mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-12-26 21:15:11 +07:00
9a764234ee
21 Commits
Author | SHA1 | Message | Date | |
---|---|---|---|---|
Vladimir Davydov
|
33c3fc71c8 |
mm: introduce idle page tracking
Knowing the portion of memory that is not used by a certain application or memory cgroup (idle memory) can be useful for partitioning the system efficiently, e.g. by setting memory cgroup limits appropriately. Currently, the only means to estimate the amount of idle memory provided by the kernel is /proc/PID/{clear_refs,smaps}: the user can clear the access bit for all pages mapped to a particular process by writing 1 to clear_refs, wait for some time, and then count smaps:Referenced. However, this method has two serious shortcomings: - it does not count unmapped file pages - it affects the reclaimer logic To overcome these drawbacks, this patch introduces two new page flags, Idle and Young, and a new sysfs file, /sys/kernel/mm/page_idle/bitmap. A page's Idle flag can only be set from userspace by setting bit in /sys/kernel/mm/page_idle/bitmap at the offset corresponding to the page, and it is cleared whenever the page is accessed either through page tables (it is cleared in page_referenced() in this case) or using the read(2) system call (mark_page_accessed()). Thus by setting the Idle flag for pages of a particular workload, which can be found e.g. by reading /proc/PID/pagemap, waiting for some time to let the workload access its working set, and then reading the bitmap file, one can estimate the amount of pages that are not used by the workload. The Young page flag is used to avoid interference with the memory reclaimer. A page's Young flag is set whenever the Access bit of a page table entry pointing to the page is cleared by writing to the bitmap file. If page_referenced() is called on a Young page, it will add 1 to its return value, therefore concealing the fact that the Access bit was cleared. Note, since there is no room for extra page flags on 32 bit, this feature uses extended page flags when compiled on 32 bit. [akpm@linux-foundation.org: fix build] [akpm@linux-foundation.org: kpageidle requires an MMU] [akpm@linux-foundation.org: decouple from page-flags rework] Signed-off-by: Vladimir Davydov <vdavydov@parallels.com> Reviewed-by: Andres Lagar-Cavilla <andreslc@google.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Raghavendra K T <raghavendra.kt@linux.vnet.ibm.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Greg Thelen <gthelen@google.com> Cc: Michel Lespinasse <walken@google.com> Cc: David Rientjes <rientjes@google.com> Cc: Pavel Emelyanov <xemul@parallels.com> Cc: Cyrill Gorcunov <gorcunov@openvz.org> Cc: Jonathan Corbet <corbet@lwn.net> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Vladimir Davydov
|
1d7715c676 |
mmu-notifier: add clear_young callback
In the scope of the idle memory tracking feature, which is introduced by the following patch, we need to clear the referenced/accessed bit not only in primary, but also in secondary ptes. The latter is required in order to estimate wss of KVM VMs. At the same time we want to avoid flushing tlb, because it is quite expensive and it won't really affect the final result. Currently, there is no function for clearing pte young bit that would meet our requirements, so this patch introduces one. To achieve that we have to add a new mmu-notifier callback, clear_young, since there is no method for testing-and-clearing a secondary pte w/o flushing tlb. The new method is not mandatory and currently only implemented by KVM. Signed-off-by: Vladimir Davydov <vdavydov@parallels.com> Reviewed-by: Andres Lagar-Cavilla <andreslc@google.com> Acked-by: Paolo Bonzini <pbonzini@redhat.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Raghavendra K T <raghavendra.kt@linux.vnet.ibm.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Greg Thelen <gthelen@google.com> Cc: Michel Lespinasse <walken@google.com> Cc: David Rientjes <rientjes@google.com> Cc: Pavel Emelyanov <xemul@parallels.com> Cc: Cyrill Gorcunov <gorcunov@openvz.org> Cc: Jonathan Corbet <corbet@lwn.net> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Aneesh Kumar K.V
|
8809aa2d28 |
mm: clarify that the function operates on hugepage pte
