This mechanically converts all remaining cases of ancient open-coded timer
setup with the old setup_timer() API, which is the first step in timer
conversions. This has no behavioral changes, since it ultimately just
changes the order of assignment to fields of struct timer_list when
finding variations of:
init_timer(&t);
f.function = timer_callback;
t.data = timer_callback_arg;
to be converted into:
setup_timer(&t, timer_callback, timer_callback_arg);
The conversion is done with the following Coccinelle script, which
is an improved version of scripts/cocci/api/setup_timer.cocci, in the
following ways:
- assignments-before-init_timer() cases
- limit the .data case removal to the specific struct timer_list instance
- handling calls by dereference (timer->field vs timer.field)
spatch --very-quiet --all-includes --include-headers \
-I ./arch/x86/include -I ./arch/x86/include/generated \
-I ./include -I ./arch/x86/include/uapi \
-I ./arch/x86/include/generated/uapi -I ./include/uapi \
-I ./include/generated/uapi --include ./include/linux/kconfig.h \
--dir . \
--cocci-file ~/src/data/setup_timer.cocci
@fix_address_of@
expression e;
@@
init_timer(
-&(e)
+&e
, ...)
// Match the common cases first to avoid Coccinelle parsing loops with
// "... when" clauses.
@match_immediate_function_data_after_init_timer@
expression e, func, da;
@@
-init_timer
+setup_timer
( \(&e\|e\)
+, func, da
);
(
-\(e.function\|e->function\) = func;
-\(e.data\|e->data\) = da;
|
-\(e.data\|e->data\) = da;
-\(e.function\|e->function\) = func;
)
@match_immediate_function_data_before_init_timer@
expression e, func, da;
@@
(
-\(e.function\|e->function\) = func;
-\(e.data\|e->data\) = da;
|
-\(e.data\|e->data\) = da;
-\(e.function\|e->function\) = func;
)
-init_timer
+setup_timer
( \(&e\|e\)
+, func, da
);
@match_function_and_data_after_init_timer@
expression e, e2, e3, e4, e5, func, da;
@@
-init_timer
+setup_timer
( \(&e\|e\)
+, func, da
);
... when != func = e2
when != da = e3
(
-e.function = func;
... when != da = e4
-e.data = da;
|
-e->function = func;
... when != da = e4
-e->data = da;
|
-e.data = da;
... when != func = e5
-e.function = func;
|
-e->data = da;
... when != func = e5
-e->function = func;
)
@match_function_and_data_before_init_timer@
expression e, e2, e3, e4, e5, func, da;
@@
(
-e.function = func;
... when != da = e4
-e.data = da;
|
-e->function = func;
... when != da = e4
-e->data = da;
|
-e.data = da;
... when != func = e5
-e.function = func;
|
-e->data = da;
... when != func = e5
-e->function = func;
)
... when != func = e2
when != da = e3
-init_timer
+setup_timer
( \(&e\|e\)
+, func, da
);
@r1 exists@
expression t;
identifier f;
position p;
@@
f(...) { ... when any
init_timer@p(\(&t\|t\))
... when any
}
@r2 exists@
expression r1.t;
identifier g != r1.f;
expression e8;
@@
g(...) { ... when any
\(t.data\|t->data\) = e8
... when any
}
// It is dangerous to use setup_timer if data field is initialized
// in another function.
@script:python depends on r2@
p << r1.p;
@@
cocci.include_match(False)
@r3@
expression r1.t, func, e7;
position r1.p;
@@
(
-init_timer@p(&t);
+setup_timer(&t, func, 0UL);
... when != func = e7
-t.function = func;
|
-t.function = func;
... when != func = e7
-init_timer@p(&t);
+setup_timer(&t, func, 0UL);
|
-init_timer@p(t);
+setup_timer(t, func, 0UL);
... when != func = e7
-t->function = func;
|
-t->function = func;
... when != func = e7
-init_timer@p(t);
+setup_timer(t, func, 0UL);
)
Signed-off-by: Kees Cook <keescook@chromium.org>
NCI provides possible way to run loopback testing has done over HCI.
For us it offers many advantages:
- It simplifies the code: No more need for a vendor_cmds structure
- Loopback over HCI may not be supported in future st-nci firmware
Signed-off-by: Christophe Ricard <christophe-h.ricard@st.com>
Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
According to NCI specification, destination type and destination
specific parameters shall uniquely identify a single destination
for the Logical Connection.
Signed-off-by: Christophe Ricard <christophe-h.ricard@st.com>
Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
ST_NCI_HCI_HOST_ID_ESE is already having an equivalent in se.c
(ST_NCI_ESE_HOST_ID).
Remove and replace where relevant.
Signed-off-by: Christophe Ricard <christophe-h.ricard@st.com>
Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
An APDU_READER_GATE pipe is not expected on a UICC. Be more
explicit so that an other secure element form factor (SD card)
does not prompt this message.
