/rename
Btrfs: remove unnecessary inode generation lookup in send
Btrfs: fix race when updating existing ref head
btrfs: Add trace for btrfs_workqueue alloc/destroy
Btrfs: less fs tree lock contention when using autodefrag
Btrfs: return EPERM when deleting a default subvolume
Btrfs: add missing kfree in btrfs_destroy_workqueue
Btrfs: cache extent states in defrag code path
Btrfs: fix deadlock with nested trans handles
Btrfs: fix possible empty list access when flushing the delalloc inodes
Btrfs: split the global ordered extents mutex
Btrfs: don't flush all delalloc inodes when we doesn't get s_umount lock
Btrfs: reclaim delalloc metadata more aggressively
Btrfs: remove unnecessary lock in may_commit_transaction()
Btrfs: remove the unnecessary flush when preparing the pages
Btrfs: just do dirty page flush for the inode with compression before direct IO
...
Reclaim will be leaving shadow entries in the page cache radix tree upon
evicting the real page. As those pages are found from the LRU, an
iput() can lead to the inode being freed concurrently. At this point,
reclaim must no longer install shadow pages because the inode freeing
code needs to ensure the page tree is really empty.
Add an address_space flag, AS_EXITING, that the inode freeing code sets
under the tree lock before doing the final truncate. Reclaim will check
for this flag before installing shadow pages.
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Rik van Riel <riel@redhat.com>
Reviewed-by: Minchan Kim <minchan@kernel.org>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Bob Liu <bob.liu@oracle.com>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Jan Kara <jack@suse.cz>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Luigi Semenzato <semenzato@google.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Metin Doslu <metin@citusdata.com>
Cc: Michel Lespinasse <walken@google.com>
Cc: Ozgun Erdogan <ozgun@citusdata.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Roman Gushchin <klamm@yandex-team.ru>
Cc: Ryan Mallon <rmallon@gmail.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
We didn't have a lock to protect the access to the delalloc inodes list, that is
we might access a empty delalloc inodes list if someone start flushing delalloc
inodes because the delalloc inodes were moved into a other list temporarily.
Fix it by wrapping the access with a lock.
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Josef Bacik <jbacik@fb.com>
We needn't flush all delalloc inodes when we doesn't get s_umount lock,
or we would make the tasks wait for a long time.
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Josef Bacik <jbacik@fb.com>
As the comment in the btrfs_direct_IO says, only the compressed pages need be
flush again to make sure they are on the disk, but the common pages needn't,
so we add a if statement to check if the inode has compressed pages or not,
if no, skip the flush.
And in order to prevent the write ranges from intersecting, we need wait for
the running ordered extents. But the current code waits for them twice, one
is done before the direct IO starts (in btrfs_wait_ordered_range()), the other
is before we get the blocks, it is unnecessary. because we can do the direct
IO without holding i_mutex, it means that the intersected ordered extents may
happen during the direct IO, the first wait can not avoid this problem. So we
use filemap_fdatawrite_range() instead of btrfs_wait_ordered_range() to remove
the first wait.
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Josef Bacik <jbacik@fb.com>
Since the "_struct" suffix is mainly used for distinguish the differnt
btrfs_work between the original and the newly created one,
there is no need using the suffix since all btrfs_workers are changed
into btrfs_workqueue.
Also this patch fixed some codes whose code style is changed due to the
too long "_struct" suffix.
Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Tested-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Josef Bacik <jbacik@fb.com>
Replace the fs_info->fixup_workers with the newly created
btrfs_workqueue.
Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Tested-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Josef Bacik <jbacik@fb.com>
Replace the fs_info->endio_* workqueues with the newly created
btrfs_workqueue.
Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Tested-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Josef Bacik <jbacik@fb.com>
Replace the fs_info->submit_workers with the newly created
btrfs_workqueue.
Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Tested-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Josef Bacik <jbacik@fb.com>
Much like the fs_info->workers, replace the fs_info->delalloc_workers
use the same btrfs_workqueue.
Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Tested-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Josef Bacik <jbacik@fb.com>
We can not release the reserved metadata space for the first write if we
find the write position is pre-allocated. Because the kernel might write
the data on the disk before we do the second write but after the can-nocow
check, if we release the space for the first write, we might fail to update
the metadata because of no space.
Fix this problem by end nocow write if there is dirty data in the range whose
space is pre-allocated.
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Josef Bacik <jbacik@fb.com>
So after transaction is aborted, we need to cleanup inode resources by
calling btrfs_invalidate_inodes(), and btrfs_invalidate_inodes() hopes
roots' refs to be zero in old times and sets a WARN_ON(), however, this
is not always true within cleaning up transaction, so we get to detect
transaction abortion and not warn at all.
Signed-off-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: Josef Bacik <jbacik@fb.com>
When I converted the BUG_ON() for the free_space_cache_inode in cow_file_range I
made it so we just return an error instead of unlocking all of our various
stuff. This is a mistake and causes us to hang when we run into this. This
patch fixes this problem. Thanks,
Signed-off-by: Josef Bacik <jbacik@fb.com>
While trying to reproduce a delayed ref problem I noticed the box kept falling
over using all 80gb of my ram with btrfs_inode's and btrfs_delayed_node's.
Turns out this is because we only throttle delayed inode updates in
btrfs_dirty_inode, which doesn't actually get called that often, especially when
all you are doing is creating a bunch of files. So balance delayed inode
updates everytime we create a new inode. With this patch we no longer use up
all of our ram with delayed inode updates. Thanks,
Signed-off-by: Josef Bacik <jbacik@fb.com>
Pull btrfs fixes from Chris Mason:
"We have a small collection of fixes in my for-linus branch.
The big thing that stands out is a revert of a new ioctl. Users
haven't shipped yet in btrfs-progs, and Dave Sterba found a better way
to export the information"
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs:
Btrfs: use right clone root offset for compressed extents
btrfs: fix null pointer deference at btrfs_sysfs_add_one+0x105
Btrfs: unset DCACHE_DISCONNECTED when mounting default subvol
Btrfs: fix max_inline mount option
Btrfs: fix a lockdep warning when cleaning up aborted transaction
Revert "btrfs: add ioctl to export size of global metadata reservation"
A user was running into errors from an NFS export of a subvolume that had a
default subvol set. When we mount a default subvol we will use d_obtain_alias()
to find an existing dentry for the subvolume in the case that the root subvol
has already been mounted, or a dummy one is allocated in the case that the root
subvol has not already been mounted. This allows us to connect the dentry later
on if we wander into the path. However if we don't ever wander into the path we
will keep DCACHE_DISCONNECTED set for a long time, which angers NFS. It doesn't
appear to cause any problems but it is annoying nonetheless, so simply unset
DCACHE_DISCONNECTED in the get_default_root case and switch btrfs_lookup() to
use d_materialise_unique() instead which will make everything play nicely
together and reconnect stuff if we wander into the defaul subvol path from a
different way. With this patch I'm no longer getting the NFS errors when
exporting a volume that has been mounted with a default subvol set. Thanks,
cc: bfields@fieldses.org
cc: ebiederm@xmission.com
Signed-off-by: Josef Bacik <jbacik@fb.com>
Acked-by: "Eric W. Biederman" <ebiederm@xmission.com>
Signed-off-by: Chris Mason <clm@fb.com>
Pull btrfs fixes from Chris Mason:
"Filipe is fixing compile and boot problems with our crc32c rework, and
Josef has disabled snapshot aware defrag for now.
As the number of snapshots increases, we're hitting OOM. For the
short term we're disabling things until a bigger fix is ready"
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs:
Btrfs: use late_initcall instead of module_init
Btrfs: use btrfs_crc32c everywhere instead of libcrc32c
Btrfs: disable snapshot aware defrag for now
It's just broken and it's taking a lot of effort to fix it, so for now just
disable it so people can defrag in peace. Thanks,
Cc: stable@vger.kernel.org
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
Pull btrfs updates from Chris Mason:
"This is a pretty big pull, and most of these changes have been
floating in btrfs-next for a long time. Filipe's properties work is a
cool building block for inheriting attributes like compression down on
a per inode basis.
Jeff Mahoney kicked in code to export filesystem info into sysfs.
Otherwise, lots of performance improvements, cleanups and bug fixes.
Looks like there are still a few other small pending incrementals, but
I wanted to get the bulk of this in first"
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs: (149 commits)
Btrfs: fix spin_unlock in check_ref_cleanup
Btrfs: setup inode location during btrfs_init_inode_locked
Btrfs: don't use ram_bytes for uncompressed inline items
Btrfs: fix btrfs_search_slot_for_read backwards iteration
Btrfs: do not export ulist functions
Btrfs: rework ulist with list+rb_tree
Btrfs: fix memory leaks on walking backrefs failure
Btrfs: fix send file hole detection leading to data corruption
Btrfs: add a reschedule point in btrfs_find_all_roots()
Btrfs: make send's file extent item search more efficient
Btrfs: fix to catch all errors when resolving indirect ref
Btrfs: fix protection between walking backrefs and root deletion
btrfs: fix warning while merging two adjacent extents
Btrfs: fix infinite path build loops in incremental send
btrfs: undo sysfs when open_ctree() fails
Btrfs: fix snprintf usage by send's gen_unique_name
btrfs: fix defrag 32-bit integer overflow
btrfs: sysfs: list the NO_HOLES feature
btrfs: sysfs: don't show reserved incompat feature
btrfs: call permission checks earlier in ioctls and return EPERM
...
Pull core block IO changes from Jens Axboe:
"The major piece in here is the immutable bio_ve series from Kent, the
rest is fairly minor. It was supposed to go in last round, but
various issues pushed it to this release instead. The pull request
contains:
- Various smaller blk-mq fixes from different folks. Nothing major
here, just minor fixes and cleanups.
- Fix for a memory leak in the error path in the block ioctl code
from Christian Engelmayer.
- Header export fix from CaiZhiyong.