We have confusing functions to clear pmd, pmd_clear_* and pmd_clear. Add _huge_ to pmdp_clear functions so that we are clear that they operate on hugepage pte. We don't bother about other functions like pmdp_set_wrprotect, pmdp_clear_flush_young, because they operate on PTE bits and hence indicate they are operating on hugepage ptes Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Paul Mackerras <paulus@samba.org> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Linus Torvalds
|
988adfdffd |
Merge branch 'drm-next' of git://people.freedesktop.org/~airlied/linux
Pull drm updates from Dave Airlie: "Highlights: - AMD KFD driver merge This is the AMD HSA interface for exposing a lowlevel interface for GPGPU use. They have an open source userspace built on top of this interface, and the code looks as good as it was going to get out of tree. - Initial atomic modesetting work The need for an atomic modesetting interface to allow userspace to try and send a complete set of modesetting state to the driver has arisen, and been suffering from neglect this past year. No more, the start of the common code and changes for msm driver to use it are in this tree. Ongoing work to get the userspace ioctl finished and the code clean will probably wait until next kernel. - DisplayID 1.3 and tiled monitor exposed to userspace. Tiled monitor property is now exposed for userspace to make use of. - Rockchip drm driver merged. - imx gpu driver moved out of staging Other stuff: - core: panel - MIPI DSI + new panels. expose suggested x/y properties for virtual GPUs - i915: Initial Skylake (SKL) support gen3/4 reset work start of dri1/ums removal infoframe tracking fixes for lots of things. - nouveau: tegra k1 voltage support GM204 modesetting support GT21x memory reclocking work - radeon: CI dpm fixes GPUVM improvements Initial DPM fan control - rcar-du: HDMI support added removed some support for old boards slave encoder driver for Analog Devices adv7511 - exynos: Exynos4415 SoC support - msm: a4xx gpu support atomic helper conversion - tegra: iommu support universal plane support ganged-mode DSI support - sti: HDMI i2c improvements - vmwgfx: some late fixes. - qxl: use suggested x/y properties" * 'drm-next' of git://people.freedesktop.org/~airlied/linux: (969 commits) drm: sti: fix module compilation issue drm/i915: save/restore GMBUS freq across suspend/resume on gen4 drm: sti: correctly cleanup CRTC and planes drm: sti: add HQVDP plane drm: sti: add cursor plane drm: sti: enable auxiliary CRTC drm: sti: fix delay in VTG programming drm: sti: prepare sti_tvout to support auxiliary crtc drm: sti: use drm_crtc_vblank_{on/off} instead of drm_vblank_{on/off} drm: sti: fix hdmi avi infoframe drm: sti: remove event lock while disabling vblank drm: sti: simplify gdp code drm: sti: clear all mixer control drm: sti: remove gpio for HDMI hot plug detection drm: sti: allow to change hdmi ddc i2c adapter drm/doc: Document drm_add_modes_noedid() usage drm/i915: Remove '& 0xffff' from the mask given to WA_REG() drm/i915: Invert the mask and val arguments in wa_add() and WA_REG() drm: Zero out DRM object memory upon cleanup drm/i915/bdw: Fix the write setting up the WIZ hashing mode ... |
||
Davidlohr Bueso
|
c8c06efa8b |
mm: convert i_mmap_mutex to rwsem
The i_mmap_mutex is a close cousin of the anon vma lock, both protecting similar data, one for file backed pages and the other for anon memory. To this end, this lock can also be a rwsem. In addition, there are some important opportunities to share the lock when there are no tree modifications. This conversion is straightforward. For now, all users take the write lock. [sfr@canb.auug.org.au: update fremap.c] Signed-off-by: Davidlohr Bueso <dbueso@suse.de> Reviewed-by: Rik van Riel <riel@redhat.com> Acked-by: "Kirill A. Shutemov" <kirill@shutemov.name> Acked-by: Hugh Dickins <hughd@google.com> Cc: Oleg Nesterov <oleg@redhat.com> Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com> Acked-by: Mel Gorman <mgorman@suse.de> Signed-off-by: Stephen Rothwell <sfr@canb.auug.org.au> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Andres Lagar-Cavilla
|
5712846808 |
kvm: Fix page ageing bugs
1. We were calling clear_flush_young_notify in unmap_one, but we are within an mmu notifier invalidate range scope. The spte exists no more (due to range_start) and the accessed bit info has already been propagated (due to kvm_pfn_set_accessed). Simply call clear_flush_young. 2. We clear_flush_young on a primary MMU PMD, but this may be mapped as a collection of PTEs by the secondary MMU (e.g. during log-dirty). This required expanding the interface of the clear_flush_young mmu notifier, so a lot of code has been trivially touched. 3. In the absence of shadow_accessed_mask (e.g. EPT A bit), we emulate the access bit by blowing the spte. This requires proper synchronizing with MMU notifier consumers, like every other removal of spte's does. Signed-off-by: Andres Lagar-Cavilla <andreslc@google.com> Acked-by: Rik van Riel <riel@redhat.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> |