Signed-off-by: Christophe Ricard <christophe-h.ricard@st.com>
Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
A secure element can be activated in different order.
The host_list is updated keeping a fixed order:
<terminal_host_id><uicc_id><ese_id>.
Cc: stable@vger.kernel.org
Signed-off-by: Christophe Ricard <christophe-h.ricard@st.com>
Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
After internal discussion, it appears this timing should be
increased to 20 ms for interoperability reason.
Signed-off-by: Christophe Ricard <christophe-h.ricard@st.com>
Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
In order to align with st21nfca, dts configuration properties
ese_present and uicc_present are made available in st-nci driver.
So far, in early development firmware, because
nci_nfcee_mode_set(DISABLE) was not supported we had to try to
enable it during the secure element discovery phase.
After several trials on commercial and qualified firmware it appears
that nci_nfcee_mode_set(ENABLE) and nci_nfcee_mode_set(DISABLE) are
properly supported.
Such feature also help us to eventually save some time (~5ms) when
only one secure element is connected.
Acked-by: Rob Herring <robh@kernel.org>
Signed-off-by: Christophe Ricard <christophe-h.ricard@st.com>
Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
Potentially an unexpected HCI event may occur because of a
firmware bug. It could be transparent for the user but we need to
at least log it.
Signed-off-by: Christophe Ricard <christophe-h.ricard@st.com>
Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
Add support for proprietary commands useful mainly for
factory testings. Here is a list:
- FACTORY_MODE: Allow to set the driver into a mode where
no secure element are activated. It does not consider any
NFC_ATTR_VENDOR_DATA.
- HCI_CLEAR_ALL_PIPES: Allow to execute a HCI clear all pipes
command. It does not consider any NFC_ATTR_VENDOR_DATA.
- HCI_DM_PUT_DATA: Allow to configure specific CLF registry
like for example RF trimmings or low level drivers
configurations (I2C, SPI, SWP).
- HCI_DM_UPDATE_AID: Allow to configure an AID routing into the
CLF routing table following RF technology, CLF mode or protocol.
- HCI_DM_GET_INFO: Allow to retrieve CLF information.
- HCI_DM_GET_DATA: Allow to retrieve CLF configurable data such as
low level drivers configurations or RF trimmings.
- HCI_DM_DIRECT_LOAD: Allow to load a firmware into the CLF.
A complete packet can be more than 8KB.
- HCI_DM_RESET: Allow to run a CLF reset in order to "commit" CLF
configuration changes without CLF power off.
- HCI_GET_PARAM: Allow to retrieve an HCI CLF parameter (for example
the white list).
- HCI_DM_FIELD_GENERATOR: Allow to generate different kind of RF
technology. When using this command to anti-collision is done.
- HCI_LOOPBACK: Allow to echo a command and test the Dh to CLF
connectivity.
- HCI_DM_VDC_MEASUREMENT_VALUE: Allow to measure the field applied
on the CLF antenna. A value between 0 and 0x0f is returned. 0 is
maximum.
- HCI_DM_FWUPD_START: Allow to put CLF into firmware update mode.
It is a specific CLF command as there is no GPIO for this.
- HCI_DM_FWUPD_END: Allow to complete firmware update.
- HCI_DM_VDC_VALUE_COMPARISON: Allow to compare the field applied
on the CLF antenna to a reference value.
- MANUFACTURER_SPECIFIC: Allow to retrieve manufacturer specific data
received during a NCI_CORE_INIT_CMD.
Signed-off-by: Christophe Ricard <christophe-h.ricard@st.com>
Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
It is useless to start from index 0 when looking for a gate
because only dynamic pipes are retrieved with
ST_NCI_DM_GETINFO(ST_NCI_DM_GETINFO_PIPE_LIST).
The first dynamic pipe is present at index 3.
Signed-off-by: Christophe Ricard <christophe-h.ricard@st.com>
Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
NCI_HCI_IDENTITY_MGMT_GATE might be useful to get information
about hardware or firmware version.
Signed-off-by: Christophe Ricard <christophe-h.ricard@st.com>
Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
When initializing ndev->hci_dev->init_data, only gates field
was set. gate_count needs to be initialized as well.
Cc: stable@vger.kernel.org
Signed-off-by: Christophe Ricard <christophe-h.ricard@st.com>
Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
We need to keep initial st_nci_gates values in order for
nci_hci_dev_connect_gates to create and open pipe when necessary.
For example after a firmware update CLF pipes are cleared. Changing
pipe values in st_nci_gates was causing nci_hci_dev_connect_gates
not using accurate pipes value.
Cc: stable@vger.kernel.org
Signed-off-by: Christophe Ricard <christophe-h.ricard@st.com>
Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
NCI_HCI_LINK_MGMT_PIPE was never opened in st_nci_hci_load_session.
Signed-off-by: Christophe Ricard <christophe-h.ricard@st.com>
Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>