- Finally the immutable biovec changes from Kent Overstreet. This
enables some nice future work on making arbitrarily sized bios
possible, and splitting more efficient. Related fixes to immutable
bio_vecs:
- dm-cache immutable fixup from Mike Snitzer.
- btrfs immutable fixup from Muthu Kumar.
- bio-integrity fix from Nic Bellinger, which is also going to stable"
* 'for-3.14/core' of git://git.kernel.dk/linux-block: (44 commits)
xtensa: fixup simdisk driver to work with immutable bio_vecs
block/blk-mq-cpu.c: use hotcpu_notifier()
blk-mq: for_each_* macro correctness
block: Fix memory leak in rw_copy_check_uvector() handling
bio-integrity: Fix bio_integrity_verify segment start bug
block: remove unrelated header files and export symbol
blk-mq: uses page->list incorrectly
blk-mq: use __smp_call_function_single directly
btrfs: fix missing increment of bi_remaining
Revert "block: Warn and free bio if bi_end_io is not set"
block: Warn and free bio if bi_end_io is not set
blk-mq: fix initializing request's start time
block: blk-mq: don't export blk_mq_free_queue()
block: blk-mq: make blk_sync_queue support mq
block: blk-mq: support draining mq queue
dm cache: increment bi_remaining when bi_end_io is restored
block: fixup for generic bio chaining
block: Really silence spurious compiler warnings
block: Silence spurious compiler warnings
block: Kill bio_pair_split()
...
We have a race during inode init because the BTRFS_I(inode)->location is setup
after the inode hash table lock is dropped. btrfs_find_actor uses the location
field, so our search might not find an existing inode in the hash table if we
race with the inode init code.
This commit changes things to setup the location field sooner. Also the find actor now
uses only the location objectid to match inodes. For inode hashing, we just
need a unique and stable test, it doesn't have to reflect the inode numbers we
show to userland.
Signed-off-by: Chris Mason <clm@fb.com>
CC: stable@vger.kernel.org
If we truncate an uncompressed inline item, ram_bytes isn't updated to reflect
the new size. The fixe uses the size directly from the item header when
reading uncompressed inlines, and also fixes truncate to update the
size as it goes.
Reported-by: Jens Axboe <axboe@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
CC: stable@vger.kernel.org
When we have two adjacent extents in relink_extent_backref,
we try to merge them. When we use btrfs_search_slot to locate the
slot for the current extent, we shouldn't set "ins_len = 1",
because we will merge it into the previous extent rather than
insert a new item. Otherwise, we may happen to create a new leaf
in btrfs_search_slot and path->slot[0] will be 0. Then we try to
fetch the previous item using "path->slots[0]--", and it will cause
a warning as follows:
[ 145.713385] WARNING: CPU: 3 PID: 1796 at fs/btrfs/extent_io.c:5043 map_private_extent_buffer+0xd4/0xe0
[ 145.713387] btrfs bad mapping eb start 5337088 len 4096, wanted 167772306 8
...
[ 145.713462] [<ffffffffa034b1f4>] map_private_extent_buffer+0xd4/0xe0
[ 145.713476] [<ffffffffa030097a>] ? btrfs_free_path+0x2a/0x40
[ 145.713485] [<ffffffffa0340864>] btrfs_get_token_64+0x64/0xf0
[ 145.713498] [<ffffffffa033472c>] relink_extent_backref+0x41c/0x820
[ 145.713508] [<ffffffffa0334d69>] btrfs_finish_ordered_io+0x239/0xa80
I encounter this warning when running defrag having mkfs.btrfs
with option -M. At the same time there are read/writes & snapshots
running at background.
Signed-off-by: Gui Hecheng <guihc.fnst@cn.fujitsu.com>
Reviewed-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
Steps to reproduce:
# mkfs.btrfs -f /dev/sda8
# mount /dev/sda8 /mnt -o flushoncommit
# dd if=/dev/zero of=/mnt/data bs=4k count=102400 &
# mount /dev/sda8 /mnt -o remount, ro
When remounting RW to RO, the logic is to firstly set flag
to RO and then commit transaction, however with option
flushoncommit enabled,we will do RO check within committing
transaction, so we get a transaction abortion here.
Actually,here check is wrong, we should check if FS_STATE_ERROR
is set, fix it.
Reported-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Suggested-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Wang Shilong <wangsl.fnst@cn.fujitsu.com>
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
This change adds infrastructure to allow for generic properties for
inodes. Properties are name/value pairs that can be associated with
inodes for different purposes. They are stored as xattrs with the
prefix "btrfs."
Properties can be inherited - this means when a directory inode has
inheritable properties set, these are added to new inodes created
under that directory. Further, subvolumes can also have properties
associated with them, and they can be inherited from their parent
subvolume. Naturally, directory properties have priority over subvolume
properties (in practice a subvolume property is just a regular
property associated with the root inode, objectid 256, of the
subvolume's fs tree).
This change also adds one specific property implementation, named
"compression", whose values can be "lzo" or "zlib" and it's an
inheritable property.
The corresponding changes to btrfs-progs were also implemented.
A patch with xfstests for this feature will follow once there's
agreement on this change/feature.
Further, the script at the bottom of this commit message was used to
do some benchmarks to measure any performance penalties of this feature.
Basically the tests correspond to:
Test 1 - create a filesystem and mount it with compress-force=lzo,
then sequentially create N files of 64Kb each, measure how long it took
to create the files, unmount the filesystem, mount the filesystem and
perform an 'ls -lha' against the test directory holding the N files, and
report the time the command took.
Test 2 - create a filesystem and don't use any compression option when
mounting it - instead set the compression property of the subvolume's
root to 'lzo'. Then create N files of 64Kb, and report the time it took.
The unmount the filesystem, mount it again and perform an 'ls -lha' like
in the former test. This means every single file ends up with a property
(xattr) associated to it.
Test 3 - same as test 2, but uses 4 properties - 3 are duplicates of the
compression property, have no real effect other than adding more work
when inheriting properties and taking more btree leaf space.
Test 4 - same as test 3 but with 10 properties per file.
Results (in seconds, and averages of 5 runs each), for different N
numbers of files follow.
* Without properties (test 1)
file creation time ls -lha time
10 000 files 3.49 0.76
100 000 files 47.19 8.37
1 000 000 files 518.51 107.06
* With 1 property (compression property set to lzo - test 2)
file creation time ls -lha time
10 000 files 3.63 0.93
100 000 files 48.56 9.74
1 000 000 files 537.72 125.11
* With 4 properties (test 3)
file creation time ls -lha time
10 000 files 3.94 1.20
100 000 files 52.14 11.48
1 000 000 files 572.70 142.13
* With 10 properties (test 4)
file creation time ls -lha time
10 000 files 4.61 1.35
100 000 files 58.86 13.83
1 000 000 files 656.01 177.61
The increased latencies with properties are essencialy because of:
*) When creating an inode, we now synchronously write 1 more item
(an xattr item) for each property inherited from the parent dir
(or subvolume). This could be done in an asynchronous way such
as we do for dir intex items (delayed-inode.c), which could help
reduce the file creation latency;
*) With properties, we now have larger fs trees. For this particular
test each xattr item uses 75 bytes of leaf space in the fs tree.
This could be less by using a new item for xattr items, instead of
the current btrfs_dir_item, since we could cut the 'location' and
'type' fields (saving 18 bytes) and maybe 'transid' too (saving a
total of 26 bytes per xattr item) from the btrfs_dir_item type.
Also tried batching the xattr insertions (ignoring proper hash
collision handling, since it didn't exist) when creating files that
inherit properties from their parent inode/subvolume, but the end
results were (surprisingly) essentially the same.
Test script:
$ cat test.pl
#!/usr/bin/perl -w
use strict;
use Time::HiRes qw(time);
use constant NUM_FILES => 10_000;
use constant FILE_SIZES => (64 * 1024);
use constant DEV => '/dev/sdb4';
use constant MNT_POINT => '/home/fdmanana/btrfs-tests/dev';
use constant TEST_DIR => (MNT_POINT . '/testdir');
system("mkfs.btrfs", "-l", "16384", "-f", DEV) == 0 or die "mkfs.btrfs failed!";
# following line for testing without properties
#system("mount", "-o", "compress-force=lzo", DEV, MNT_POINT) == 0 or die "mount failed!";
# following 2 lines for testing with properties
system("mount", DEV, MNT_POINT) == 0 or die "mount failed!";
system("btrfs", "prop", "set", MNT_POINT, "compression", "lzo") == 0 or die "set prop failed!";
system("mkdir", TEST_DIR) == 0 or die "mkdir failed!";
my ($t1, $t2);
$t1 = time();
for (my $i = 1; $i <= NUM_FILES; $i++) {
my $p = TEST_DIR . '/file_' . $i;
open(my $f, '>', $p) or die "Error opening file!";
$f->autoflush(1);
for (my $j = 0; $j < FILE_SIZES; $j += 4096) {
print $f ('A' x 4096) or die "Error writing to file!";
}
close($f);
}
$t2 = time();
print "Time to create " . NUM_FILES . ": " . ($t2 - $t1) . " seconds.\n";
system("umount", DEV) == 0 or die "umount failed!";
system("mount", DEV, MNT_POINT) == 0 or die "mount failed!";
$t1 = time();
system("bash -c 'ls -lha " . TEST_DIR . " > /dev/null'") == 0 or die "ls failed!";
$t2 = time();
print "Time to ls -lha all files: " . ($t2 - $t1) . " seconds.\n";
system("umount", DEV) == 0 or die "umount failed!";
Signed-off-by: Filipe David Borba Manana <fdmanana@gmail.com>
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
When writing to a file we drop existing file extent items that cover the
write range and then add a new file extent item that represents that write
range.
Before this change we were doing a tree lookup to remove the file extent
items, and then after we did another tree lookup to insert the new file
extent item.