||
Peter Zijlstra
|
b972216e27 |
mmu_notifier: add call_srcu and sync function for listener to delay call and sync
When kernel device drivers or subsystems want to bind their lifespan to t= he lifespan of the mm_struct, they usually use one of the following methods: 1. Manually calling a function in the interested kernel module. The funct= ion call needs to be placed in mmput. This method was rejected by several ker= nel maintainers. 2. Registering to the mmu notifier release mechanism. The problem with the latter approach is that the mmu_notifier_release cal= lback is called from__mmu_notifier_release (called from exit_mmap). That functi= on iterates over the list of mmu notifiers and don't expect the release call= back function to remove itself from the list. Therefore, the callback function= in the kernel module can't release the mmu_notifier_object, which is actuall= y the kernel module's object itself. As a result, the destruction of the kernel module's object must to be done in a delayed fashion. This patch adds support for this delayed callback, by adding a new mmu_notifier_call_srcu function that receives a function ptr and calls th= at function with call_srcu. In that function, the kernel module releases its object. To use mmu_notifier_call_srcu, the calling module needs to call b= efore that a new function called mmu_notifier_unregister_no_release that as its= name implies, unregisters a notifier without calling its notifier release call= back. This patch also adds a function that will call barrier_srcu so those kern= el modules can sync with mmu_notifier. Signed-off-by: Peter Zijlstra <peterz@infradead.org> Signed-off-by: Jérôme Glisse <jglisse@redhat.com> Signed-off-by: Oded Gabbay <oded.gabbay@amd.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Joerg Roedel
|
0f0a327fa1 |
mmu_notifier: add the callback for mmu_notifier_invalidate_range()
Now that the mmu_notifier_invalidate_range() calls are in place, add the callback to allow subsystems to register against it. Signed-off-by: Joerg Roedel <jroedel@suse.de> Reviewed-by: Andrea Arcangeli <aarcange@redhat.com> Reviewed-by: Jérôme Glisse <jglisse@redhat.com> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Rik van Riel <riel@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Johannes Weiner <jweiner@redhat.com> Cc: Jay Cornwall <Jay.Cornwall@amd.com> Cc: Oded Gabbay <Oded.Gabbay@amd.com> Cc: Suravee Suthikulpanit <Suravee.Suthikulpanit@amd.com> Cc: Jesse Barnes <jbarnes@virtuousgeek.org> Cc: David Woodhouse <dwmw2@infradead.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Oded Gabbay <oded.gabbay@amd.com> |
||
Joerg Roedel
|
34ee645e83 |
mmu_notifier: call mmu_notifier_invalidate_range() from VMM
Add calls to the new mmu_notifier_invalidate_range() function to all places in the VMM that need it. Signed-off-by: Joerg Roedel <jroedel@suse.de> Reviewed-by: Andrea Arcangeli <aarcange@redhat.com> Reviewed-by: Jérôme Glisse <jglisse@redhat.com> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Rik van Riel <riel@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Johannes Weiner <jweiner@redhat.com> Cc: Jay Cornwall <Jay.Cornwall@amd.com> Cc: Oded Gabbay <Oded.Gabbay@amd.com> Cc: Suravee Suthikulpanit <Suravee.Suthikulpanit@amd.com> Cc: Jesse Barnes <jbarnes@virtuousgeek.org> Cc: David Woodhouse <dwmw2@infradead.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Oded Gabbay <oded.gabbay@amd.com> |
||
Joerg Roedel
|
1897bdc4d3 |
mmu_notifier: add mmu_notifier_invalidate_range()
This notifier closes an important gap in the current mmu_notifier implementation, the existing callbacks are called too early or too late to reliably manage a non-CPU TLB. Specifically, invalidate_range_start() is called when all pages are still mapped and invalidate_range_end() when all pages are unmapped and potentially freed. This is fine when the users of the mmu_notifiers manage their own SoftTLB, like KVM does. When the TLB is managed in software it is easy to wipe out entries for a given range and prevent new entries to be established until invalidate_range_end is called. But when the user of mmu_notifiers has to manage a hardware TLB it can still wipe out TLB entries in invalidate_range_start, but it can't make sure that no new TLB entries in the given range are established between invalidate_range_start and invalidate_range_end. To avoid silent data corruption the entries in the non-CPU TLB need to be flushed when the pages are unmapped (at this point in time no _new_ TLB entries can be established in the non-CPU TLB) but not yet freed (as the non-CPU TLB may still have _existing_ entries pointing to the pages about to be freed). To fix this problem we need to catch the moment when the Linux VMM flushes remote TLBs (as a non-CPU TLB is not very CPU TLB), as this is the point in time when the pages are unmapped but _not_ yet freed. The mmu_notifier_invalidate_range() function aims to catch that moment. IOMMU code will be one user of the notifier-callback. Currently this is only the AMD IOMMUv2 driver, but its code is about to be more generalized and converted to a generic IOMMU-API extension to fit the needs of similar functionality in other IOMMUs as well. The current attempt in the AMD IOMMUv2 driver to work around the invalidate_range_start/end() shortcoming is to assign an empty page table to the non-CPU TLB between any invalidata_range_start/end calls. With the empty page-table assigned, every page-table walk to re-fill the non-CPU TLB will cause a page-fault reported to the IOMMU driver via an interrupt, possibly causing interrupt storms. The page-fault handler in the AMD IOMMUv2 driver doesn't handle the fault if an invalidate_range_start/end pair is active, it just reports back SUCCESS to the device and let it refault the page. But existing hardware (newer Radeon GPUs) that makes use of this feature don't re-fault indefinitly, after a certain number of faults for the same address the device enters a failure state and needs to be resetted. To avoid the GPUs entering a failure state we need to get rid of the empty-page-table workaround and use the mmu_notifier_invalidate_range() function introduced with this patch. Signed-off-by: Joerg Roedel <jroedel@suse.de> Reviewed-by: Andrea Arcangeli <aarcange@redhat.com> Reviewed-by: Jérôme Glisse <jglisse@redhat.com> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Rik van Riel <riel@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Johannes Weiner <jweiner@redhat.com> Cc: Jay Cornwall <Jay.Cornwall@amd.com> Cc: Oded Gabbay <Oded.Gabbay@amd.com> Cc: Suravee Suthikulpanit <Suravee.Suthikulpanit@amd.com> Cc: Jesse Barnes <jbarnes@virtuousgeek.org> Cc: David Woodhouse <dwmw2@infradead.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Oded Gabbay <oded.gabbay@amd.com> |
||
Yuanhan Liu
|
631b0cfdbd |
mm: fix wrong comments about anon_vma lock
We use rwsem since commit
|
||
Sagi Grimberg
|
2ec74c3ef2 |
mm: move all mmu notifier invocations to be done outside the PT lock
In order to allow sleeping during mmu notifier calls, we need to avoid invoking them under the page table spinlock. This patch solves the problem by calling invalidate_page notification after releasing the lock (but before freeing the page itself), or by wrapping the page invalidation with calls to invalidate_range_begin and invalidate_range_end. To prevent accidental changes to the invalidate_range_end arguments after the call to invalidate_range_begin, the patch introduces a convention of saving the arguments in consistently named locals: unsigned long mmun_start; /* For mmu_notifiers */ unsigned long mmun_end; /* For mmu_notifiers */ ... mmun_start = ... mmun_end = ... mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end); ... mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end); The patch changes code to use this convention for all calls to mmu_notifier_invalidate_range_start/end, except those where the calls are close enough so that anyone who glances at the code can see the values aren't changing. This patchset is a preliminary step towards on-demand paging design to be added to the RDMA stack. Why do we want on-demand paging for Infiniband? Applications register memory with an RDMA adapter using system calls, and subsequently post IO operations that refer to the corresponding virtual addresses directly to HW. Until now, this was achieved by pinning the memory during the registration calls. The goal of on demand paging is to avoid pinning the pages of