Most of the time all the file extent items we need to drop are located
within a single leaf - this is the leaf where our new file extent item ends
up at. Therefore, in this common case just combine these 2 operations into
a single one.
By avoiding the second btree navigation for insertion of the new file extent
item, we reduce btree node/leaf lock acquisitions/releases, btree block/leaf
COW operations, CPU time on btree node/leaf key binary searches, etc.
Besides for file writes, this is an operation that happens for file fsync's
as well. However log btrees are much less likely to big as big as regular
fs btrees, therefore the impact of this change is smaller.
The following benchmark was performed against an SSD drive and a
HDD drive, both for random and sequential writes:
sysbench --test=fileio --file-num=4096 --file-total-size=8G \
--file-test-mode=[rndwr|seqwr] --num-threads=512 \
--file-block-size=8192 \ --max-requests=1000000 \
--file-fsync-freq=0 --file-io-mode=sync [prepare|run]
All results below are averages of 10 runs of the respective test.
** SSD sequential writes
Before this change: 225.88 Mb/sec
After this change: 277.26 Mb/sec
** SSD random writes
Before this change: 49.91 Mb/sec
After this change: 56.39 Mb/sec
** HDD sequential writes
Before this change: 68.53 Mb/sec
After this change: 69.87 Mb/sec
** HDD random writes
Before this change: 13.04 Mb/sec
After this change: 14.39 Mb/sec
Signed-off-by: Filipe David Borba Manana <fdmanana@gmail.com>
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
The following warning message was outputed when running the 274th case
of xfstests with nodatacow option:
BUG: Bad page state in process kswapd0 pfn:1c66f
page:ffffea0000636848 count:0 mapcount:0 mapping:(null) index:0x78000
page flags: 0x1000000000100a(error|uptodate|private_2)
It is because the check of nocow range was wrong, we should compare the
start and end position of the extent with the write position to verify
if the write position was in the extent, but the current code just used
the start postion to do the check, so we got the wrong extent and told
the caller that it was a nocow write. And then when we write back the
dirty pages, we found we should cow the extent, but at that time, there
was no space in the fs, we had to the error flag for the page. When
someone reclaimed that page, the above warning outputed. Fix it.
Reported-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
If we do a btree search with the goal of updating an existing item
without changing its size (ins_len == 0 and cow == 1), then we never
need to hold locks on upper level nodes (even when slot == 0) after we
COW their child nodes/leaves, as we won't have node splits or merges
in this scenario (that is, no key additions, removals or shifts on any
nodes or leaves).
Therefore release the locks immediately after COWing the child nodes/leaves
while navigating the btree, even if their parent slot is 0, instead of
returning a path to the caller with those nodes locked, which would get
released only when the caller releases or frees the path (or if it calls
btrfs_unlock_up_safe).
This is a common scenario, for example when updating inode items in fs
trees and block group items in the extent tree.
The following benchmarks were performed on a quad core machine with 32Gb
of ram, using a leaf/node size of 4Kb (to generate deeper fs trees more
quickly).
sysbench --test=fileio --file-num=131072 --file-total-size=8G \
--file-test-mode=seqwr --num-threads=512 --file-block-size=8192 \
--max-requests=100000 --file-io-mode=sync [prepare|run]
Before this change: 49.85Mb/s (average of 5 runs)
After this change: 50.38Mb/s (average of 5 runs)
Signed-off-by: Filipe David Borba Manana <fdmanana@gmail.com>
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
The inode reference item is close to inode item, so we insert it simultaneously
with the inode item insertion when we create a file/directory.. In fact, we also
can handle the inode reference deletion by the same way. So we made this patch to
introduce the delayed inode reference deletion for the single link inode(At most
case, the file doesn't has hard link, so we don't take the hard link into account).
This function is based on the delayed inode mechanism. After applying this patch,
we can reduce the time of the file/directory deletion by ~10%.
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
Convert all applicable cases of printk and pr_* to the btrfs_* macros.
Fix all uses of the BTRFS prefix.
Signed-off-by: Frank Holton <fholton@gmail.com>
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
Chris introduced hleper function read_csums() and this function
has been removed, but we forgot to remove its corresponding comments.
Signed-off-by: Wang Shilong <wangsl.fnst@cn.fujitsu.com>
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
Clean up btrfs_lookup_dentry() to never return NULL, but PTR_ERR(-ENOENT)
instead. This keeps the return value convention consistent.
Callers who use btrfs_lookup_dentry() require a trivial update.
create_snapshot() in particular looks like it can also lose a BUG_ON(!inode)
which is not really needed - there seems less harm in returning ENOENT to
userspace at that point in the stack than there is to crash the machine.
Signed-off-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
The inode eviction can be very slow, because during eviction we
tell the VFS to truncate all of the inode's pages. This results
in calls to btrfs_invalidatepage() which in turn does calls to
lock_extent_bits() and clear_extent_bit(). These calls result in
too many merges and splits of extent_state structures, which
consume a lot of time and cpu when the inode has many pages. In
some scenarios I have experienced umount times higher than 15
minutes, even when there's no pending IO (after a btrfs fs sync).
A quick way to reproduce this issue:
$ mkfs.btrfs -f /dev/sdb3
$ mount /dev/sdb3 /mnt/btrfs
$ cd /mnt/btrfs
$ sysbench --test=fileio --file-num=128 --file-total-size=16G \
--file-test-mode=seqwr --num-threads=128 \
--file-block-size=16384 --max-time=60 --max-requests=0 run
$ time btrfs fi sync .
FSSync '.'
real 0m25.457s
user 0m0.000s
sys 0m0.092s
$ cd ..
$ time umount /mnt/btrfs
real 1m38.234s
user 0m0.000s
sys 1m25.760s
The same test on ext4 runs much faster:
$ mkfs.ext4 /dev/sdb3
$ mount /dev/sdb3 /mnt/ext4
$ cd /mnt/ext4
$ sysbench --test=fileio --file-num=128 --file-total-size=16G \
--file-test-mode=seqwr --num-threads=128 \
--file-block-size=16384 --max-time=60 --max-requests=0 run
$ sync
$ cd ..
$ time umount /mnt/ext4
real 0m3.626s
user 0m0.004s
sys 0m3.012s
After this patch, the unmount (inode evictions) is much faster:
$ mkfs.btrfs -f /dev/sdb3
$ mount /dev/sdb3 /mnt/btrfs
$ cd /mnt/btrfs
$ sysbench --test=fileio --file-num=128 --file-total-size=16G \
--file-test-mode=seqwr --num-threads=128 \
--file-block-size=16384 --max-time=60 --max-requests=0 run
$ time btrfs fi sync .
FSSync '.'
real 0m26.774s
user 0m0.000s
sys 0m0.084s
$ cd ..
$ time umount /mnt/btrfs
real 0m1.811s
user 0m0.000s
sys 0m1.564s
Signed-off-by: Filipe David Borba Manana <fdmanana@gmail.com>
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
This patch is the second step in bootstrapping the btrfs_find_item
interface. The btrfs_find_root_ref() is similar to the former
__inode_info(); it accepts four of its parameters, and duplicates the
first half of its functionality.
Replace the one former call to btrfs_find_root_ref() with a call to
btrfs_find_item(), along with the defined key type that was used
internally by btrfs_find_root ref, and a null found key. In
btrfs_find_item(), add a test for the null key at the place where
the functionality of btrfs_find_root_ref() ends; btrfs_find_item()
then returns if the test passes. Finally, remove btrfs_find_root_ref().
Signed-off-by: Kelley Nielsen <kelleynnn@gmail.com>
Suggested-by: Zach Brown <zab@redhat.com>
Reviewed-by: Josh Triplett <josh@joshtriplett.org>
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Signed-off-by: Chris Mason <clm@fb.com>
Variable owner in btrfs_new_inode is unused since commit
d82a6f1d7e
(Btrfs: kill BTRFS_I(inode)->block_group)
Signed-off-by: Valentina Giusti <valentina.giusti@microon.de>
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Signed-off-by: Chris Mason <clm@fb.com>
Btrfs has always had these filler extent data items for holes in inodes. This
has made somethings very easy, like logging hole punches and sending hole
punches. However for large holey files these extent data items are pure
overhead. So add an incompatible feature to no longer add hole extents to
reduce the amount of metadata used by these sort of files. This has a few
changes for logging and send obviously since they will need to detect holes and
log/send the holes if there are any. I've tested this thoroughly with xfstests
and it doesn't cause any issues with and without the incompat format set.
Thanks,
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Signed-off-by: Chris Mason <clm@fb.com>
Pull vfs updates from Al Viro:
"Assorted stuff; the biggest pile here is Christoph's ACL series. Plus
assorted cleanups and fixes all over the place...
There will be another pile later this week"
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs: (43 commits)
__dentry_path() fixes
vfs: Remove second variable named error in __dentry_path
vfs: Is mounted should be testing mnt_ns for NULL or error.
Fix race when checking i_size on direct i/o read
hfsplus: remove can_set_xattr
nfsd: use get_acl and ->set_acl
fs: remove generic_acl
nfs: use generic posix ACL infrastructure for v3 Posix ACLs
gfs2: use generic posix ACL infrastructure
jfs: use generic posix ACL infrastructure
xfs: use generic posix ACL infrastructure
reiserfs: use generic posix ACL infrastructure
ocfs2: use generic posix ACL infrastructure
jffs2: use generic posix ACL infrastructure
hfsplus: use generic posix ACL infrastructure
f2fs: use generic posix ACL infrastructure
ext2/3/4: use generic posix ACL infrastructure
btrfs: use generic posix ACL infrastructure
fs: make posix_acl_create more useful
fs: make posix_acl_chmod more useful
...
Also don't bother to set up a .get_acl method for symlinks as we do not
support access control (ACLs or even mode bits) for symlinks in Linux.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Currently notify_change directly updates i_version for size updates,
which not only is counter to how all other fields are updated through
struct iattr, but also breaks XFS, which need inode updates to happen
under its own lock, and synchronized to the structure that gets written
to the log.