registered memory regions (MRs). This will allow users the same flexibility they get when swapping any other part of their processes address spaces. Instead of requiring the entire MR to fit in physical memory, we can allow the MR to be larger, and only fit the current working set in physical memory. Why should anyone care? What problems are users currently experiencing? This can make programming with RDMA much simpler. Today, developers that are working with more data than their RAM can hold need either to deregister and reregister memory regions throughout their process's life, or keep a single memory region and copy the data to it. On demand paging will allow these developers to register a single MR at the beginning of their process's life, and let the operating system manage which pages needs to be fetched at a given time. In the future, we might be able to provide a single memory access key for each process that would provide the entire process's address as one large memory region, and the developers wouldn't need to register memory regions at all. Is there any prospect that any other subsystems will utilise these infrastructural changes? If so, which and how, etc? As for other subsystems, I understand that XPMEM wanted to sleep in MMU notifiers, as Christoph Lameter wrote at http://lkml.indiana.edu/hypermail/linux/kernel/0802.1/0460.html and perhaps Andrea knows about other use cases. Scheduling in mmu notifications is required since we need to sync the hardware with the secondary page tables change. A TLB flush of an IO device is inherently slower than a CPU TLB flush, so our design works by sending the invalidation request to the device, and waiting for an interrupt before exiting the mmu notifier handler. Avi said: kvm may be a buyer. kvm::mmu_lock, which serializes guest page faults, also protects long operations such as destroying large ranges. It would be good to convert it into a spinlock, but as it is used inside mmu notifiers, this cannot be done. (there are alternatives, such as keeping the spinlock and using a generation counter to do the teardown in O(1), which is what the "may" is doing up there). [akpm@linux-foundation.orgpossible speed tweak in hugetlb_cow(), cleanups] Signed-off-by: Andrea Arcangeli <andrea@qumranet.com> Signed-off-by: Sagi Grimberg <sagig@mellanox.com> Signed-off-by: Haggai Eran <haggaie@mellanox.com> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Xiao Guangrong <xiaoguangrong@linux.vnet.ibm.com> Cc: Or Gerlitz <ogerlitz@mellanox.com> Cc: Haggai Eran <haggaie@mellanox.com> Cc: Shachar Raindel <raindel@mellanox.com> Cc: Liran Liss <liranl@mellanox.com> Cc: Christoph Lameter <cl@linux-foundation.org> Cc: Avi Kivity <avi@redhat.com> Cc: Hugh Dickins <hughd@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Sagi Grimberg
|
21a92735f6 |
mm: mmu_notifier: have mmu_notifiers use a global SRCU so they may safely schedule
With an RCU based mmu_notifier implementation, any callout to mmu_notifier_invalidate_range_{start,end}() or mmu_notifier_invalidate_page() would not be allowed to call schedule() as that could potentially allow a modification to the mmu_notifier structure while it is currently being used. Since srcu allocs 4 machine words per instance per cpu, we may end up with memory exhaustion if we use srcu per mm. So all mms share a global srcu. Note that during large mmu_notifier activity exit & unregister paths might hang for longer periods, but it is tolerable for current mmu_notifier clients. Signed-off-by: Sagi Grimberg <sagig@mellanox.co.il> Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Haggai Eran <haggaie@mellanox.com> Cc: "Paul E. McKenney" <paulmck@us.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Xiao Guangrong
|
48af0d7cb3 |
mm: mmu_notifier: fix inconsistent memory between secondary MMU and host
There is a bug in set_pte_at_notify() which always sets the pte to the new page before releasing the old page in the secondary MMU. At this time, the process will access on the new page, but the secondary MMU still access on the old page, the memory is inconsistent between them The below scenario shows the bug more clearly: at the beginning: *p = 0, and p is write-protected by KSM or shared with parent process CPU 0 CPU 1 write 1 to p to trigger COW, set_pte_at_notify will be called: *pte = new_page + W; /* The W bit of pte is set */ *p = 1; /* pte is valid, so no #PF */ return back to secondary MMU, then the secondary MMU read p, but get: *p == 0; /* * !!!!!! * the host has already set p to 1, but the secondary * MMU still get the old value 0 */ call mmu_notifier_change_pte to release old page in secondary MMU We can fix it by release old page first, then set the pte to the new page. Note, the new page will be firstly used in secondary MMU before it is mapped into the page table of the process, but this is safe because it is protected by the page table lock, there is no race to change the pte [akpm@linux-foundation.org: add comment from Andrea] Signed-off-by: Xiao Guangrong <xiaoguangrong@linux.vnet.ibm.com> Cc: Avi Kivity <avi@redhat.com> Cc: Marcelo Tosatti <mtosatti@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Hugh Dickins <hughd@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Peter Zijlstra
|
2b575eb64f |
mm: convert anon_vma->lock to a mutex
Straightforward conversion of anon_vma->lock to a mutex. Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Acked-by: Hugh Dickins <hughd@google.com> Reviewed-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: David Miller <davem@davemloft.net> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Russell King <rmk@arm.linux.org.uk> Cc: Paul Mundt <lethal@linux-sh.org> Cc: Jeff Dike <jdike@addtoit.com> Cc: Richard Weinberger <richard@nod.at> Cc: Tony Luck <tony.luck@intel.com> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Nick Piggin <npiggin@kernel.dk> Cc: Namhyung Kim <namhyung@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Peter Zijlstra
|
3d48ae45e7 |
mm: Convert i_mmap_lock to a mutex
Straightforward conversion of i_mmap_lock to a mutex. Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Acked-by: Hugh Dickins <hughd@google.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: David Miller <davem@davemloft.net> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Russell King <rmk@arm.linux.org.uk> Cc: Paul Mundt <lethal@linux-sh.org> Cc: Jeff Dike <jdike@addtoit.com> Cc: Richard Weinberger <richard@nod.at> Cc: Tony Luck <tony.luck@intel.com> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Nick Piggin <npiggin@kernel.dk> Cc: Namhyung Kim <namhyung@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Andrea Arcangeli
|
8ee53820ed |
thp: mmu_notifier_test_young
For GRU and EPT, we need gup-fast to set referenced bit too (this is why it's correct to return 0 when shadow_access_mask is zero, it requires gup-fast to set the referenced bit). qemu-kvm access already sets the young bit in the pte if it isn't zero-copy, if it's zero copy or a shadow paging EPT minor fault we relay on gup-fast to signal the page is in use... We also need to check the young bits on the secondary pagetables for NPT and not nested shadow mmu as the data may never get accessed again by the primary pte. Without this closer accuracy, we'd have to remove the heuristic that avoids collapsing hugepages in hugepage virtual regions that have not even a single subpage in use. ->test_young is full backwards compatible with GRU and other usages that don't have young bits in pagetables set by the hardware and that should nuke the secondary mmu mappings when ->clear_flush_young runs just like EPT does. Removing the heuristic that checks the young bit in khugepaged/collapse_huge_page completely isn't so bad either probably but I thought it was worth it and this makes it reliable. Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Andrea Arcangeli
|
91a4ee2670 |
thp: add pmd mmu_notifier helpers
Add mmu notifier helpers to handle pmd huge operations. Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Acked-by: Rik van Riel <riel@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Figo.zhang
|
e732ff7077 |
mmu_notifier.h: fix comment spelling
Signed-off-by: Figo.zhang <figo1802@gmail.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Izik Eidus
|
828502d300 |
ksm: add mmu_notifier set_pte_at_notify()