Remove the update in the common code, and it to btrfs and ext4,
XFS already does a proper updaste internally and currently gets a
double update with the existing code.
IMHO this is 3.13 and -stable material and should go in through the XFS
tree.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Andreas Dilger <adilger@dilger.ca>
Acked-by: Jan Kara <jack@suse.cz>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Chris Mason <clm@fb.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
With immutable biovecs we don't want code accessing bi_io_vec directly -
the uses this patch changes weren't incorrect since they all own the
bio, but it makes the code harder to audit for no good reason - also,
this will help with multipage bvecs later.
Signed-off-by: Kent Overstreet <kmo@daterainc.com>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Chris Mason <chris.mason@fusionio.com>
Cc: Jaegeuk Kim <jaegeuk.kim@samsung.com>
Cc: Joern Engel <joern@logfs.org>
Cc: Prasad Joshi <prasadjoshi.linux@gmail.com>
Cc: Trond Myklebust <Trond.Myklebust@netapp.com>
Doing an if statement to test some condition to know if we should
trigger a tracepoint is pointless when tracing is disabled. This just
adds overhead and wastes a branch prediction. This is why the
TRACE_EVENT_CONDITION() was created. It places the check inside the jump
label so that the branch does not happen unless tracing is enabled.
That is, instead of doing:
if (em)
trace_btrfs_get_extent(root, em);
Which is basically this:
if (em)
if (static_key(trace_btrfs_get_extent)) {
Using a TRACE_EVENT_CONDITION() we can just do:
trace_btrfs_get_extent(root, em);
And the condition trace event will do:
if (static_key(trace_btrfs_get_extent)) {
if (em) {
...
The static key is a non conditional jump (or nop) that is faster than
having to check if em is NULL or not.
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
We can just return false for this so we stop doing the snapshot aware defrag
stuff. Thanks,
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
rename the function -- btrfs_start_all_delalloc_inodes(), and make its
name be compatible to btrfs_wait_ordered_roots(), since they are always
used at the same place.
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
Fix spacing issues detected via checkpatch.pl in accordance with the
kernel style guidelines.
Signed-off-by: Dulshani Gunawardhana <dulshani.gunawardhana89@gmail.com>
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
Use WARN_ON()'s return value in place of WARN_ON(1) for cleaner source
code that outputs a more descriptive warnings. Also fix the styling
warning of redundant braces that came up as a result of this fix.
Signed-off-by: Dulshani Gunawardhana <dulshani.gunawardhana89@gmail.com>
Reviewed-by: Zach Brown <zab@redhat.com>
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
If something wrong happens in write endio, running snapshot-aware defragment
can end up with undefined results, maybe a crash, so we should avoid it.
In order to share similar code, this also adds a helper to free the struct for
snapshot-aware defrag.
Signed-off-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
When using delalloc workers in a non-waiting way (like for enospc handling) we
can end up not actually waiting for the dirty pages to be started if we have
compression. We need to add an extra filemap flush to make sure any async
extents that have started are actually moved along before returning. Thanks,
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
This is just the write path, the only reason we start a transaction is so we can
check cross references, we don't make any actual changes, so there is no reason
to abort the transaction if we fail. Thanks,
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
We can just return an error and we'll bail out properly. We still want to catch
this case to make sure we don't have a bug somewhere, so just warn if this pops
up. Thanks,
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
I noticed that if the free space cache has an error writing out it's data it
won't actually error out, it will just carry on. This is because it doesn't
check the return value of btrfs_wait_ordered_range, which didn't actually return
anything. So fix this in order to keep us from making free space cache look
valid when it really isnt. Thanks,
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
fs/btrfs/compat.h only contained trivial macro wrappers of drop_nlink()
and inc_nlink(). This doesn't belong in mainline.
Signed-off-by: Zach Brown <zab@redhat.com>
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
While trying to kill our hole extents I noticed I was seeing problems where we
seek into a file and then start writing and then try to fiemap that file later.
This is because we search for offset 0, don't find anything and so back up one
slot, which puts us at the inode ref or something like that, which means we goto
not_found and create an extent map for our entire search area. This isn't quite
what we want, we want to move forward one slot and see if there is an extent
there so we can limit our hole extent. This patch fixes this problem, I will
add a testcase for this as well. Thanks,
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
I'm going to be removing hole extents in the near future so I wanted to make a
sanity test for btrfs_get_extent to make sure I don't break anything in the
meantime. This patch just puts btrfs_get_extent through its paces by giving it
a completely unreasonable mapping to look at and make sure it is giving us back
maps that make sense. Thanks,
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
While trying to track down a reserved space leak I noticed a few places where we
won't properly clean up reserved space if we have an error, this patch fixes
those up. Thanks,
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
Currently the hash value used for adding an inode to the VFS's inode
hash table consists of the plain inode number, which is a 64 bits
integer. This results in hash table buckets (hlist_head lists) with
too many elements for at least 2 important scenarios:
1) When we have many subvolumes. Each subvolume has its own btree
where its files and directories are added to, and each has its
own objectid (inode number) namespace. This means that if we have
N subvolumes, and all have inode number X associated to a file or
directory, the corresponding inodes all map to the same hash table
entry, resulting in a bucket (hlist_head list) with N elements;
2) On 32 bits machines. Th VFS hash values are unsigned longs, which
are 32 bits wide on 32 bits machines, and the inode (objectid)
numbers are 64 bits unsigned integers. We simply cast the inode
numbers to hash values, which means that for all inodes with the
same 32 bits lower half, the same hash bucket is used for all of
them. For example, all inodes with a number (objectid) between
0x0000_0000_ffff_ffff and 0xffff_ffff_ffff_ffff will end up in
the same hash table bucket.
This change ensures the inode's hash value depends both on the
objectid (inode number) and its subvolume's (btree root) objectid.
For 32 bits machines, this change gives better entropy by making
the hash value depend on both the upper and lower 32 bits of the
64 bits hash previously computed.
Signed-off-by: Filipe David Borba Manana <fdmanana@gmail.com>
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
The performance was slowed down sometimes when we ran sysbench to measure
the performance of the sequential buffered write by 2 or more threads.
It was because the write order of the test threads might be confused
by the task scheduler, and the coming write would be beyond the end of
the file, in this case, we need insert dummy file extents and create
a hole for the area we skip. But in order to avoid the ongoing ordered
extents which are in the area, we need wait for them. Unfortunately,
the current code doesn't check if there are ordered extents in the area
or not, try to find and flush the dirty pages directly, but in fact,
there is no dirty page in that area, this step of the current code is
unnecessary, and just wastes time. Sometimes, it would increase
the contention of some locks, and makes the performance slow down suddenly.
So we remove the ordered extent flush function before the check, and flush
the dirty pages and wait for the ordered extents only when we find them.
According to my test, we got 1-2 times of the performance regression when
we ran the test by 10 times before applying this patch. After applying
this patch, the regression went away.
Test Environment:
CPU: 1CPU * 4Cores
Memory: 6GB
Partition: 20GB
Test Command:
# sysbench --test=fileio --file-total-size=16G --file-test-mode=seqwr \
> --num-threads=512 --file-block-size=16384 --max-time=60 --max-requests=0 run
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
I've been testing our error paths and I was tripping the BUG_ON() in
drop_outstanding_extent because our outstanding_extents is 0 for space cache
inodes. This is because we don't reserve metadata space for these inodes since
we depend on the global block reserve for our space. To fix this we need to
make sure the DO_ACCOUNTING stuff doesn't actually call release_metadata for
space cache inodes. With this patch I'm no longer panicing. Thanks,
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
In inode.c:btrfs_orphan_add() if we failed to insert the orphan
item, we would return without decrementing the orphan count that
we just incremented before attempting the insertion, leaving the
orphan inode count wrong.
In inode.c:btrfs_orphan_del(), we were decrementing the inode
orphan count if the bit BTRFS_INODE_ORPHAN_META_RESERVED was set,
which is logically wrong because it should be decremented if the
bit BTRFS_INODE_HAS_ORPHAN_ITEM was set - after all we increment
the count when we set the bit BTRFS_INODE_HAS_ORPHAN_ITEM elsewhere.
Signed-off-by: Filipe David Borba Manana <fdmanana@gmail.com>
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
Remove unused eb parameter from btrfs_item_nr
Signed-off-by: Ross Kirk <ross.kirk@gmail.com>
Reviewed-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
It is not necessary to store the NULL byte in a symlink inline file
extent. There's currently no code that requires the NULL byte to be
present in the extent. This change also doesn't break file format
compatibility nor the send/receive feature.
The VFS also doesn't need the NULL byte to be present in the extent,
as it reads up to inode->i_size bytes (which already excluded the NULL
byte) and sets the NULL byte for us (in fs/namei.c:page_getlink()).
So with this change we save 1 byte per symlink file extent (which is
always inlined in the btree leaf) without losing backward and forward
compatibility.
Signed-off-by: Filipe David Borba Manana <fdmanana@gmail.com>
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
The fact that btrfs_root_refs() returned 0 for the tree_root caused
bugs in the past, therefore it is set to 1 with this patch and
(hopefully) all affected code is adapted to this change.
I verified this change by temporarily adding WARN_ON() checks
everywhere where btrfs_root_refs() is used, checking whether the
logic of the code is changed by btrfs_root_refs() returning 1
instead of 0 for root->root_key.objectid == BTRFS_ROOT_TREE_OBJECTID.
With these added checks, I ran the xfstests './check -g auto'.
The two roots chunk_root and log_root_tree that are only referenced
by the superblock and the log_roots below the log_root_tree still
have btrfs_root_refs() == 0, only the tree_root is changed.
Signed-off-by: Stefan Behrens <sbehrens@giantdisaster.de>
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
Pull btrfs fix from Chris Mason:
"Sage hit a deadlock with ceph on btrfs, and Josef tracked it down to a
regression in our initial rc1 pull. When doing nocow writes we were
sometimes starting a transaction with locks held"
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs:
Btrfs: release path before starting transaction in can_nocow_extent
We can't be holding tree locks while we try to start a transaction, we will
deadlock. Thanks,
Reported-by: Sage Weil <sage@inktank.com>
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
Pull btrfs fixes from Chris Mason:
"We've got more bug fixes in my for-linus branch:
One of these fixes another corner of the compression oops from last
time. Miao nailed down some problems with concurrent snapshot
deletion and drive balancing.
I kept out one of his patches for more testing, but these are all
stable"
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs:
Btrfs: fix oops caused by the space balance and dead roots
Btrfs: insert orphan roots into fs radix tree
Btrfs: limit delalloc pages outside of find_delalloc_range
Btrfs: use right root when checking for hash collision
btrfs_rename was using the root of the old dir instead of the root of the new
dir when checking for a hash collision, so if you tried to move a file into a
subvol it would freak out because it would see the file you are trying to move
in its current root. This fixes the bug where this would fail
btrfs subvol create test1
btrfs subvol create test2
mv test1 test2.
Thanks to Chris Murphy for catching this,
Cc: stable@vger.kernel.org
Reported-by: Chris Murphy <lists@colorremedies.com>
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
Pull btrfs fixes from Chris Mason:
"These are mostly bug fixes and a two small performance fixes. The
most important of the bunch are Josef's fix for a snapshotting
regression and Mark's update to fix compile problems on arm"
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs: (25 commits)
Btrfs: create the uuid tree on remount rw
btrfs: change extent-same to copy entire argument struct
Btrfs: dir_inode_operations should use btrfs_update_time also
btrfs: Add btrfs: prefix to kernel log output
btrfs: refuse to remount read-write after abort
Btrfs: btrfs_ioctl_default_subvol: Revert back to toplevel subvolume when arg is 0
Btrfs: don't leak transaction in btrfs_sync_file()
Btrfs: add the missing mutex unlock in write_all_supers()
Btrfs: iput inode on allocation failure
Btrfs: remove space_info->reservation_progress
Btrfs: kill delay_iput arg to the wait_ordered functions
Btrfs: fix worst case calculator for space usage
Revert "Btrfs: rework the overcommit logic to be based on the total size"
Btrfs: improve replacing nocow extents
Btrfs: drop dir i_size when adding new names on replay
Btrfs: replay dir_index items before other items
Btrfs: check roots last log commit when checking if an inode has been logged
Btrfs: actually log directory we are fsync()'ing
Btrfs: actually limit the size of delalloc range
Btrfs: allocate the free space by the existed max extent size when ENOSPC
...
Commit 2bc5565286 (Btrfs: don't update atime on
RO subvolumes) ensures that the access time of an inode is not updated when
the inode lives in a read-only subvolume.
However, if a directory on a read-only subvolume is accessed, the atime is
updated. This results in a write operation to a read-only subvolume. I
believe that access times should never be updated on read-only subvolumes.
To reproduce:
# mkfs.btrfs -f /dev/dm-3
(...)
# mount /dev/dm-3 /mnt
# btrfs subvol create /mnt/sub
Create subvolume '/mnt/sub'
# mkdir /mnt/sub/dir
# echo "abc" > /mnt/sub/dir/file
# btrfs subvol snapshot -r /mnt/sub /mnt/rosnap
Create a readonly snapshot of '/mnt/sub' in '/mnt/rosnap'
# stat /mnt/rosnap/dir
File: `/mnt/rosnap/dir'
Size: 8 Blocks: 0 IO Block: 4096 directory
Device: 16h/22d Inode: 257 Links: 1
Access: (0755/drwxr-xr-x) Uid: ( 0/ root) Gid: ( 0/ root)
Access: 2013-09-11 07:21:49.389157126 -0400
Modify: 2013-09-11 07:22:02.330156079 -0400
Change: 2013-09-11 07:22:02.330156079 -0400
# ls /mnt/rosnap/dir
file
# stat /mnt/rosnap/dir
File: `/mnt/rosnap/dir'
Size: 8 Blocks: 0 IO Block: 4096 directory
Device: 16h/22d Inode: 257 Links: 1
Access: (0755/drwxr-xr-x) Uid: ( 0/ root) Gid: ( 0/ root)
Access: 2013-09-11 07:22:56.797151670 -0400
Modify: 2013-09-11 07:22:02.330156079 -0400
Change: 2013-09-11 07:22:02.330156079 -0400
Reported-by: Koen De Wit <koen.de.wit@oracle.com>
Signed-off-by: Guangyu Sun <guangyu.sun@oracle.com>
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
We don't do the iput when we fail to allocate our delayed delalloc work in
__start_delalloc_inodes, fix this.
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
Instead of removing the current inode from the red black tree
and then add the new one, just use the red black tree replace
operation, which is more efficient.
Signed-off-by: Filipe David Borba Manana <fdmanana@gmail.com>
Reviewed-by: Zach Brown <zab@redhat.com>
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
Merge more patches from Andrew Morton:
"The rest of MM. Plus one misc cleanup"
* emailed patches from Andrew Morton <akpm@linux-foundation.org>: (35 commits)
mm/Kconfig: add MMU dependency for MIGRATION.
kernel: replace strict_strto*() with kstrto*()
mm, thp: count thp_fault_fallback anytime thp fault fails
thp: consolidate code between handle_mm_fault() and do_huge_pmd_anonymous_page()
thp: do_huge_pmd_anonymous_page() cleanup
thp: move maybe_pmd_mkwrite() out of mk_huge_pmd()
mm: cleanup add_to_page_cache_locked()
thp: account anon transparent huge pages into NR_ANON_PAGES
truncate: drop 'oldsize' truncate_pagecache() parameter
mm: make lru_add_drain_all() selective
memcg: document cgroup dirty/writeback memory statistics
memcg: add per cgroup writeback pages accounting
memcg: check for proper lock held in mem_cgroup_update_page_stat
memcg: remove MEMCG_NR_FILE_MAPPED
memcg: reduce function dereference
memcg: avoid overflow caused by PAGE_ALIGN
memcg: rename RESOURCE_MAX to RES_COUNTER_MAX
memcg: correct RESOURCE_MAX to ULLONG_MAX
mm: memcg: do not trap chargers with full callstack on OOM
mm: memcg: rework and document OOM waiting and wakeup
...
truncate_pagecache() doesn't care about old size since commit
cedabed49b ("vfs: Fix vmtruncate() regression"). Let's drop it.
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: OGAWA Hirofumi <hirofumi@mail.parknet.co.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pull btrfs updates from Chris Mason:
"This is against 3.11-rc7, but was pulled and tested against your tree
as of yesterday. We do have two small incrementals queued up, but I
wanted to get this bunch out the door before I hop on an airplane.
This is a fairly large batch of fixes, performance improvements, and
cleanups from the usual Btrfs suspects.
We've included Stefan Behren's work to index subvolume UUIDs, which is
targeted at speeding up send/receive with many subvolumes or snapshots
in place. It closes a long standing performance issue that was built
in to the disk format.
Mark Fasheh's offline dedup work is also here. In this case offline
means the FS is mounted and active, but the dedup work is not done
inline during file IO. This is a building block where utilities are
able to ask the FS to dedup a series of extents. The kernel takes
care of verifying the data involved really is the same. Today this
involves reading both extents, but we'll continue to evolve the
patches"
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs: (118 commits)
Btrfs: optimize key searches in btrfs_search_slot
Btrfs: don't use an async starter for most of our workers
Btrfs: only update disk_i_size as we remove extents
Btrfs: fix deadlock in uuid scan kthread
Btrfs: stop refusing the relocation of chunk 0
Btrfs: fix memory leak of uuid_root in free_fs_info
btrfs: reuse kbasename helper
btrfs: return btrfs error code for dev excl ops err
Btrfs: allow partial ordered extent completion
Btrfs: convert all bug_ons in free-space-cache.c
Btrfs: add support for asserts
Btrfs: adjust the fs_devices->missing count on unmount
Btrf: cleanup: don't check for root_refs == 0 twice
Btrfs: fix for patch "cleanup: don't check the same thing twice"
Btrfs: get rid of one BUG() in write_all_supers()
Btrfs: allocate prelim_ref with a slab allocater
Btrfs: pass gfp_t to __add_prelim_ref() to avoid always using GFP_ATOMIC
Btrfs: fix race conditions in BTRFS_IOC_FS_INFO ioctl
Btrfs: fix race between removing a dev and writing sbs
Btrfs: remove ourselves from the cluster list under lock
...
up with PTR_ERR_OR_ZERO(), and replacing or fixing all the usages.
This has been sitting in linux-next for a whole cycle.
Thanks,
Rusty.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1.4.12 (GNU/Linux)
iQIcBAABAgAGBQJSJo+1AAoJENkgDmzRrbjxIC4QALJK95o8AUXuwUkl+2fmFkUt
hh2/PJ1vDYgk4Xt0J6hyoK7XMa0H1RkbBrROuDdsBnorMFpEsGcgdkUZte9ufoAS
97Bg+7N0KPbTB/S8vOwtW1vbERTJIVPN2uf6h1Wqm9Xc2puCh3HbMMr1AWMGu0WQ
NqY5+Zz8zecy1UOrMhEP6H1CjeQcL1w1DO6YM5ydeqlKNzAz+JMfDXriLPDwiE7+
XFPDF/O3Vtd2ckA7L70Lio7hfHwxV5U4WwFVfiwls98XB4jcZqDKIoh1r8z4SRgR
+0Rae2DN3BaOabGMr//5XdrzQVpwJTh5m2w8BAOHJvCJ9HR7Sq29UIN4u+TowZBy
L2xYo4dvFxkympwu5zEd3c7vHYWKIaqmSq5PIjr4gF/uIo2OeOTrpPIK782ZEYb7
e+qUgOEM05V9AmQZCrSZeP9u474Sj8ow3sCtWxfdRtwNfoEIcUXsNNJd/zDHlVtW
cEtXqc2xXIpcuUJQWlSaGp8fmRQjVZPzrLKYLM2m39ZcOOJbf5rzQAYS7hHPosIa
SK+YVux/+Zzi+Xo/vXq1OlM/SruCr5S7JOgCxLowoQ88vupgXME6uPyC8EO+QQ50
GsrHes5ZNLbk0uVsfcexIyojkUnyvDmmnDpv+1zdC6RgZLJQn8OXp5yNhHhnhrFT
BiHX6YFWtDDqRlVv8Q0F
=LeaW
-----END PGP SIGNATURE-----
Merge tag 'PTR_RET-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/rusty/linux
Pull PTR_RET() removal patches from Rusty Russell:
"PTR_RET() is a weird name, and led to some confusing usage. We ended
up with PTR_ERR_OR_ZERO(), and replacing or fixing all the usages.
This has been sitting in linux-next for a whole cycle"
[ There are still some PTR_RET users scattered about, with some of them
possibly being new, but most of them existing in Rusty's tree too. We
have that
#define PTR_RET(p) PTR_ERR_OR_ZERO(p)
thing in <linux/err.h>, so they continue to work for now - Linus ]
* tag 'PTR_RET-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/rusty/linux:
GFS2: Replace PTR_RET with PTR_ERR_OR_ZERO
Btrfs: volume: Replace PTR_RET with PTR_ERR_OR_ZERO
drm/cma: Replace PTR_RET with PTR_ERR_OR_ZERO
sh_veu: Replace PTR_RET with PTR_ERR_OR_ZERO
dma-buf: Replace PTR_RET with PTR_ERR_OR_ZERO
drivers/rtc: Replace PTR_RET with PTR_ERR_OR_ZERO
mm/oom_kill: remove weird use of ERR_PTR()/PTR_ERR().
staging/zcache: don't use PTR_RET().
remoteproc: don't use PTR_RET().
pinctrl: don't use PTR_RET().
acpi: Replace weird use of PTR_RET.
s390: Replace weird use of PTR_RET.
PTR_RET is now PTR_ERR_OR_ZERO(): Replace most.
PTR_RET is now PTR_ERR_OR_ZERO
This fixes a problem where if we fail a truncate we will leave the i_size set
where we wanted to truncate to instead of where we were able to truncate to.
Fix this by making btrfs_truncate_inode_items do the disk_i_size update as it
removes extents, that way it will always be consistent with where its extents
are. Then if the truncate fails at all we can update the in-ram i_size with
what we have on disk and delete the orphan item. Thanks,
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
We currently have this problem where you can truncate pages that have not yet
been written for an ordered extent. We do this because the truncate will be
coming behind to clean us up anyway so what's the harm right? Well if truncate
fails for whatever reason we leave an orphan item around for the file to be
cleaned up later. But if the user goes and truncates up the file and tries to
read from the area that had been discarded previously they will get a csum error
because we never actually wrote that data out.
This patch fixes this by allowing us to either discard the ordered extent
completely, by which I mean we just free up the space we had allocated and not
add the file extent, or adjust the length of the file extent we write. We do
this by setting the length we truncated down to in the ordered extent, and then
we set the file extent length and ram bytes to this length. The total disk
space stays unchanged since we may be compressed and we can't just chop off the
disk space, but at least this way the file extent only points to the valid data.
Then when the file extent is free'd the extent and csums will be freed normally.
This patch is needed for the next series which will give us more graceful
recovery of failed truncates. Thanks,
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
We were unconditionally clearing our runtime flag on the inode on error when
trying to insert an orphan item. This is wrong in the case of -EEXIST since we
obviously have an orphan item. This was causing us to not do the correct
cleanup of our orphan items which caused issues on cleanup. This happens
because currently when truncate fails we just leave the orphan item on there so
it can be cleaned up, so if we go to remove the file later we will hit this
issue. What we do for truncate isn't right either, but we shouldn't screw this
sort of thing up on error either, so fix this and then I'll fix truncate in a
different patch. Thanks,
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
u64 is "unsigned long long" on all architectures now, so there's no need to
cast it when formatting it using the "ll" length modifier.
Signed-off-by: Geert Uytterhoeven <geert@linux-m68k.org>
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
I noticed while looking at a deadlock that we are always starting a transaction
in cow_file_range(). This isn't really needed since we only need a transaction
if we are doing an inline extent, or if the allocator needs to allocate a chunk.
So push down all the transaction start stuff to be closer to where we actually
need a transaction in all of these cases. This will hopefully reduce our write
latency when we are committing often. Thanks,
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
There are several places where we BUG_ON() if we fail to remove the orphan items
and such, which is not ok, so remove those and either abort or just carry on.
This also fixes a problem where if we couldn't start a transaction we wouldn't
actually remove the orphan item reserve for the inode. Thanks,
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
The rule originally comes from nocow writing, but snapshot-aware
defrag is a different case, the extent has been writen and we're
not going to change the extent but add a reference on the data.
So we're able to allow such compressed extents to be merged into
one bigger extent if they're pointing to the same data.
Reviewed-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
First of all we no longer set EXTENT_DIRTY when we dirty an extent so this patch
removes the clearing of EXTENT_DIRTY since it confuses me. This patch also adds
clearing EXTENT_DEFRAG and also doing EXTENT_DO_ACCOUNTING when we have errors.
This is because if we are clearing delalloc without adding an ordered extent
then we need to make sure the enospc handling stuff is accounted for. Also if
this range was DEFRAG we need to make sure that bit is cleared so we dont leak
it. Thanks,
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
This patch removes the io_tree argument for extent_clear_unlock_delalloc since
we always use &BTRFS_I(inode)->io_tree, and it separates out the extent tree
operations from the page operations. This way we just pass in the extent bits
we want to clear and then pass in the operations we want done to the pages.
This is because I'm going to fix what extent bits we clear in some cases and
rather than add a bunch of new flags we'll just use the actual extent bits we
want to clear. Thanks,
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
Before applying this patch, we cached the csum value into the extent state
tree when reading some data from the disk, this operation increased the lock
contention of the state tree.
Now, we just store the csum value into the bio structure or other unshared
structure, so we can reduce the lock contention.
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
I was getting warnings when running find ./ -type f -exec btrfs fi defrag -f {}
\; from record_one_backref because ret was set. Turns out it was because it was
set to 1 because the search slot didn't come out exact and we never reset it.
So reset it to 0 right after the search so we don't leak this and get
uneccessary warnings. Thanks,
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
When btrfs readdir() hits the last entry it sets the readdir offset to a
huge value to stop buggy apps from breaking when the same name is
returned by readdir() with concurrent rename()s.
But unconditionally setting the offset to INT_MAX causes readdir() to
loop returning any entries with offsets past INT_MAX. It only takes a
few hours of constant file creation and removal to create entries past
INT_MAX.
So let's set the huge offset to LLONG_MAX if the last entry has already
overflowed 32bit loff_t. Without large offsets behaviour is identical.
With large offsets 64bit apps will work and 32bit apps will be no more
broken than they currently are if they see large offsets.
Signed-off-by: Zach Brown <zab@redhat.com>
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
For partial extents, snapshot-aware defrag does not work as expected,
since
a) we use the wrong logical offset to search for parents, which should be
disk_bytenr + extent_offset, not just disk_bytenr,
b) 'offset' returned by the backref walking just refers to key.offset, not
the 'offset' stored in btrfs_extent_data_ref which is
(key.offset - extent_offset).
The reproducer:
$ mkfs.btrfs sda
$ mount sda /mnt
$ btrfs sub create /mnt/sub
$ for i in `seq 5 -1 1`; do dd if=/dev/zero of=/mnt/sub/foo bs=5k count=1 seek=$i conv=notrunc oflag=sync; done
$ btrfs sub snap /mnt/sub /mnt/snap1
$ btrfs sub snap /mnt/sub /mnt/snap2
$ sync; btrfs filesystem defrag /mnt/sub/foo;
$ umount /mnt
$ btrfs-debug-tree sda (Here we can check whether the defrag operation is snapshot-awared.
This addresses the above two problems.
Signed-off-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
Create a small file and fallocate it to a big size with
FALLOC_FL_KEEP_SIZE option, then truncate it back to the
small size again, the disk free space is not changed back
in this case. i.e,
total 4
-rw-r--r-- 1 root root 512 Jun 28 11:35 test
Filesystem Size Used Avail Use% Mounted on
....
/dev/sdb1 8.0G 56K 7.2G 1% /mnt
-rw-r--r-- 1 root root 512 Jun 28 11:35 /mnt/test
Filesystem Size Used Avail Use% Mounted on
....
/dev/sdb1 8.0G 5.1G 2.2G 70% /mnt
Filesystem Size Used Avail Use% Mounted on
....
/dev/sdb1 8.0G 5.1G 2.2G 70% /mnt
With this fix, the truncated up space is back as:
Filesystem Size Used Avail Use% Mounted on
....
/dev/sdb1 8.0G 56K 7.2G 1% /mnt
Signed-off-by: Jie Liu <jeff.liu@oracle.com>
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
Pull btrfs update from Chris Mason:
"These are the usual mixture of bugs, cleanups and performance fixes.
Miao has some really nice tuning of our crc code as well as our
transaction commits.
Josef is peeling off more and more problems related to early enospc,
and has a number of important bug fixes in here too"
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs: (81 commits)
Btrfs: wait ordered range before doing direct io
Btrfs: only do the tree_mod_log_free_eb if this is our last ref
Btrfs: hold the tree mod lock in __tree_mod_log_rewind
Btrfs: make backref walking code handle skinny metadata
Btrfs: fix crash regarding to ulist_add_merge
Btrfs: fix several potential problems in copy_nocow_pages_for_inode
Btrfs: cleanup the code of copy_nocow_pages_for_inode()
Btrfs: fix oops when recovering the file data by scrub function
Btrfs: make the chunk allocator completely tree lockless
Btrfs: cleanup orphaned root orphan item
Btrfs: fix wrong mirror number tuning
Btrfs: cleanup redundant code in btrfs_submit_direct()
Btrfs: remove btrfs_sector_sum structure
Btrfs: check if we can nocow if we don't have data space
Btrfs: stop using try_to_writeback_inodes_sb_nr to flush delalloc
Btrfs: use a percpu to keep track of possibly pinned bytes
Btrfs: check for actual acls rather than just xattrs when caching no acl
Btrfs: move btrfs_truncate_page to btrfs_cont_expand instead of btrfs_truncate
Btrfs: optimize reada_for_balance
Btrfs: optimize read_block_for_search
...
category, of note is a fix for on-line resizing file systems where the
block size is smaller than the page size (i.e., file systems 1k blocks
on x86, or more interestingly file systems with 4k blocks on Power or
ia64 systems.)
In the cleanup category, the ext4's punch hole implementation was
significantly improved by Lukas Czerner, and now supports bigalloc
file systems. In addition, Jan Kara significantly cleaned up the
write submission code path. We also improved error checking and added
a few sanity checks.
In the optimizations category, two major optimizations deserve
mention. The first is that ext4_writepages() is now used for
nodelalloc and ext3 compatibility mode. This allows writes to be
submitted much more efficiently as a single bio request, instead of
being sent as individual 4k writes into the block layer (which then
relied on the elevator code to coalesce the requests in the block
queue). Secondly, the extent cache shrink mechanism, which was
introduce in 3.9, no longer has a scalability bottleneck caused by the
i_es_lru spinlock. Other optimizations include some changes to reduce
CPU usage and to avoid issuing empty commits unnecessarily.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1.4.12 (GNU/Linux)
iQIcBAABCAAGBQJR0XhgAAoJENNvdpvBGATwMXkQAJwTPk5XYLqtAwLziFLvM6wG
0tWa1QAzTNo80tLyM9iGqI6x74X5nddLw5NMICUmPooOa9agMuA4tlYVSss5jWzV
yyB7vLzsc/2eZJusuVqfTKrdGybE+M766OI6VO9WodOoIF1l51JXKjktKeaWegfv
NkcLKlakD4V+ZASEDB/cOcR/lTwAs9dQ89AZzgPiW+G8Do922QbqkENJB8mhalbg
rFGX+lu9W0f3fqdmT3Xi8KGn3EglETdVd6jU7kOZN4vb5LcF5BKHQnnUmMlpeWMT
ksOVasb3RZgcsyf5ZOV5feXV601EsNtPBrHAmH22pWQy3rdTIvMv/il63XlVUXZ2
AXT3cHEvNQP0/yVaOTCZ9xQVxT8sL4mI6kENP9PtNuntx7E90JBshiP5m24kzTZ/
zkIeDa+FPhsDx1D5EKErinFLqPV8cPWONbIt/qAgo6663zeeIyMVhzxO4resTS9k
U2QEztQH+hDDbjgABtz9M/GjSrohkTYNSkKXzhTjqr/m5huBrVMngjy/F4/7G7RD
vSEx5aXqyagnrUcjsupx+biJ1QvbvZWOVxAE/6hNQNRGDt9gQtHAmKw1eG2mugHX
+TFDxodNE4iWEURenkUxXW3mDx7hFbGZR0poHG3M/LVhKMAAAw0zoKrrUG5c70G7
XrddRLGlk4Hf+2o7/D7B
=SwaI
-----END PGP SIGNATURE-----
Merge tag 'ext4_for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tytso/ext4
Pull ext4 update from Ted Ts'o:
"Lots of bug fixes, cleanups and optimizations. In the bug fixes
category, of note is a fix for on-line resizing file systems where the
block size is smaller than the page size (i.e., file systems 1k blocks
on x86, or more interestingly file systems with 4k blocks on Power or
ia64 systems.)
In the cleanup category, the ext4's punch hole implementation was
significantly improved by Lukas Czerner, and now supports bigalloc
file systems. In addition, Jan Kara significantly cleaned up the
write submission code path. We also improved error checking and added
a few sanity checks.
In the optimizations category, two major optimizations deserve
mention. The first is that ext4_writepages() is now used for
nodelalloc and ext3 compatibility mode. This allows writes to be
submitted much more efficiently as a single bio request, instead of
being sent as individual 4k writes into the block layer (which then
relied on the elevator code to coalesce the requests in the block
queue). Secondly, the extent cache shrink mechanism, which was
introduce in 3.9, no longer has a scalability bottleneck caused by the
i_es_lru spinlock. Other optimizations include some changes to reduce
CPU usage and to avoid issuing empty commits unnecessarily."
* tag 'ext4_for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tytso/ext4: (86 commits)
ext4: optimize starting extent in ext4_ext_rm_leaf()
jbd2: invalidate handle if jbd2_journal_restart() fails
ext4: translate flag bits to strings in tracepoints
ext4: fix up error handling for mpage_map_and_submit_extent()
jbd2: fix theoretical race in jbd2__journal_restart
ext4: only zero partial blocks in ext4_zero_partial_blocks()
ext4: check error return from ext4_write_inline_data_end()
ext4: delete unnecessary C statements
ext3,ext4: don't mess with dir_file->f_pos in htree_dirblock_to_tree()
jbd2: move superblock checksum calculation to jbd2_write_superblock()
ext4: pass inode pointer instead of file pointer to punch hole
ext4: improve free space calculation for inline_data
ext4: reduce object size when !CONFIG_PRINTK
ext4: improve extent cache shrink mechanism to avoid to burn CPU time
ext4: implement error handling of ext4_mb_new_preallocation()
ext4: fix corruption when online resizing a fs with 1K block size
ext4: delete unused variables
ext4: return FIEMAP_EXTENT_UNKNOWN for delalloc extents
jbd2: remove debug dependency on debug_fs and update Kconfig help text
jbd2: use a single printk for jbd_debug()
...
My recent truncate patch uncovered this bug, but I can reproduce it without the
truncate patch. If you mount with -o compress-force, do a direct write to some
area, do a buffered write to some other area, and then do a direct read you will
get the wrong data for where you did the buffered write. This is because the
generic direct io helpers only call filemap_write_and_wait once, and for
compression we need it twice. So to be safe add the btrfs_wait_ordered_range to
the start of the direct io function to make sure any compressed writes have
truly been written. This patch makes xfstests 130 pass when you mount with -o
compress-force=lzo. Thanks,
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
We always just try and reserve data space when we write, but if we are out of
space but have prealloc'ed extents we should still successfully write. This
patch will try and see if we can write to prealloc'ed space and if we can go
ahead and allow the write to continue. With this patch we now pass xfstests
generic/274. Thanks,
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
We have an optimization that will go ahead and cache no acls on an inode if
there are no xattrs on the inode. This saves us a lookup later to check the
acls for writes or any other access. The problem is I use selinux so I always
have an xattr on inodes, so make this test a little smarter and check for the
actual acl hash on the key and if it isn't there then we still get to cache no
acl which makes everybody who uses selinux a little happier. Thanks,
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
This has plagued us forever and I'm so over working around it. When we truncate
down to a non-page aligned offset we will call btrfs_truncate_page to zero out
the end of the page and write it back to disk, this will keep us from exposing
stale data if we truncate back up from that point. The problem with this is it
requires data space to do this, and people don't really expect to get ENOSPC
from truncate() for these sort of things. This also tends to bite the orphan
cleanup stuff too which keeps people from mounting. To get around this we can
just move this into btrfs_cont_expand() to make sure if we are truncating up
from a non-page size aligned i_size we will zero out the rest of this page so
that we don't expose stale data. This will give ENOSPC if you try to truncate()
up or if you try to write past the end of isize, which is much more reasonable.
This fixes xfstests generic/083 failing to mount because of the orphan cleanup
failing. Thanks,
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
A user reported a deadlock where the async submit thread was blocked on the
lock_extent() lock, and then everybody behind him was locked on the page lock
for the page he was holding. Looking at the code I noticed we do not unlock the
extent range when we get ENOSPC and goto retry. This is bad because we
immediately try to lock that range again to do the cow, which will cause a
deadlock. Fix this by unlocking the range. Thanks,
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
When we cross into a different subvol when doing a lookup we will run the orhpan
cleanup. If this fails however we do not drop the ref to the inode we were
looking up before we return an error, which leads to busy inodes on umount.
Thanks,
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Dave pointed out a problem where if you filled up a file system as much as
possible you couldn't remove any files. The whole unlink reservation thing is
convoluted because it tries to guess if it's going to add space to unlink
something or not, and has all these odd uncommented cases where it simply does
not try. So to fix this I've added a way to conditionally steal from the global
reserve if we can't make our normal reservation. If we have more than half the
space in the global reserve free we will go ahead and steal from the global
reserve. With this patch Dave's reproducer now works and I can rm all the files
on the file system. Thanks,
Reported-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
The reason we introduce per-subvolume ordered extent list is the same
as the per-subvolume delalloc inode list.
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
When we create a snapshot, we need flush all delalloc inodes in the
fs, just flushing the inodes in the source tree is OK. So we introduce
per-subvolume delalloc inode list.
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
btrfs_read_fs_root_no_name() already checks if btrfs_root_refs()
is zero and returns ENOENT in this case. There is no need to do
it again in six places.
Signed-off-by: Stefan Behrens <sbehrens@giantdisaster.de>
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Pull btrfs fixes from Chris Mason:
"This is an assortment of crash fixes"
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs:
Btrfs: stop all workers before cleaning up roots
Btrfs: fix use-after-free bug during umount
Btrfs: init relocate extent_io_tree with a mapping
btrfs: Drop inode if inode root is NULL
Btrfs: don't delete fs_roots until after we cleanup the transaction
There is a path where btrfs_drop_inode() is called with its inode's root
is NULL: In btrfs_new_inode(), when btrfs_set_inode_index() fails,
iput() is called. We should handle this case before taking look at the
root->root_item.
Signed-off-by: Naohiro Aota <naota@elisp.net>
Reviewed-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
Currently there is no way to truncate partial page where the end
truncate point is not at the end of the page. This is because it was not
needed and the functionality was enough for file system truncate
operation to work properly. However more file systems now support punch
hole feature and it can benefit from mm supporting truncating page just
up to the certain point.
Specifically, with this functionality truncate_inode_pages_range() can
be changed so it supports truncating partial page at the end of the
range (currently it will BUG_ON() if 'end' is not at the end of the
page).
This commit changes the invalidatepage() address space operation
prototype to accept range to be invalidated and update all the instances
for it.
We also change the block_invalidatepage() in the same way and actually
make a use of the new length argument implementing range invalidation.
Actual file system implementations will follow except the file systems
where the changes are really simple and should not change the behaviour
in any way .Implementation for truncate_page_range() which will be able
to accept page unaligned ranges will follow as well.
Signed-off-by: Lukas Czerner <lczerner@redhat.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Hugh Dickins <hughd@google.com>
Pull btrfs fixes from Chris Mason:
"Miao Xie has been very busy, fixing races and enospc problems and many
other small but important pieces.
Alexandre Oliva discovered some problems with how our error handling
was interacting with the block layer and for now has disabled our
partial handling of sub-page writes. The real sub-page work is in a
series of patches from IBM that we still need to integrate and test.
The code Alexandre has turned off was really incomplete.
Josef has more error handling fixes and an important fix for the new
skinny extent format.
This also has my fix for the tracepoint crash from late in 3.9. It's
the first stage in a larger clean up to get rid of btrfs_bio and make
a proper bioset for all the items we need to tack into the bio. For
now the bioset only holds our mirror_num and stripe_index, but for the
next merge window I'll shuffle more in."
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs: (25 commits)
Btrfs: use a btrfs bioset instead of abusing bio internals
Btrfs: make sure roots are assigned before freeing their nodes
Btrfs: explicitly use global_block_rsv for quota_tree
btrfs: do away with non-whole_page extent I/O
Btrfs: don't invoke btrfs_invalidate_inodes() in the spin lock context
Btrfs: remove BUG_ON() in btrfs_read_fs_tree_no_radix()
Btrfs: pause the space balance when remounting to R/O
Btrfs: fix unprotected root node of the subvolume's inode rb-tree
Btrfs: fix accessing a freed tree root
Btrfs: return errno if possible when we fail to allocate memory
Btrfs: update the global reserve if it is empty
Btrfs: don't steal the reserved space from the global reserve if their space type is different
Btrfs: optimize the error handle of use_block_rsv()
Btrfs: don't use global block reservation for inode cache truncation
Btrfs: don't abort the current transaction if there is no enough space for inode cache
Correct allowed raid levels on balance.
Btrfs: fix possible memory leak in replace_path()
Btrfs: fix possible memory leak in the find_parent_nodes()
Btrfs: don't allow device replace on RAID5/RAID6
Btrfs: handle running extent ops with skinny metadata
...
Btrfs has been pointer tagging bi_private and using bi_bdev
to store the stripe index and mirror number of failed IOs.
As bios bubble back up through the call chain, we use these
to decide if and how to retry our IOs. They are also used
to count IO failures on a per device basis.
Recently a bio tracepoint was added lead to crashes because
we were abusing bi_bdev.
This commit adds a btrfs bioset, and creates explicit fields
for the mirror number and stripe index. The plan is to
extend this structure for all of the fields currently in
struct btrfs_bio, which will mean one less kmalloc in
our IO path.
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
Reported-by: Tejun Heo <tj@kernel.org>
The root node of the rb-tree may be changed, so we should get it under
the lock. Fix it.
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
inode_tree_del() will move the tree root into the dead root list, and
then the tree will be destroyed by the cleaner. So if we remove the
delayed node which is cached in the inode after inode_tree_del(),
we may access a freed tree root. Fix it.
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
We need to set return value explicitly, otherwise we'll lose the error
value.
Signed-off-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Pull btrfs update from Chris Mason:
"These are mostly fixes. The biggest exceptions are Josef's skinny
extents and Jan Schmidt's code to rebuild our quota indexes if they
get out of sync (or you enable quotas on an existing filesystem).
The skinny extents are off by default because they are a new variation
on the extent allocation tree format. btrfstune -x enables them, and
the new format makes the extent allocation tree about 30% smaller.
I rebased this a few days ago to rework Dave Sterba's crc checks on
the super block, but almost all of these go back to rc6, since I
though 3.9 was due any minute.
The biggest missing fix is the tracepoint bug that was hit late in
3.9. I ran into problems with that in overnight testing and I'm still
tracking it down. I'll definitely have that fixed for rc2."
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs: (101 commits)
Btrfs: allow superblock mismatch from older mkfs
btrfs: enhance superblock checks
btrfs: fix misleading variable name for flags
btrfs: use unsigned long type for extent state bits
Btrfs: improve the loop of scrub_stripe
btrfs: read entire device info under lock
btrfs: remove unused gfp mask parameter from release_extent_buffer callchain
btrfs: handle errors returned from get_tree_block_key
btrfs: make static code static & remove dead code
Btrfs: deal with errors in write_dev_supers
Btrfs: remove almost all of the BUG()'s from tree-log.c
Btrfs: deal with free space cache errors while replaying log
Btrfs: automatic rescan after "quota enable" command
Btrfs: rescan for qgroups
Btrfs: split btrfs_qgroup_account_ref into four functions
Btrfs: allocate new chunks if the space is not enough for global rsv
Btrfs: separate sequence numbers for delayed ref tracking and tree mod log
btrfs: move leak debug code to functions
Btrfs: return free space in cow error path
Btrfs: set UUID in root_item for created trees
...
Big patch, but all it does is add statics to functions which
are in fact static, then remove the associated dead-code fallout.
removed functions:
btrfs_iref_to_path()
__btrfs_lookup_delayed_deletion_item()
__btrfs_search_delayed_insertion_item()
__btrfs_search_delayed_deletion_item()
find_eb_for_page()
btrfs_find_block_group()
range_straddles_pages()
extent_range_uptodate()
btrfs_file_extent_length()
btrfs_scrub_cancel_devid()
btrfs_start_transaction_lflush()
btrfs_print_tree() is left because it is used for debugging.
btrfs_start_transaction_lflush() and btrfs_reada_detach() are
left for symmetry.
ulist.c functions are left, another patch will take care of those.
Signed-off-by: Eric Sandeen <sandeen@redhat.com>
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Replace some BUG_ONs with proper handling and take allocated space back to
free space cache for later use.
We don't have to worry about extent maps since they'd be freed in releasepage
path.
Signed-off-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
This is the same as the fix from commit
Btrfs: fix bad extent logging
but for O_DIRECT. I missed this when I fixed the problem originally, we were
still using the em for the orig_start and orig_block_len, which would be the
merged extent. We need to use the actual extent from the on disk file extent
item, which we have to lookup to make sure it's ok to nocow anyway so just pass
in some pointers to hold this info. Thanks,
Cc: stable@vger.kernel.org
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
If argument 'trans' is unnecessary in the function where
fixup_low_keys() is called, 'trans' is deleted.
Signed-off-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
__btrfs_unlink_inode() aborts its transaction when it sees errors after
it removes the directory item. But it missed the case where
btrfs_del_dir_entries_in_log() returns an error. If this happens then
the unlink appears to fail but the items have been removed without
updating the directory size. The directory then has leaked bytes in
i_size and can never be removed.
Adding the missing transaction abort at least makes this failure
consistent with the other failure cases.
I noticed this while reading the code after someone on irc reported
having a directory with i_size but no entries. I tested it by forcing
btrfs_del_dir_entries_in_log() to return -ENOMEM.
Signed-off-by: Zach Brown <zab@redhat.com>
Reviewed-by: Eric Sandeen <sandeen@redhat.com>
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
A user sent me a btrfs-image of a file system that was panicing on mount during
the log recovery. I had originally thought these problems were from a bug in
the free space cache code, but that was just a symptom of the problem. The
problem is if your application does something like this
[prealloc][prealloc][prealloc]
the internal extent maps will merge those all together into one extent map, even
though on disk they are 3 separate extents. So if you go to write into one of
these ranges the extent map will be right since we use the physical extent when
doing the write, but when we log the extents they will use the wrong sizes for
the remainder prealloc space. If this doesn't happen to trip up the free space
cache (which it won't in a lot of cases) then you will get bogus entries in your
extent tree which will screw stuff up later. The data and such will still work,
but everything else is broken. This patch fixes this by not allowing extents
that are on the modified list to be merged. This has the side effect that we
are no longer adding everything to the modified list all the time, which means
we now have to call btrfs_drop_extents every time we log an extent into the
tree. So this allows me to drop all this speciality code I was using to get
around calling btrfs_drop_extents. With this patch the testcase I've created no
longer creates a bogus file system after replaying the log. Thanks,
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
When logging changed extents I was logging ram_bytes as the current length,
which isn't correct, it's supposed to be the ram bytes of the original extent.
This is for compression where even if we split the extent we need to know the
ram bytes so when we uncompress the extent we know how big it will be. This was
still working out right with compression for some reason but I think we were
getting lucky. It was definitely off for prealloc which is why I noticed it,
btrfsck was complaining about it. With this patch btrfsck no longer complains
after a log replay. Thanks,
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
The messages
btrfs: unlinked 123 orphans
btrfs: truncated 456 orphans
are not useful to regular users and raise questions whether there are
problems with the filesystem.
Signed-off-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Josef Bacik <jbacik@fusionio.com>