KSM is a linux driver that allows dynamicly sharing identical memory pages between one or more processes. Unlike tradtional page sharing that is made at the allocation of the memory, ksm do it dynamicly after the memory was created. Memory is periodically scanned; identical pages are identified and merged. The sharing is made in a transparent way to the processes that use it. Ksm is highly important for hypervisors (kvm), where in production enviorments there might be many copys of the same data data among the host memory. This kind of data can be: similar kernels, librarys, cache, and so on. Even that ksm was wrote for kvm, any userspace application that want to use it to share its data can try it. Ksm may be useful for any application that might have similar (page aligment) data strctures among the memory, ksm will find this data merge it to one copy, and even if it will be changed and thereforew copy on writed, ksm will merge it again as soon as it will be identical again. Another reason to consider using ksm is the fact that it might simplify alot the userspace code of application that want to use shared private data, instead that the application will mange shared area, ksm will do this for the application, and even write to this data will be allowed without any synchinization acts from the application. Ksm was designed to be a loadable module that doesn't change the VM code of linux. This patch: The set_pte_at_notify() macro allows setting a pte in the shadow page table directly, instead of flushing the shadow page table entry and then getting vmexit to set it. It uses a new change_pte() callback to do so. set_pte_at_notify() is an optimization for kvm, and other users of mmu_notifiers, for COW pages. It is useful for kvm when ksm is used, because it allows kvm not to have to receive vmexit and only then map the ksm page into the shadow page table, but instead map it directly at the same time as Linux maps the page into the host page table. Users of mmu_notifiers who don't implement new mmu_notifier_change_pte() callback will just receive the mmu_notifier_invalidate_page() callback. Signed-off-by: Izik Eidus <ieidus@redhat.com> Signed-off-by: Chris Wright <chrisw@redhat.com> Signed-off-by: Hugh Dickins <hugh.dickins@tiscali.co.uk> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Rik van Riel <riel@redhat.com> Cc: Wu Fengguang <fengguang.wu@intel.com> Cc: Balbir Singh <balbir@in.ibm.com> Cc: Hugh Dickins <hugh.dickins@tiscali.co.uk> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Avi Kivity <avi@redhat.com> Cc: Nick Piggin <nickpiggin@yahoo.com.au> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Andrea Arcangeli
|
cddb8a5c14 |
mmu-notifiers: core
With KVM/GFP/XPMEM there isn't just the primary CPU MMU pointing to pages. There are secondary MMUs (with secondary sptes and secondary tlbs) too. sptes in the kvm case are shadow pagetables, but when I say spte in mmu-notifier context, I mean "secondary pte". In GRU case there's no actual secondary pte and there's only a secondary tlb because the GRU secondary MMU has no knowledge about sptes and every secondary tlb miss event in the MMU always generates a page fault that has to be resolved by the CPU (this is not the case of KVM where the a secondary tlb miss will walk sptes in hardware and it will refill the secondary tlb transparently to software if the corresponding spte is present). The same way zap_page_range has to invalidate the pte before freeing the page, the spte (and secondary tlb) must also be invalidated before any page is freed and reused. Currently we take a page_count pin on every page mapped by sptes, but that means the pages can't be swapped whenever they're mapped by any spte because they're part of the guest working set. Furthermore a spte unmap event can immediately lead to a page to be freed when the pin is released (so requiring the same complex and relatively slow tlb_gather smp safe logic we have in zap_page_range and that can be avoided completely if the spte unmap event doesn't require an unpin of the page previously mapped in the secondary MMU). The mmu notifiers allow kvm/GRU/XPMEM to attach to the tsk->mm and know when the VM is swapping or freeing or doing anything on the primary MMU so that the secondary MMU code can drop sptes before the pages are freed, avoiding all page pinning and allowing 100% reliable swapping of guest physical address space. Furthermore it avoids the code that teardown the mappings of the secondary MMU, to implement a logic like tlb_gather in zap_page_range that would require many IPI to flush other cpu tlbs, for each fixed number of spte unmapped. To make an example: if what happens on the primary MMU is a protection downgrade (from writeable to wrprotect) the secondary MMU mappings will be invalidated, and the next secondary-mmu-page-fault will call get_user_pages and trigger a do_wp_page through get_user_pages if it called get_user_pages with write=1, and it'll re-establishing an updated spte or secondary-tlb-mapping on the copied page. Or it will setup a readonly spte or readonly tlb mapping if it's a guest-read, if it calls get_user_pages with write=0. This is just an example. This allows to map any page pointed by any pte (and in turn visible in the primary CPU MMU), into a secondary MMU (be it a pure tlb like GRU, or an full MMU with both sptes and secondary-tlb like the shadow-pagetable layer with kvm), or a remote DMA in software like XPMEM (hence needing of schedule in XPMEM code to send the invalidate to the remote node, while no need to schedule in kvm/gru as it's an immediate event like invalidating primary-mmu pte). At least for KVM without this patch it's impossible to swap guests reliably. And having this feature and removing the page pin allows several other optimizations that simplify life considerably. Dependencies: 1) mm_take_all_locks() to register the mmu notifier when the whole VM isn't doing anything with "mm". This allows mmu notifier users to keep track if the VM is in the middle of the invalidate_range_begin/end critical section with an atomic counter incraese in range_begin and decreased in range_end. No secondary MMU page fault is allowed to map any spte or secondary tlb reference, while the VM is in the middle of range_begin/end as any page returned by get_user_pages in that critical section could later immediately be freed without any further ->invalidate_page notification (invalidate_range_begin/end works on ranges and ->invalidate_page isn't called immediately before freeing the page). To stop all page freeing and pagetable overwrites the mmap_sem must be taken in write mode and all other anon_vma/i_mmap locks must be taken too. 2) It'd be a waste to add branches in the VM if nobody could possibly run KVM/GRU/XPMEM on the kernel, so mmu notifiers will only enabled if CONFIG_KVM=m/y. In the current kernel kvm won't yet take advantage of mmu notifiers, but this already allows to compile a KVM external module against a kernel with mmu notifiers enabled and from the next pull from kvm.git we'll start using them. And GRU/XPMEM will also be able to continue the development by enabling KVM=m in their config, until they submit all GRU/XPMEM GPLv2 code to the mainline kernel. Then they can also enable MMU_NOTIFIERS in the same way KVM does it (even if KVM=n). This guarantees nobody selects MMU_NOTIFIER=y if KVM and GRU and XPMEM are all =n. The mmu_notifier_register call can fail because mm_take_all_locks may be interrupted by a signal and return -EINTR. Because mmu_notifier_reigster is used when a driver startup, a failure can be gracefully handled. Here an example of the change applied to kvm to register the mmu notifiers. Usually when a driver startups other allocations are required anyway and -ENOMEM failure paths exists already. struct kvm *kvm_arch_create_vm(void) { struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL); + int err; if (!kvm) return ERR_PTR(-ENOMEM); INIT_LIST_HEAD(&kvm->arch.active_mmu_pages); + kvm->arch.mmu_notifier.ops = &kvm_mmu_notifier_ops; + err = mmu_notifier_register(&kvm->arch.mmu_notifier, current->mm); + if (err) { + kfree(kvm); + return ERR_PTR(err); + } + return kvm; } mmu_notifier_unregister returns void and it's reliable. The patch also adds a few needed but missing includes that would prevent kernel to compile after these changes on non-x86 archs (x86 didn't need them by luck). [akpm@linux-foundation.org: coding-style fixes] [akpm@linux-foundation.org: fix mm/filemap_xip.c build] [akpm@linux-foundation.org: fix mm/mmu_notifier.c build] Signed-off-by: Andrea Arcangeli <andrea@qumranet.com> Signed-off-by: Nick Piggin <npiggin@suse.de> Signed-off-by: Christoph Lameter <cl@linux-foundation.org> Cc: Jack Steiner <steiner@sgi.com> Cc: Robin Holt <holt@sgi.com> Cc: Nick Piggin <npiggin@suse.de> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Kanoj Sarcar <kanojsarcar@yahoo.com> Cc: Roland Dreier <rdreier@cisco.com> Cc: Steve Wise <swise@opengridcomputing.com> Cc: Avi Kivity <avi@qumranet.com> Cc: Hugh Dickins <hugh@veritas.com> Cc: Rusty Russell <rusty@rustcorp.com.au> Cc: Anthony Liguori <aliguori@us.ibm.com> Cc: Chris Wright <chrisw@redhat.com> Cc: Marcelo Tosatti <marcelo@kvack.org> Cc: Eric Dumazet <dada1@cosmosbay.com> Cc: "Paul E. McKenney" <paulmck@us.ibm.com> Cc: Izik Eidus <izike@qumranet.com> Cc: Anthony Liguori <aliguori@us.ibm.com> Cc: Rik van Riel <riel@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |