Commit Graph

185 Commits

Author SHA1 Message Date
Shakeel Butt
92ee383f6d mm: fix race between kmem_cache destroy, create and deactivate
The memcg kmem cache creation and deactivation (SLUB only) is
asynchronous.  If a root kmem cache is destroyed whose memcg cache is in
the process of creation or deactivation, the kernel may crash.

Example of one such crash:
	general protection fault: 0000 [#1] SMP PTI
	CPU: 1 PID: 1721 Comm: kworker/14:1 Not tainted 4.17.0-smp
	...
	Workqueue: memcg_kmem_cache kmemcg_deactivate_workfn
	RIP: 0010:has_cpu_slab
	...
	Call Trace:
	? on_each_cpu_cond
	__kmem_cache_shrink
	kmemcg_cache_deact_after_rcu
	kmemcg_deactivate_workfn
	process_one_work
	worker_thread
	kthread
	ret_from_fork+0x35/0x40

To fix this race, on root kmem cache destruction, mark the cache as
dying and flush the workqueue used for memcg kmem cache creation and
deactivation.  SLUB's memcg kmem cache deactivation also includes RCU
callback and thus make sure all previous registered RCU callbacks have
completed as well.

[shakeelb@google.com: handle the RCU callbacks for SLUB deactivation]
  Link: http://lkml.kernel.org/r/20180611192951.195727-1-shakeelb@google.com
[shakeelb@google.com: add more documentation, rename fields for readability]
  Link: http://lkml.kernel.org/r/20180522201336.196994-1-shakeelb@google.com
[akpm@linux-foundation.org: fix build, per Shakeel]
[shakeelb@google.com: v3.  Instead of refcount, flush the workqueue]
  Link: http://lkml.kernel.org/r/20180530001204.183758-1-shakeelb@google.com
Link: http://lkml.kernel.org/r/20180521174116.171846-1-shakeelb@google.com
Signed-off-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Greg Thelen <gthelen@google.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-06-15 07:55:23 +09:00
Kees Cook
49b7f8983a mm: Use overflow helpers in kmalloc_array*()
Instead of open-coded multiplication and bounds checking, use the new
overflow helper.

Suggested-by: Rasmus Villemoes <linux@rasmusvillemoes.dk>
Signed-off-by: Kees Cook <keescook@chromium.org>
2018-06-05 12:16:51 -07:00
Randy Dunlap
514c603249 headers: untangle kmemleak.h from mm.h
Currently <linux/slab.h> #includes <linux/kmemleak.h> for no obvious
reason.  It looks like it's only a convenience, so remove kmemleak.h
from slab.h and add <linux/kmemleak.h> to any users of kmemleak_* that
don't already #include it.  Also remove <linux/kmemleak.h> from source
files that do not use it.

This is tested on i386 allmodconfig and x86_64 allmodconfig.  It would
be good to run it through the 0day bot for other $ARCHes.  I have
neither the horsepower nor the storage space for the other $ARCHes.

Update: This patch has been extensively build-tested by both the 0day
bot & kisskb/ozlabs build farms.  Both of them reported 2 build failures
for which patches are included here (in v2).

[ slab.h is the second most used header file after module.h; kernel.h is
  right there with slab.h. There could be some minor error in the
  counting due to some #includes having comments after them and I didn't
  combine all of those. ]

[akpm@linux-foundation.org: security/keys/big_key.c needs vmalloc.h, per sfr]
Link: http://lkml.kernel.org/r/e4309f98-3749-93e1-4bb7-d9501a39d015@infradead.org
Link: http://kisskb.ellerman.id.au/kisskb/head/13396/
Signed-off-by: Randy Dunlap <rdunlap@infradead.org>
Reviewed-by: Ingo Molnar <mingo@kernel.org>
Reported-by: Michael Ellerman <mpe@ellerman.id.au>	[2 build failures]
Reported-by: Fengguang Wu <fengguang.wu@intel.com>	[2 build failures]
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Wei Yongjun <weiyongjun1@huawei.com>
Cc: Luis R. Rodriguez <mcgrof@kernel.org>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Mimi Zohar <zohar@linux.vnet.ibm.com>
Cc: John Johansen <john.johansen@canonical.com>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-04-05 21:36:27 -07:00
Alexey Dobriyan
7bbdb81ee3 slab: make usercopy region 32-bit
If kmem case sizes are 32-bit, then usecopy region should be too.

Link: http://lkml.kernel.org/r/20180305200730.15812-21-adobriyan@gmail.com
Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com>
Cc: David Miller <davem@davemloft.net>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-04-05 21:36:24 -07:00
Alexey Dobriyan
f4957d5bd0 slab: make kmem_cache_create() work with 32-bit sizes
struct kmem_cache::size and ::align were always 32-bit.

Out of curiosity I created 4GB kmem_cache, it oopsed with division by 0.
kmem_cache_create(1UL<<32+1) created 1-byte cache as expected.

size_t doesn't work and never did.

Link: http://lkml.kernel.org/r/20180305200730.15812-6-adobriyan@gmail.com
Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-04-05 21:36:23 -07:00
Alexey Dobriyan
0be70327ec slab: make kmalloc_size() return "unsigned int"
kmalloc_size() derives size of kmalloc cache from internal index, which
can't be negative.

Propagate unsignedness a bit.

Link: http://lkml.kernel.org/r/20180305200730.15812-3-adobriyan@gmail.com
Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com>
Acked-by: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-04-05 21:36:23 -07:00
Alexey Dobriyan
36071a279b slab: make kmalloc_index() return "unsigned int"
kmalloc_index() return index into an array of kmalloc kmem caches,
therefore should be unsigned.

Space savings with SLUB on trimmed down .config:

	add/remove: 0/1 grow/shrink: 6/56 up/down: 85/-557 (-472)
	Function                                     old     new   delta
	calculate_sizes                              924     983     +59
	on_freelist                                  589     604     +15
	init_cache_random_seq                        122     127      +5
	ext4_mb_init                                1206    1210      +4
	slab_pad_check.part                          270     271      +1
	cpu_partial_store                            112     113      +1
	usersize_show                                 28      27      -1
		...
	new_slab                                    1871    1837     -34
	slab_order                                   204       -    -204

This patch start a series of converting SLUB (mostly) to "unsigned int".

1) Most integers in the code are in fact unsigned entities: array
   indexes, lengths, buffer sizes, allocation orders. It is therefore
   better to use unsigned variables

2) Some integers in the code are either "size_t" or "unsigned long" for
   no reason.

   size_t usually comes from people trying to maintain type correctness
   and figuring out that "sizeof" operator returns size_t or
   memset/memcpy takes size_t so should everything passed to it.

   However the number of 4GB+ objects in the kernel is very small. Most,
   if not all, dynamically allocated objects with kmalloc() or
   kmem_cache_create() aren't actually big. Maintaining wide types
   doesn't do anything.

   64-bit ops are bigger than 32-bit on our beloved x86_64,
   so try to not use 64-bit where it isn't necessary
   (read: everywhere where integers are integers not pointers)

3) in case of SLAB allocators, there are additional limitations
   *) page->inuse, page->objects are only 16-/15-bit,
   *) cache size was always 32-bit
   *) slab orders are small, order 20 is needed to go 64-bit on x86_64
      (PAGE_SIZE << order)

Basically everything is 32-bit except kmalloc(1ULL<<32) which gets
shortcut through page allocator.

Christoph said:
:
: That changes with large base page size on power and ARM64 f.e. but then
: we do not want to encourage larger allocations through slab anyways.

Link: http://lkml.kernel.org/r/20180305200730.15812-2-adobriyan@gmail.com
Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com>
Acked-by: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-04-05 21:36:23 -07:00
Kees Cook
2d891fbc3b usercopy: Allow strict enforcement of whitelists
This introduces CONFIG_HARDENED_USERCOPY_FALLBACK to control the
behavior of hardened usercopy whitelist violations. By default, whitelist
violations will continue to WARN() so that any bad or missing usercopy
whitelists can be discovered without being too disruptive.

If this config is disabled at build time or a system is booted with
"slab_common.usercopy_fallback=0", usercopy whitelists will BUG() instead
of WARN(). This is useful for admins that want to use usercopy whitelists
immediately.

Suggested-by: Matthew Garrett <mjg59@google.com>
Signed-off-by: Kees Cook <keescook@chromium.org>
2018-01-15 12:07:48 -08:00
David Windsor
8eb8284b41 usercopy: Prepare for usercopy whitelisting
This patch prepares the slab allocator to handle caches having annotations
(useroffset and usersize) defining usercopy regions.

This patch is modified from Brad Spengler/PaX Team's PAX_USERCOPY
whitelisting code in the last public patch of grsecurity/PaX based on
my understanding of the code. Changes or omissions from the original
code are mine and don't reflect the original grsecurity/PaX code.

Currently, hardened usercopy performs dynamic bounds checking on slab
cache objects. This is good, but still leaves a lot of kernel memory
available to be copied to/from userspace in the face of bugs. To further
restrict what memory is available for copying, this creates a way to
whitelist specific areas of a given slab cache object for copying to/from
userspace, allowing much finer granularity of access control. Slab caches
that are never exposed to userspace can declare no whitelist for their
objects, thereby keeping them unavailable to userspace via dynamic copy
operations. (Note, an implicit form of whitelisting is the use of constant
sizes in usercopy operations and get_user()/put_user(); these bypass
hardened usercopy checks since these sizes cannot change at runtime.)

To support this whitelist annotation, usercopy region offset and size
members are added to struct kmem_cache. The slab allocator receives a
new function, kmem_cache_create_usercopy(), that creates a new cache
with a usercopy region defined, suitable for declaring spans of fields
within the objects that get copied to/from userspace.

In this patch, the default kmem_cache_create() marks the entire allocation
as whitelisted, leaving it semantically unchanged. Once all fine-grained
whitelists have been added (in subsequent patches), this will be changed
to a usersize of 0, making caches created with kmem_cache_create() not
copyable to/from userspace.

After the entire usercopy whitelist series is applied, less than 15%
of the slab cache memory remains exposed to potential usercopy bugs
after a fresh boot:

Total Slab Memory:           48074720
Usercopyable Memory:          6367532  13.2%
         task_struct                    0.2%         4480/1630720
         RAW                            0.3%            300/96000
         RAWv6                          2.1%           1408/64768
         ext4_inode_cache               3.0%       269760/8740224
         dentry                        11.1%       585984/5273856
         mm_struct                     29.1%         54912/188448
         kmalloc-8                    100.0%          24576/24576
         kmalloc-16                   100.0%          28672/28672
         kmalloc-32                   100.0%          81920/81920
         kmalloc-192                  100.0%          96768/96768
         kmalloc-128                  100.0%        143360/143360
         names_cache                  100.0%        163840/163840
         kmalloc-64                   100.0%        167936/167936
         kmalloc-256                  100.0%        339968/339968
         kmalloc-512                  100.0%        350720/350720
         kmalloc-96                   100.0%        455616/455616
         kmalloc-8192                 100.0%        655360/655360
         kmalloc-1024                 100.0%        812032/812032
         kmalloc-4096                 100.0%        819200/819200
         kmalloc-2048                 100.0%      1310720/1310720

After some kernel build workloads, the percentage (mainly driven by
dentry and inode caches expanding) drops under 10%:

Total Slab Memory:           95516184
Usercopyable Memory:          8497452   8.8%
         task_struct                    0.2%         4000/1456000
         RAW                            0.3%            300/96000
         RAWv6                          2.1%           1408/64768
         ext4_inode_cache               3.0%     1217280/39439872
         dentry                        11.1%     1623200/14608800
         mm_struct                     29.1%         73216/251264
         kmalloc-8                    100.0%          24576/24576
         kmalloc-16                   100.0%          28672/28672
         kmalloc-32                   100.0%          94208/94208
         kmalloc-192                  100.0%          96768/96768
         kmalloc-128                  100.0%        143360/143360
         names_cache                  100.0%        163840/163840
         kmalloc-64                   100.0%        245760/245760
         kmalloc-256                  100.0%        339968/339968
         kmalloc-512                  100.0%        350720/350720
         kmalloc-96                   100.0%        563520/563520
         kmalloc-8192                 100.0%        655360/655360
         kmalloc-1024                 100.0%        794624/794624
         kmalloc-4096                 100.0%        819200/819200
         kmalloc-2048                 100.0%      1257472/1257472

Signed-off-by: David Windsor <dave@nullcore.net>
[kees: adjust commit log, split out a few extra kmalloc hunks]
[kees: add field names to function declarations]
[kees: convert BUGs to WARNs and fail closed]
[kees: add attack surface reduction analysis to commit log]
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: linux-mm@kvack.org
Cc: linux-xfs@vger.kernel.org
Signed-off-by: Kees Cook <keescook@chromium.org>
Acked-by: Christoph Lameter <cl@linux.com>
2018-01-15 12:07:47 -08:00
Kees Cook
f4e6e289cb usercopy: Include offset in hardened usercopy report
This refactors the hardened usercopy code so that failure reporting can
happen within the checking functions instead of at the top level. This
simplifies the return value handling and allows more details and offsets
to be included in the report. Having the offset can be much more helpful
in understanding hardened usercopy bugs.

Signed-off-by: Kees Cook <keescook@chromium.org>
2018-01-15 12:07:45 -08:00
Mel Gorman
453f85d43f mm: remove __GFP_COLD
As the page free path makes no distinction between cache hot and cold
pages, there is no real useful ordering of pages in the free list that
allocation requests can take advantage of.  Juding from the users of
__GFP_COLD, it is likely that a number of them are the result of copying
other sites instead of actually measuring the impact.  Remove the
__GFP_COLD parameter which simplifies a number of paths in the page
allocator.

This is potentially controversial but bear in mind that the size of the
per-cpu pagelists versus modern cache sizes means that the whole per-cpu
list can often fit in the L3 cache.  Hence, there is only a potential
benefit for microbenchmarks that alloc/free pages in a tight loop.  It's
even worse when THP is taken into account which has little or no chance
of getting a cache-hot page as the per-cpu list is bypassed and the
zeroing of multiple pages will thrash the cache anyway.

The truncate microbenchmarks are not shown as this patch affects the
allocation path and not the free path.  A page fault microbenchmark was
tested but it showed no sigificant difference which is not surprising
given that the __GFP_COLD branches are a miniscule percentage of the
fault path.

Link: http://lkml.kernel.org/r/20171018075952.10627-9-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-11-15 18:21:06 -08:00
Levin, Alexander (Sasha Levin)
d8be75663c kmemcheck: remove whats left of NOTRACK flags
Now that kmemcheck is gone, we don't need the NOTRACK flags.

Link: http://lkml.kernel.org/r/20171007030159.22241-5-alexander.levin@verizon.com
Signed-off-by: Sasha Levin <alexander.levin@verizon.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Eric W. Biederman <ebiederm@xmission.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Tim Hansen <devtimhansen@gmail.com>
Cc: Vegard Nossum <vegardno@ifi.uio.no>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-11-15 18:21:05 -08:00
Johannes Thumshirn
5799b255c4 include/linux/slab.h: add kmalloc_array_node() and kcalloc_node()
Patch series "Add kmalloc_array_node() and kcalloc_node()".

Our current memeory allocation routines suffer form an API imbalance,
for one we have kmalloc_array() and kcalloc() which check for overflows
in size multiplication and we have kmalloc_node() and kzalloc_node()
which allow for memory allocation on a certain NUMA node but don't check
for eventual overflows.

This patch (of 6):

We have kmalloc_array() and kcalloc() wrappers on top of kmalloc() which
ensure us overflow free multiplication for the size of a memory
allocation but these implementations are not NUMA-aware.

Likewise we have kmalloc_node() which is a NUMA-aware version of
kmalloc() but the implementation is not aware of any possible overflows
in eventual size calculations.

Introduce a combination of the two above cases to have a NUMA-node aware
version of kmalloc_array() and kcalloc().

Link: http://lkml.kernel.org/r/20170927082038.3782-2-jthumshirn@suse.de
Signed-off-by: Johannes Thumshirn <jthumshirn@suse.de>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Christoph Lameter <cl@linux.com>
Cc: Damien Le Moal <damien.lemoal@wdc.com>
Cc: David Rientjes <rientjes@google.com>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Doug Ledford <dledford@redhat.com>
Cc: Hal Rosenstock <hal.rosenstock@gmail.com>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Mike Marciniszyn <infinipath@intel.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Santosh Shilimkar <santosh.shilimkar@oracle.com>
Cc: Sean Hefty <sean.hefty@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-11-15 18:21:01 -08:00
Alexey Dobriyan
4fd0b46e89 slab, slub, slob: convert slab_flags_t to 32-bit
struct kmem_cache::flags is "unsigned long" which is unnecessary on
64-bit as no flags are defined in the higher bits.

Switch the field to 32-bit and save some space on x86_64 until such
flags appear:

	add/remove: 0/0 grow/shrink: 0/107 up/down: 0/-657 (-657)
	function                                     old     new   delta
	sysfs_slab_add                               720     719      -1
				...
	check_object                                 699     676     -23

[akpm@linux-foundation.org: fix printk warning]
Link: http://lkml.kernel.org/r/20171021100635.GA8287@avx2
Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com>
Acked-by: Pekka Enberg <penberg@kernel.org>
Cc: Christoph Lameter <cl@linux.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-11-15 18:21:01 -08:00
Alexey Dobriyan
d50112edde slab, slub, slob: add slab_flags_t
Add sparse-checked slab_flags_t for struct kmem_cache::flags (SLAB_POISON,
etc).

SLAB is bloated temporarily by switching to "unsigned long", but only
temporarily.

Link: http://lkml.kernel.org/r/20171021100225.GA22428@avx2
Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com>
Acked-by: Pekka Enberg <penberg@kernel.org>
Cc: Christoph Lameter <cl@linux.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-11-15 18:21:01 -08:00
Greg Kroah-Hartman
b24413180f License cleanup: add SPDX GPL-2.0 license identifier to files with no license
Many source files in the tree are missing licensing information, which
makes it harder for compliance tools to determine the correct license.

By default all files without license information are under the default
license of the kernel, which is GPL version 2.

Update the files which contain no license information with the 'GPL-2.0'
SPDX license identifier.  The SPDX identifier is a legally binding
shorthand, which can be used instead of the full boiler plate text.

This patch is based on work done by Thomas Gleixner and Kate Stewart and
Philippe Ombredanne.

How this work was done:

Patches were generated and checked against linux-4.14-rc6 for a subset of
the use cases:
 - file had no licensing information it it.
 - file was a */uapi/* one with no licensing information in it,
 - file was a */uapi/* one with existing licensing information,

Further patches will be generated in subsequent months to fix up cases
where non-standard license headers were used, and references to license
had to be inferred by heuristics based on keywords.

The analysis to determine which SPDX License Identifier to be applied to
a file was done in a spreadsheet of side by side results from of the
output of two independent scanners (ScanCode & Windriver) producing SPDX
tag:value files created by Philippe Ombredanne.  Philippe prepared the
base worksheet, and did an initial spot review of a few 1000 files.

The 4.13 kernel was the starting point of the analysis with 60,537 files
assessed.  Kate Stewart did a file by file comparison of the scanner
results in the spreadsheet to determine which SPDX license identifier(s)
to be applied to the file. She confirmed any determination that was not
immediately clear with lawyers working with the Linux Foundation.

Criteria used to select files for SPDX license identifier tagging was:
 - Files considered eligible had to be source code files.
 - Make and config files were included as candidates if they contained >5
   lines of source
 - File already had some variant of a license header in it (even if <5
   lines).

All documentation files were explicitly excluded.

The following heuristics were used to determine which SPDX license
identifiers to apply.

 - when both scanners couldn't find any license traces, file was
   considered to have no license information in it, and the top level
   COPYING file license applied.

   For non */uapi/* files that summary was:

   SPDX license identifier                            # files
   ---------------------------------------------------|-------
   GPL-2.0                                              11139

   and resulted in the first patch in this series.

   If that file was a */uapi/* path one, it was "GPL-2.0 WITH
   Linux-syscall-note" otherwise it was "GPL-2.0".  Results of that was:

   SPDX license identifier                            # files
   ---------------------------------------------------|-------
   GPL-2.0 WITH Linux-syscall-note                        930

   and resulted in the second patch in this series.

 - if a file had some form of licensing information in it, and was one
   of the */uapi/* ones, it was denoted with the Linux-syscall-note if
   any GPL family license was found in the file or had no licensing in
   it (per prior point).  Results summary:

   SPDX license identifier                            # files
   ---------------------------------------------------|------
   GPL-2.0 WITH Linux-syscall-note                       270
   GPL-2.0+ WITH Linux-syscall-note                      169
   ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause)    21
   ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause)    17
   LGPL-2.1+ WITH Linux-syscall-note                      15
   GPL-1.0+ WITH Linux-syscall-note                       14
   ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause)    5
   LGPL-2.0+ WITH Linux-syscall-note                       4
   LGPL-2.1 WITH Linux-syscall-note                        3
   ((GPL-2.0 WITH Linux-syscall-note) OR MIT)              3
   ((GPL-2.0 WITH Linux-syscall-note) AND MIT)             1

   and that resulted in the third patch in this series.

 - when the two scanners agreed on the detected license(s), that became
   the concluded license(s).

 - when there was disagreement between the two scanners (one detected a
   license but the other didn't, or they both detected different
   licenses) a manual inspection of the file occurred.

 - In most cases a manual inspection of the information in the file
   resulted in a clear resolution of the license that should apply (and
   which scanner probably needed to revisit its heuristics).

 - When it was not immediately clear, the license identifier was
   confirmed with lawyers working with the Linux Foundation.

 - If there was any question as to the appropriate license identifier,
   the file was flagged for further research and to be revisited later
   in time.

In total, over 70 hours of logged manual review was done on the
spreadsheet to determine the SPDX license identifiers to apply to the
source files by Kate, Philippe, Thomas and, in some cases, confirmation
by lawyers working with the Linux Foundation.

Kate also obtained a third independent scan of the 4.13 code base from
FOSSology, and compared selected files where the other two scanners
disagreed against that SPDX file, to see if there was new insights.  The
Windriver scanner is based on an older version of FOSSology in part, so
they are related.

Thomas did random spot checks in about 500 files from the spreadsheets
for the uapi headers and agreed with SPDX license identifier in the
files he inspected. For the non-uapi files Thomas did random spot checks
in about 15000 files.

In initial set of patches against 4.14-rc6, 3 files were found to have
copy/paste license identifier errors, and have been fixed to reflect the
correct identifier.

Additionally Philippe spent 10 hours this week doing a detailed manual
inspection and review of the 12,461 patched files from the initial patch
version early this week with:
 - a full scancode scan run, collecting the matched texts, detected
   license ids and scores
 - reviewing anything where there was a license detected (about 500+
   files) to ensure that the applied SPDX license was correct
 - reviewing anything where there was no detection but the patch license
   was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied
   SPDX license was correct

This produced a worksheet with 20 files needing minor correction.  This
worksheet was then exported into 3 different .csv files for the
different types of files to be modified.

These .csv files were then reviewed by Greg.  Thomas wrote a script to
parse the csv files and add the proper SPDX tag to the file, in the
format that the file expected.  This script was further refined by Greg
based on the output to detect more types of files automatically and to
distinguish between header and source .c files (which need different
comment types.)  Finally Greg ran the script using the .csv files to
generate the patches.

Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-02 11:10:55 +01:00
Michal Hocko
dcda9b0471 mm, tree wide: replace __GFP_REPEAT by __GFP_RETRY_MAYFAIL with more useful semantic
__GFP_REPEAT was designed to allow retry-but-eventually-fail semantic to
the page allocator.  This has been true but only for allocations
requests larger than PAGE_ALLOC_COSTLY_ORDER.  It has been always
ignored for smaller sizes.  This is a bit unfortunate because there is
no way to express the same semantic for those requests and they are
considered too important to fail so they might end up looping in the
page allocator for ever, similarly to GFP_NOFAIL requests.

Now that the whole tree has been cleaned up and accidental or misled
usage of __GFP_REPEAT flag has been removed for !costly requests we can
give the original flag a better name and more importantly a more useful
semantic.  Let's rename it to __GFP_RETRY_MAYFAIL which tells the user
that the allocator would try really hard but there is no promise of a
success.  This will work independent of the order and overrides the
default allocator behavior.  Page allocator users have several levels of
guarantee vs.  cost options (take GFP_KERNEL as an example)

 - GFP_KERNEL & ~__GFP_RECLAIM - optimistic allocation without _any_
   attempt to free memory at all. The most light weight mode which even
   doesn't kick the background reclaim. Should be used carefully because
   it might deplete the memory and the next user might hit the more
   aggressive reclaim

 - GFP_KERNEL & ~__GFP_DIRECT_RECLAIM (or GFP_NOWAIT)- optimistic
   allocation without any attempt to free memory from the current
   context but can wake kswapd to reclaim memory if the zone is below
   the low watermark. Can be used from either atomic contexts or when
   the request is a performance optimization and there is another
   fallback for a slow path.

 - (GFP_KERNEL|__GFP_HIGH) & ~__GFP_DIRECT_RECLAIM (aka GFP_ATOMIC) -
   non sleeping allocation with an expensive fallback so it can access
   some portion of memory reserves. Usually used from interrupt/bh
   context with an expensive slow path fallback.

 - GFP_KERNEL - both background and direct reclaim are allowed and the
   _default_ page allocator behavior is used. That means that !costly
   allocation requests are basically nofail but there is no guarantee of
   that behavior so failures have to be checked properly by callers
   (e.g. OOM killer victim is allowed to fail currently).

 - GFP_KERNEL | __GFP_NORETRY - overrides the default allocator behavior
   and all allocation requests fail early rather than cause disruptive
   reclaim (one round of reclaim in this implementation). The OOM killer
   is not invoked.

 - GFP_KERNEL | __GFP_RETRY_MAYFAIL - overrides the default allocator
   behavior and all allocation requests try really hard. The request
   will fail if the reclaim cannot make any progress. The OOM killer
   won't be triggered.

 - GFP_KERNEL | __GFP_NOFAIL - overrides the default allocator behavior
   and all allocation requests will loop endlessly until they succeed.
   This might be really dangerous especially for larger orders.

Existing users of __GFP_REPEAT are changed to __GFP_RETRY_MAYFAIL
because they already had their semantic.  No new users are added.
__alloc_pages_slowpath is changed to bail out for __GFP_RETRY_MAYFAIL if
there is no progress and we have already passed the OOM point.

This means that all the reclaim opportunities have been exhausted except
the most disruptive one (the OOM killer) and a user defined fallback
behavior is more sensible than keep retrying in the page allocator.

[akpm@linux-foundation.org: fix arch/sparc/kernel/mdesc.c]
[mhocko@suse.com: semantic fix]
  Link: http://lkml.kernel.org/r/20170626123847.GM11534@dhcp22.suse.cz
[mhocko@kernel.org: address other thing spotted by Vlastimil]
  Link: http://lkml.kernel.org/r/20170626124233.GN11534@dhcp22.suse.cz
Link: http://lkml.kernel.org/r/20170623085345.11304-3-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Alex Belits <alex.belits@cavium.com>
Cc: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: Darrick J. Wong <darrick.wong@oracle.com>
Cc: David Daney <david.daney@cavium.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: NeilBrown <neilb@suse.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-07-12 16:26:03 -07:00
Paul E. McKenney
5f0d5a3ae7 mm: Rename SLAB_DESTROY_BY_RCU to SLAB_TYPESAFE_BY_RCU
A group of Linux kernel hackers reported chasing a bug that resulted
from their assumption that SLAB_DESTROY_BY_RCU provided an existence
guarantee, that is, that no block from such a slab would be reallocated
during an RCU read-side critical section.  Of course, that is not the
case.  Instead, SLAB_DESTROY_BY_RCU only prevents freeing of an entire
slab of blocks.

However, there is a phrase for this, namely "type safety".  This commit
therefore renames SLAB_DESTROY_BY_RCU to SLAB_TYPESAFE_BY_RCU in order
to avoid future instances of this sort of confusion.

Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: <linux-mm@kvack.org>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
[ paulmck: Add comments mentioning the old name, as requested by Eric
  Dumazet, in order to help people familiar with the old name find
  the new one. ]
Acked-by: David Rientjes <rientjes@google.com>
2017-04-18 11:42:36 -07:00
Tejun Heo
01fb58bcba slab: remove synchronous synchronize_sched() from memcg cache deactivation path
With kmem cgroup support enabled, kmem_caches can be created and
destroyed frequently and a great number of near empty kmem_caches can
accumulate if there are a lot of transient cgroups and the system is not
under memory pressure.  When memory reclaim starts under such
conditions, it can lead to consecutive deactivation and destruction of
many kmem_caches, easily hundreds of thousands on moderately large
systems, exposing scalability issues in the current slab management
code.  This is one of the patches to address the issue.

slub uses synchronize_sched() to deactivate a memcg cache.
synchronize_sched() is an expensive and slow operation and doesn't scale
when a huge number of caches are destroyed back-to-back.  While there
used to be a simple batching mechanism, the batching was too restricted
to be helpful.

This patch implements slab_deactivate_memcg_cache_rcu_sched() which slub
can use to schedule sched RCU callback instead of performing
synchronize_sched() synchronously while holding cgroup_mutex.  While
this adds online cpus, mems and slab_mutex operations, operating on
these locks back-to-back from the same kworker, which is what's gonna
happen when there are many to deactivate, isn't expensive at all and
this gets rid of the scalability problem completely.

Link: http://lkml.kernel.org/r/20170117235411.9408-9-tj@kernel.org
Signed-off-by: Tejun Heo <tj@kernel.org>
Reported-by: Jay Vana <jsvana@fb.com>
Acked-by: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-02-22 16:41:27 -08:00
Tejun Heo
510ded33e0 slab: implement slab_root_caches list
With kmem cgroup support enabled, kmem_caches can be created and
destroyed frequently and a great number of near empty kmem_caches can
accumulate if there are a lot of transient cgroups and the system is not
under memory pressure.  When memory reclaim starts under such
conditions, it can lead to consecutive deactivation and destruction of
many kmem_caches, easily hundreds of thousands on moderately large
systems, exposing scalability issues in the current slab management
code.  This is one of the patches to address the issue.

slab_caches currently lists all caches including root and memcg ones.
This is the only data structure which lists the root caches and
iterating root caches can only be done by walking the list while
skipping over memcg caches.  As there can be a huge number of memcg
caches, this can become very expensive.

This also can make /proc/slabinfo behave very badly.  seq_file processes
reads in 4k chunks and seeks to the previous Nth position on slab_caches
list to resume after each chunk.  With a lot of memcg cache churns on
the list, reading /proc/slabinfo can become very slow and its content
often ends up with duplicate and/or missing entries.

This patch adds a new list slab_root_caches which lists only the root
caches.  When memcg is not enabled, it becomes just an alias of
slab_caches.  memcg specific list operations are collected into
memcg_[un]link_cache().

Link: http://lkml.kernel.org/r/20170117235411.9408-7-tj@kernel.org
Signed-off-by: Tejun Heo <tj@kernel.org>
Reported-by: Jay Vana <jsvana@fb.com>
Acked-by: Vladimir Davydov <vdavydov@tarantool.org>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-02-22 16:41:27 -08:00
Tejun Heo
bc2791f857 slab: link memcg kmem_caches on their associated memory cgroup
With kmem cgroup support enabled, kmem_caches can be created and
destroyed frequently and a great number of near empty kmem_caches can
accumulate if there are a lot of transient cgroups and the system is not
under memory pressure.  When memory reclaim starts under such
conditions, it can lead to consecutive deactivation and destruction of
many kmem_caches, easily hundreds of thousands on moderately large
systems, exposing scalability issues in the current slab management
code.  This is one of the patches to address the issue.

While a memcg kmem_cache is listed on its root cache's ->children list,
there is no direct way to iterate all kmem_caches which are assocaited
with a memory cgroup.  The only way to iterate them is walking all
caches while filtering out caches which don't match, which would be most
of them.

This makes memcg destruction operations O(N^2) where N is the total
number of slab caches which can be huge.  This combined with the
synchronous RCU operations can tie up a CPU and affect the whole machine
for many hours when memory reclaim triggers offlining and destruction of
the stale memcgs.

This patch adds mem_cgroup->kmem_caches list which goes through
memcg_cache_params->kmem_caches_node of all kmem_caches which are
associated with the memcg.  All memcg specific iterations, including
stat file access, are updated to use the new list instead.

Link: http://lkml.kernel.org/r/20170117235411.9408-6-tj@kernel.org
Signed-off-by: Tejun Heo <tj@kernel.org>
Reported-by: Jay Vana <jsvana@fb.com>
Acked-by: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-02-22 16:41:27 -08:00
Tejun Heo
9eeadc8b6e slab: reorganize memcg_cache_params
We're going to change how memcg caches are iterated.  In preparation,
clean up and reorganize memcg_cache_params.

* The shared ->list is replaced by ->children in root and
  ->children_node in children.

* ->is_root_cache is removed.  Instead ->root_cache is moved out of
  the child union and now used by both root and children.  NULL
  indicates root cache.  Non-NULL a memcg one.

This patch doesn't cause any observable behavior changes.

Link: http://lkml.kernel.org/r/20170117235411.9408-5-tj@kernel.org
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-02-22 16:41:27 -08:00
Michal Hocko
bb1107f7c6 mm, slab: make sure that KMALLOC_MAX_SIZE will fit into MAX_ORDER
Andrey Konovalov has reported the following warning triggered by the
syzkaller fuzzer.

  WARNING: CPU: 1 PID: 9935 at mm/page_alloc.c:3511 __alloc_pages_nodemask+0x159c/0x1e20
  Kernel panic - not syncing: panic_on_warn set ...
  CPU: 1 PID: 9935 Comm: syz-executor0 Not tainted 4.9.0-rc7+ #34
  Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS Bochs 01/01/2011
  Call Trace:
    __alloc_pages_slowpath mm/page_alloc.c:3511
    __alloc_pages_nodemask+0x159c/0x1e20 mm/page_alloc.c:3781
    alloc_pages_current+0x1c7/0x6b0 mm/mempolicy.c:2072
    alloc_pages include/linux/gfp.h:469
    kmalloc_order+0x1f/0x70 mm/slab_common.c:1015
    kmalloc_order_trace+0x1f/0x160 mm/slab_common.c:1026
    kmalloc_large include/linux/slab.h:422
    __kmalloc+0x210/0x2d0 mm/slub.c:3723
    kmalloc include/linux/slab.h:495
    ep_write_iter+0x167/0xb50 drivers/usb/gadget/legacy/inode.c:664
    new_sync_write fs/read_write.c:499
    __vfs_write+0x483/0x760 fs/read_write.c:512
    vfs_write+0x170/0x4e0 fs/read_write.c:560
    SYSC_write fs/read_write.c:607
    SyS_write+0xfb/0x230 fs/read_write.c:599
    entry_SYSCALL_64_fastpath+0x1f/0xc2

The issue is caused by a lack of size check for the request size in
ep_write_iter which should be fixed.  It, however, points to another
problem, that SLUB defines KMALLOC_MAX_SIZE too large because the its
KMALLOC_SHIFT_MAX is (MAX_ORDER + PAGE_SHIFT) which means that the
resulting page allocator request might be MAX_ORDER which is too large
(see __alloc_pages_slowpath).

The same applies to the SLOB allocator which allows even larger sizes.
Make sure that they are capped properly and never request more than
MAX_ORDER order.

Link: http://lkml.kernel.org/r/20161220130659.16461-2-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Reported-by: Andrey Konovalov <andreyknvl@google.com>
Acked-by: Christoph Lameter <cl@linux.com>
Cc: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-01-10 18:31:54 -08:00
Sebastian Andrzej Siewior
6731d4f123 slab: Convert to hotplug state machine
Install the callbacks via the state machine.

Signed-off-by: Richard Weinberger <richard@nod.at>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Reviewed-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: linux-mm@kvack.org
Cc: rt@linutronix.de
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Christoph Lameter <cl@linux.com>
Link: http://lkml.kernel.org/r/20160823125319.abeapfjapf2kfezp@linutronix.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2016-09-06 18:30:20 +02:00
Linus Torvalds
1eccfa090e Implements HARDENED_USERCOPY verification of copy_to_user/copy_from_user
bounds checking for most architectures on SLAB and SLUB.
 -----BEGIN PGP SIGNATURE-----
 Version: GnuPG v1
 Comment: Kees Cook <kees@outflux.net>
 
 iQIcBAABCgAGBQJXl9tlAAoJEIly9N/cbcAm5BoP/ikTtDp2bFw1sn92yHTnIWzl
 O+dcKVAeRgjfnSvPfb1JITpaM58exQSaDsPBeR0DbVzU1zDdhLcwHHiQupFh98Ka
 vBZthbrlL/u4NB26enEEW0iyA32BsxYBMnIu0z5ux9RbZflmQwGQ0c0rvy3dJ7/b
 FzB5ayVST5y/a0m6/sImeeExh78GU9rsMb1XmJRMwlJAy6miDz/F9TP0LnuW6PhG
 J5XC99ygNJS1pQBLACRsrZw6ImgBxXnWCok6tWPMxFfD+rJBU2//wqS+HozyMWHL
 iYP7+ytVo/ZVok4114X/V4Oof3a6wqgpBuYrivJ228QO+UsLYbYLo6sZ8kRK7VFm
 9GgHo/8rWB1T9lBbSaa7UL5r0dVNNLjFGS42vwV+YlgUMQ1A35VRojO0jUnJSIQU
 Ug1IxKmylLd0nEcwD8/l3DXeQABsfL8GsoKW0OtdTZtW4RND4gzq34LK6t7hvayF
 kUkLg1OLNdUJwOi16M/rhugwYFZIMfoxQtjkRXKWN4RZ2QgSHnx2lhqNmRGPAXBG
 uy21wlzUTfLTqTpoeOyHzJwyF2qf2y4nsziBMhvmlrUvIzW1LIrYUKCNT4HR8Sh5
 lC2WMGYuIqaiu+NOF3v6CgvKd9UW+mxMRyPEybH8mEgfm+FLZlWABiBjIUpSEZuB
 JFfuMv1zlljj/okIQRg8
 =USIR
 -----END PGP SIGNATURE-----

Merge tag 'usercopy-v4.8' of git://git.kernel.org/pub/scm/linux/kernel/git/kees/linux

Pull usercopy protection from Kees Cook:
 "Tbhis implements HARDENED_USERCOPY verification of copy_to_user and
  copy_from_user bounds checking for most architectures on SLAB and
  SLUB"

* tag 'usercopy-v4.8' of git://git.kernel.org/pub/scm/linux/kernel/git/kees/linux:
  mm: SLUB hardened usercopy support
  mm: SLAB hardened usercopy support
  s390/uaccess: Enable hardened usercopy
  sparc/uaccess: Enable hardened usercopy
  powerpc/uaccess: Enable hardened usercopy
  ia64/uaccess: Enable hardened usercopy
  arm64/uaccess: Enable hardened usercopy
  ARM: uaccess: Enable hardened usercopy
  x86/uaccess: Enable hardened usercopy
  mm: Hardened usercopy
  mm: Implement stack frame object validation
  mm: Add is_migrate_cma_page
2016-08-08 14:48:14 -07:00
Alexey Dobriyan
91c6a05f72 mm: faster kmalloc_array(), kcalloc()
When both arguments to kmalloc_array() or kcalloc() are known at compile
time then their product is known at compile time but search for kmalloc
cache happens at runtime not at compile time.

Link: http://lkml.kernel.org/r/20160627213454.GA2440@p183.telecom.by
Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-26 16:19:19 -07:00
Kees Cook
f5509cc18d mm: Hardened usercopy
This is the start of porting PAX_USERCOPY into the mainline kernel. This
is the first set of features, controlled by CONFIG_HARDENED_USERCOPY. The
work is based on code by PaX Team and Brad Spengler, and an earlier port
from Casey Schaufler. Additional non-slab page tests are from Rik van Riel.

This patch contains the logic for validating several conditions when
performing copy_to_user() and copy_from_user() on the kernel object
being copied to/from:
- address range doesn't wrap around
- address range isn't NULL or zero-allocated (with a non-zero copy size)
- if on the slab allocator:
  - object size must be less than or equal to copy size (when check is
    implemented in the allocator, which appear in subsequent patches)
- otherwise, object must not span page allocations (excepting Reserved
  and CMA ranges)
- if on the stack
  - object must not extend before/after the current process stack
  - object must be contained by a valid stack frame (when there is
    arch/build support for identifying stack frames)
- object must not overlap with kernel text

Signed-off-by: Kees Cook <keescook@chromium.org>
Tested-by: Valdis Kletnieks <valdis.kletnieks@vt.edu>
Tested-by: Michael Ellerman <mpe@ellerman.id.au>
2016-07-26 14:41:47 -07:00
Rasmus Villemoes
48a270554a include/linux: apply __malloc attribute
Attach the malloc attribute to a few allocation functions.  This helps
gcc generate better code by telling it that the return value doesn't
alias any existing pointers (which is even more valuable given the
pessimizations implied by -fno-strict-aliasing).

A simple example of what this allows gcc to do can be seen by looking at
the last part of drm_atomic_helper_plane_reset:

	plane->state = kzalloc(sizeof(*plane->state), GFP_KERNEL);

	if (plane->state) {
		plane->state->plane = plane;
		plane->state->rotation = BIT(DRM_ROTATE_0);
	}

which compiles to

    e8 99 bf d6 ff          callq  ffffffff8116d540 <kmem_cache_alloc_trace>
    48 85 c0                test   %rax,%rax
    48 89 83 40 02 00 00    mov    %rax,0x240(%rbx)
    74 11                   je     ffffffff814015c4 <drm_atomic_helper_plane_reset+0x64>
    48 89 18                mov    %rbx,(%rax)
    48 8b 83 40 02 00 00    mov    0x240(%rbx),%rax [*]
    c7 40 40 01 00 00 00    movl   $0x1,0x40(%rax)

With this patch applied, the instruction at [*] is elided, since the
store to plane->state->plane is known to not alter the value of
plane->state.

[akpm@linux-foundation.org: coding-style fixes]
Signed-off-by: Rasmus Villemoes <linux@rasmusvillemoes.dk>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Andi Kleen <ak@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-19 19:12:14 -07:00
Alexander Potapenko
505f5dcb1c mm, kasan: add GFP flags to KASAN API
Add GFP flags to KASAN hooks for future patches to use.

This patch is based on the "mm: kasan: unified support for SLUB and SLAB
allocators" patch originally prepared by Dmitry Chernenkov.

Signed-off-by: Alexander Potapenko <glider@google.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Andrey Konovalov <adech.fo@gmail.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Konstantin Serebryany <kcc@google.com>
Cc: Dmitry Chernenkov <dmitryc@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-25 16:37:42 -07:00
Alexander Potapenko
7ed2f9e663 mm, kasan: SLAB support
Add KASAN hooks to SLAB allocator.

This patch is based on the "mm: kasan: unified support for SLUB and SLAB
allocators" patch originally prepared by Dmitry Chernenkov.

Signed-off-by: Alexander Potapenko <glider@google.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Andrey Konovalov <adech.fo@gmail.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Konstantin Serebryany <kcc@google.com>
Cc: Dmitry Chernenkov <dmitryc@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-25 16:37:42 -07:00
Laura Abbott
becfda68ab slub: convert SLAB_DEBUG_FREE to SLAB_CONSISTENCY_CHECKS
SLAB_DEBUG_FREE allows expensive consistency checks at free to be turned
on or off.  Expand its use to be able to turn off all consistency
checks.  This gives a nice speed up if you only want features such as
poisoning or tracing.

Credit to Mathias Krause for the original work which inspired this
series

Signed-off-by: Laura Abbott <labbott@fedoraproject.org>
Acked-by: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <js1304@gmail.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Mathias Krause <minipli@googlemail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-15 16:55:16 -07:00
Jesper Dangaard Brouer
9f706d6820 mm: fix some spelling
Fix up trivial spelling errors, noticed while reading the code.

Signed-off-by: Jesper Dangaard Brouer <brouer@redhat.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Vladimir Davydov <vdavydov@virtuozzo.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-15 16:55:16 -07:00
Jesper Dangaard Brouer
ca25719551 mm: new API kfree_bulk() for SLAB+SLUB allocators
This patch introduce a new API call kfree_bulk() for bulk freeing memory
objects not bound to a single kmem_cache.

Christoph pointed out that it is possible to implement freeing of
objects, without knowing the kmem_cache pointer as that information is
available from the object's page->slab_cache.  Proposing to remove the
kmem_cache argument from the bulk free API.

Jesper demonstrated that these extra steps per object comes at a
performance cost.  It is only in the case CONFIG_MEMCG_KMEM is compiled
in and activated runtime that these steps are done anyhow.  The extra
cost is most visible for SLAB allocator, because the SLUB allocator does
the page lookup (virt_to_head_page()) anyhow.

Thus, the conclusion was to keep the kmem_cache free bulk API with a
kmem_cache pointer, but we can still implement a kfree_bulk() API fairly
easily.  Simply by handling if kmem_cache_free_bulk() gets called with a
kmem_cache NULL pointer.

This does increase the code size a bit, but implementing a separate
kfree_bulk() call would likely increase code size even more.

Below benchmarks cost of alloc+free (obj size 256 bytes) on CPU i7-4790K
@ 4.00GHz, no PREEMPT and CONFIG_MEMCG_KMEM=y.

Code size increase for SLAB:

 add/remove: 0/0 grow/shrink: 1/0 up/down: 74/0 (74)
 function                                     old     new   delta
 kmem_cache_free_bulk                         660     734     +74

SLAB fastpath: 87 cycles(tsc) 21.814
  sz - fallback             - kmem_cache_free_bulk - kfree_bulk
   1 - 103 cycles 25.878 ns -  41 cycles 10.498 ns - 81 cycles 20.312 ns
   2 -  94 cycles 23.673 ns -  26 cycles  6.682 ns - 42 cycles 10.649 ns
   3 -  92 cycles 23.181 ns -  21 cycles  5.325 ns - 39 cycles 9.950 ns
   4 -  90 cycles 22.727 ns -  18 cycles  4.673 ns - 26 cycles 6.693 ns
   8 -  89 cycles 22.270 ns -  14 cycles  3.664 ns - 23 cycles 5.835 ns
  16 -  88 cycles 22.038 ns -  14 cycles  3.503 ns - 22 cycles 5.543 ns
  30 -  89 cycles 22.284 ns -  13 cycles  3.310 ns - 20 cycles 5.197 ns
  32 -  88 cycles 22.249 ns -  13 cycles  3.420 ns - 20 cycles 5.166 ns
  34 -  88 cycles 22.224 ns -  14 cycles  3.643 ns - 20 cycles 5.170 ns
  48 -  88 cycles 22.088 ns -  14 cycles  3.507 ns - 20 cycles 5.203 ns
  64 -  88 cycles 22.063 ns -  13 cycles  3.428 ns - 20 cycles 5.152 ns
 128 -  89 cycles 22.483 ns -  15 cycles  3.891 ns - 23 cycles 5.885 ns
 158 -  89 cycles 22.381 ns -  15 cycles  3.779 ns - 22 cycles 5.548 ns
 250 -  91 cycles 22.798 ns -  16 cycles  4.152 ns - 23 cycles 5.967 ns

SLAB when enabling MEMCG_KMEM runtime:
 - kmemcg fastpath: 130 cycles(tsc) 32.684 ns (step:0)
 1 - 148 cycles 37.220 ns -  66 cycles 16.622 ns - 66 cycles 16.583 ns
 2 - 141 cycles 35.510 ns -  51 cycles 12.820 ns - 58 cycles 14.625 ns
 3 - 140 cycles 35.017 ns -  37 cycles 9.326 ns - 33 cycles 8.474 ns
 4 - 137 cycles 34.507 ns -  31 cycles 7.888 ns - 33 cycles 8.300 ns
 8 - 140 cycles 35.069 ns -  25 cycles 6.461 ns - 25 cycles 6.436 ns
 16 - 138 cycles 34.542 ns -  23 cycles 5.945 ns - 22 cycles 5.670 ns
 30 - 136 cycles 34.227 ns -  22 cycles 5.502 ns - 22 cycles 5.587 ns
 32 - 136 cycles 34.253 ns -  21 cycles 5.475 ns - 21 cycles 5.324 ns
 34 - 136 cycles 34.254 ns -  21 cycles 5.448 ns - 20 cycles 5.194 ns
 48 - 136 cycles 34.075 ns -  21 cycles 5.458 ns - 21 cycles 5.367 ns
 64 - 135 cycles 33.994 ns -  21 cycles 5.350 ns - 21 cycles 5.259 ns
 128 - 137 cycles 34.446 ns -  23 cycles 5.816 ns - 22 cycles 5.688 ns
 158 - 137 cycles 34.379 ns -  22 cycles 5.727 ns - 22 cycles 5.602 ns
 250 - 138 cycles 34.755 ns -  24 cycles 6.093 ns - 23 cycles 5.986 ns

Code size increase for SLUB:
 function                                     old     new   delta
 kmem_cache_free_bulk                         717     799     +82

SLUB benchmark:
 SLUB fastpath: 46 cycles(tsc) 11.691 ns (step:0)
  sz - fallback             - kmem_cache_free_bulk - kfree_bulk
   1 -  61 cycles 15.486 ns -  53 cycles 13.364 ns - 57 cycles 14.464 ns
   2 -  54 cycles 13.703 ns -  32 cycles  8.110 ns - 33 cycles 8.482 ns
   3 -  53 cycles 13.272 ns -  25 cycles  6.362 ns - 27 cycles 6.947 ns
   4 -  51 cycles 12.994 ns -  24 cycles  6.087 ns - 24 cycles 6.078 ns
   8 -  50 cycles 12.576 ns -  21 cycles  5.354 ns - 22 cycles 5.513 ns
  16 -  49 cycles 12.368 ns -  20 cycles  5.054 ns - 20 cycles 5.042 ns
  30 -  49 cycles 12.273 ns -  18 cycles  4.748 ns - 19 cycles 4.758 ns
  32 -  49 cycles 12.401 ns -  19 cycles  4.821 ns - 19 cycles 4.810 ns
  34 -  98 cycles 24.519 ns -  24 cycles  6.154 ns - 24 cycles 6.157 ns
  48 -  83 cycles 20.833 ns -  21 cycles  5.446 ns - 21 cycles 5.429 ns
  64 -  75 cycles 18.891 ns -  20 cycles  5.247 ns - 20 cycles 5.238 ns
 128 -  93 cycles 23.271 ns -  27 cycles  6.856 ns - 27 cycles 6.823 ns
 158 - 102 cycles 25.581 ns -  30 cycles  7.714 ns - 30 cycles 7.695 ns
 250 - 107 cycles 26.917 ns -  38 cycles  9.514 ns - 38 cycles 9.506 ns

SLUB when enabling MEMCG_KMEM runtime:
 - kmemcg fastpath: 71 cycles(tsc) 17.897 ns (step:0)
 1 - 85 cycles 21.484 ns -  78 cycles 19.569 ns - 75 cycles 18.938 ns
 2 - 81 cycles 20.363 ns -  45 cycles 11.258 ns - 44 cycles 11.076 ns
 3 - 78 cycles 19.709 ns -  33 cycles 8.354 ns - 32 cycles 8.044 ns
 4 - 77 cycles 19.430 ns -  28 cycles 7.216 ns - 28 cycles 7.003 ns
 8 - 101 cycles 25.288 ns -  23 cycles 5.849 ns - 23 cycles 5.787 ns
 16 - 76 cycles 19.148 ns -  20 cycles 5.162 ns - 20 cycles 5.081 ns
 30 - 76 cycles 19.067 ns -  19 cycles 4.868 ns - 19 cycles 4.821 ns
 32 - 76 cycles 19.052 ns -  19 cycles 4.857 ns - 19 cycles 4.815 ns
 34 - 121 cycles 30.291 ns -  25 cycles 6.333 ns - 25 cycles 6.268 ns
 48 - 108 cycles 27.111 ns -  21 cycles 5.498 ns - 21 cycles 5.458 ns
 64 - 100 cycles 25.164 ns -  20 cycles 5.242 ns - 20 cycles 5.229 ns
 128 - 155 cycles 38.976 ns -  27 cycles 6.886 ns - 27 cycles 6.892 ns
 158 - 132 cycles 33.034 ns -  30 cycles 7.711 ns - 30 cycles 7.728 ns
 250 - 130 cycles 32.612 ns -  38 cycles 9.560 ns - 38 cycles 9.549 ns

Signed-off-by: Jesper Dangaard Brouer <brouer@redhat.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Vladimir Davydov <vdavydov@virtuozzo.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-15 16:55:16 -07:00
Johannes Weiner
127424c86b mm: memcontrol: move kmem accounting code to CONFIG_MEMCG
The cgroup2 memory controller will account important in-kernel memory
consumers per default.  Move all necessary components to CONFIG_MEMCG.

Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Vladimir Davydov <vdavydov@virtuozzo.com>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-20 17:09:18 -08:00
Vladimir Davydov
230e9fc286 slab: add SLAB_ACCOUNT flag
Currently, if we want to account all objects of a particular kmem cache,
we have to pass __GFP_ACCOUNT to each kmem_cache_alloc call, which is
inconvenient.  This patch introduces SLAB_ACCOUNT flag which if passed
to kmem_cache_create will force accounting for every allocation from
this cache even if __GFP_ACCOUNT is not passed.

This patch does not make any of the existing caches use this flag - it
will be done later in the series.

Note, a cache with SLAB_ACCOUNT cannot be merged with a cache w/o
SLAB_ACCOUNT, because merged caches share the same kmem_cache struct and
hence cannot have different sets of SLAB_* flags.  Thus using this flag
will probably reduce the number of merged slabs even if kmem accounting
is not used (only compiled in).

Signed-off-by: Vladimir Davydov <vdavydov@virtuozzo.com>
Suggested-by: Tejun Heo <tj@kernel.org>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-14 16:00:49 -08:00
Jesper Dangaard Brouer
865762a811 slab/slub: adjust kmem_cache_alloc_bulk API
Adjust kmem_cache_alloc_bulk API before we have any real users.

Adjust API to return type 'int' instead of previously type 'bool'.  This
is done to allow future extension of the bulk alloc API.

A future extension could be to allow SLUB to stop at a page boundary, when
specified by a flag, and then return the number of objects.

The advantage of this approach, would make it easier to make bulk alloc
run without local IRQs disabled.  With an approach of cmpxchg "stealing"
the entire c->freelist or page->freelist.  To avoid overshooting we would
stop processing at a slab-page boundary.  Else we always end up returning
some objects at the cost of another cmpxchg.

To keep compatible with future users of this API linking against an older
kernel when using the new flag, we need to return the number of allocated
objects with this API change.

Signed-off-by: Jesper Dangaard Brouer <brouer@redhat.com>
Cc: Vladimir Davydov <vdavydov@virtuozzo.com>
Acked-by: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-11-22 11:58:44 -08:00
Rasmus Villemoes
94a58c360a slab.h: sprinkle __assume_aligned attributes
The various allocators return aligned memory.  Telling the compiler that
allows it to generate better code in many cases, for example when the
return value is immediately passed to memset().

Some code does become larger, but at least we win twice as much as we lose:

$ scripts/bloat-o-meter /tmp/vmlinux vmlinux
add/remove: 0/0 grow/shrink: 13/52 up/down: 995/-2140 (-1145)

An example of the different (and smaller) code can be seen in mm_alloc(). Before:

:       48 8d 78 08             lea    0x8(%rax),%rdi
:       48 89 c1                mov    %rax,%rcx
:       48 89 c2                mov    %rax,%rdx
:       48 c7 00 00 00 00 00    movq   $0x0,(%rax)
:       48 c7 80 48 03 00 00    movq   $0x0,0x348(%rax)
:       00 00 00 00
:       31 c0                   xor    %eax,%eax
:       48 83 e7 f8             and    $0xfffffffffffffff8,%rdi
:       48 29 f9                sub    %rdi,%rcx
:       81 c1 50 03 00 00       add    $0x350,%ecx
:       c1 e9 03                shr    $0x3,%ecx
:       f3 48 ab                rep stos %rax,%es:(%rdi)

After:

:       48 89 c2                mov    %rax,%rdx
:       b9 6a 00 00 00          mov    $0x6a,%ecx
:       31 c0                   xor    %eax,%eax
:       48 89 d7                mov    %rdx,%rdi
:       f3 48 ab                rep stos %rax,%es:(%rdi)

So gcc's strategy is to do two possibly (but not really, of course)
unaligned stores to the first and last word, then do an aligned rep stos
covering the middle part with a little overlap.  Maybe arches which do not
allow unaligned stores gain even more.

I don't know if gcc can actually make use of alignments greater than 8 for
anything, so one could probably drop the __assume_xyz_alignment macros and
just use __assume_aligned(8).

The increases in code size are mostly caused by gcc deciding to
opencode strlen() using the check-four-bytes-at-a-time trick when it
knows the buffer is sufficiently aligned (one function grew by 200
bytes). Now it turns out that many of these strlen() calls showing up
were in fact redundant, and they're gone from -next. Applying the two
patches to next-20151001 bloat-o-meter instead says

add/remove: 0/0 grow/shrink: 6/52 up/down: 244/-2140 (-1896)

Signed-off-by: Rasmus Villemoes <linux@rasmusvillemoes.dk>
Acked-by: Christoph Lameter <cl@linux.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-11-20 16:17:32 -08:00
Denis Kirjanov
fda901241f slab: convert slab_is_available() to boolean
A good candidate to return a boolean result.

Signed-off-by: Denis Kirjanov <kda@linux-powerpc.org>
Cc: Christoph Lameter <cl@linux.com>
Reviewed-by: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-11-05 19:34:48 -08:00
Christoph Lameter
484748f0b6 slab: infrastructure for bulk object allocation and freeing
Add the basic infrastructure for alloc/free operations on pointer arrays.
It includes a generic function in the common slab code that is used in
this infrastructure patch to create the unoptimized functionality for slab
bulk operations.

Allocators can then provide optimized allocation functions for situations
in which large numbers of objects are needed.  These optimization may
avoid taking locks repeatedly and bypass metadata creation if all objects
in slab pages can be used to provide the objects required.

Allocators can extend the skeletons provided and add their own code to the
bulk alloc and free functions.  They can keep the generic allocation and
freeing and just fall back to those if optimizations would not work (like
for example when debugging is on).

Signed-off-by: Christoph Lameter <cl@linux.com>
Signed-off-by: Jesper Dangaard Brouer <brouer@redhat.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-09-04 16:54:41 -07:00
Christoph Lameter
a9730fca99 Fix kmalloc slab creation sequence
This patch restores the slab creation sequence that was broken by commit
4066c33d03 and also reverts the portions that introduced the
KMALLOC_LOOP_XXX macros. Those can never really work since the slab creation
is much more complex than just going from a minimum to a maximum number.

The latest upstream kernel boots cleanly on my machine with a 64 bit x86
configuration under KVM using either SLAB or SLUB.

Fixes: 4066c33d03 ("support the slub_debug boot option")
Reported-by: Theodore Ts'o <tytso@mit.edu>
Signed-off-by: Christoph Lameter <cl@linux.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-06-29 10:49:51 -07:00
Rasmus Villemoes
1ed58b6051 linux/slab.h: fix three off-by-one typos in comment
The first is a keyboard-off-by-one, the other two the ordinary mathy kind.

Signed-off-by: Rasmus Villemoes <linux@rasmusvillemoes.dk>
Acked-by: Christoph Lameter <cl@linux.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-06-24 17:49:41 -07:00
Gavin Guo
4066c33d03 mm/slab_common: support the slub_debug boot option on specific object size
The slub_debug=PU,kmalloc-xx cannot work because in the
create_kmalloc_caches() the s->name is created after the
create_kmalloc_cache() is called.  The name is NULL in the
create_kmalloc_cache() so the kmem_cache_flags() would not set the
slub_debug flags to the s->flags.  The fix here set up a kmalloc_names
string array for the initialization purpose and delete the dynamic name
creation of kmalloc_caches.

[akpm@linux-foundation.org: s/kmalloc_names/kmalloc_info/, tweak comment text]
Signed-off-by: Gavin Guo <gavin.guo@canonical.com>
Acked-by: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-06-24 17:49:40 -07:00
David Rientjes
124dee09f0 mm, slab: correct config option in comment
CONFIG_SLAB_DEBUG doesn't exist, CONFIG_DEBUG_SLAB does.

Signed-off-by: David Rientjes <rientjes@google.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-04-14 16:48:59 -07:00
Andrey Ryabinin
0316bec22e mm: slub: add kernel address sanitizer support for slub allocator
With this patch kasan will be able to catch bugs in memory allocated by
slub.  Initially all objects in newly allocated slab page, marked as
redzone.  Later, when allocation of slub object happens, requested by
caller number of bytes marked as accessible, and the rest of the object
(including slub's metadata) marked as redzone (inaccessible).

We also mark object as accessible if ksize was called for this object.
There is some places in kernel where ksize function is called to inquire
size of really allocated area.  Such callers could validly access whole
allocated memory, so it should be marked as accessible.

Code in slub.c and slab_common.c files could validly access to object's
metadata, so instrumentation for this files are disabled.

Signed-off-by: Andrey Ryabinin <a.ryabinin@samsung.com>
Signed-off-by: Dmitry Chernenkov <dmitryc@google.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Konstantin Serebryany <kcc@google.com>
Signed-off-by: Andrey Konovalov <adech.fo@gmail.com>
Cc: Yuri Gribov <tetra2005@gmail.com>
Cc: Konstantin Khlebnikov <koct9i@gmail.com>
Cc: Sasha Levin <sasha.levin@oracle.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-02-13 21:21:41 -08:00
Vladimir Davydov
2a4db7eb93 memcg: free memcg_caches slot on css offline
We need to look up a kmem_cache in ->memcg_params.memcg_caches arrays only
on allocations, so there is no need to have the array entries set until
css free - we can clear them on css offline.  This will allow us to reuse
array entries more efficiently and avoid costly array relocations.

Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Tejun Heo <tj@kernel.org>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Dave Chinner <david@fromorbit.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-02-12 18:54:10 -08:00
Vladimir Davydov
426589f571 slab: link memcg caches of the same kind into a list
Sometimes, we need to iterate over all memcg copies of a particular root
kmem cache.  Currently, we use memcg_cache_params->memcg_caches array for
that, because it contains all existing memcg caches.

However, it's a bad practice to keep all caches, including those that
belong to offline cgroups, in this array, because it will be growing
beyond any bounds then.  I'm going to wipe away dead caches from it to
save space.  To still be able to perform iterations over all memcg caches
of the same kind, let us link them into a list.

Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Tejun Heo <tj@kernel.org>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Dave Chinner <david@fromorbit.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-02-12 18:54:09 -08:00
Vladimir Davydov
f7ce3190c4 slab: embed memcg_cache_params to kmem_cache
Currently, kmem_cache stores a pointer to struct memcg_cache_params
instead of embedding it.  The rationale is to save memory when kmem
accounting is disabled.  However, the memcg_cache_params has shrivelled
drastically since it was first introduced:

* Initially:

struct memcg_cache_params {
	bool is_root_cache;
	union {
		struct kmem_cache *memcg_caches[0];
		struct {
			struct mem_cgroup *memcg;
			struct list_head list;
			struct kmem_cache *root_cache;
			bool dead;
			atomic_t nr_pages;
			struct work_struct destroy;
		};
	};
};

* Now:

struct memcg_cache_params {
	bool is_root_cache;
	union {
		struct {
			struct rcu_head rcu_head;
			struct kmem_cache *memcg_caches[0];
		};
		struct {
			struct mem_cgroup *memcg;
			struct kmem_cache *root_cache;
		};
	};
};

So the memory saving does not seem to be a clear win anymore.

OTOH, keeping a pointer to memcg_cache_params struct instead of embedding
it results in touching one more cache line on kmem alloc/free hot paths.
Besides, it makes linking kmem caches in a list chained by a field of
struct memcg_cache_params really painful due to a level of indirection,
while I want to make them linked in the following patch.  That said, let
us embed it.

Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Tejun Heo <tj@kernel.org>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Dan Carpenter <dan.carpenter@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-02-12 18:54:09 -08:00
Vladimir Davydov
d5b3cf7139 memcg: zap memcg_slab_caches and memcg_slab_mutex
mem_cgroup->memcg_slab_caches is a list of kmem caches corresponding to
the given cgroup.  Currently, it is only used on css free in order to
destroy all caches corresponding to the memory cgroup being freed.  The
list is protected by memcg_slab_mutex.  The mutex is also used to protect
kmem_cache->memcg_params->memcg_caches arrays and synchronizes
kmem_cache_destroy vs memcg_unregister_all_caches.

However, we can perfectly get on without these two.  To destroy all caches
corresponding to a memory cgroup, we can walk over the global list of kmem
caches, slab_caches, and we can do all the synchronization stuff using the
slab_mutex instead of the memcg_slab_mutex.  This patch therefore gets rid
of the memcg_slab_caches and memcg_slab_mutex.

Apart from this nice cleanup, it also:

 - assures that rcu_barrier() is called once at max when a root cache is
   destroyed or a memory cgroup is freed, no matter how many caches have
   SLAB_DESTROY_BY_RCU flag set;

 - fixes the race between kmem_cache_destroy and kmem_cache_create that
   exists, because memcg_cleanup_cache_params, which is called from
   kmem_cache_destroy after checking that kmem_cache->refcount=0,
   releases the slab_mutex, which gives kmem_cache_create a chance to
   make an alias to a cache doomed to be destroyed.

Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Acked-by: Christoph Lameter <cl@linux.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-02-10 14:30:34 -08:00
Vladimir Davydov
3e0350a364 memcg: zap memcg_name argument of memcg_create_kmem_cache
Instead of passing the name of the memory cgroup which the cache is
created for in the memcg_name_argument, let's obtain it immediately in
memcg_create_kmem_cache.

Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-02-10 14:30:34 -08:00
Vladimir Davydov
8135be5a80 memcg: fix possible use-after-free in memcg_kmem_get_cache()
Suppose task @t that belongs to a memory cgroup @memcg is going to
allocate an object from a kmem cache @c.  The copy of @c corresponding to
@memcg, @mc, is empty.  Then if kmem_cache_alloc races with the memory
cgroup destruction we can access the memory cgroup's copy of the cache
after it was destroyed:

CPU0				CPU1
----				----
[ current=@t
  @mc->memcg_params->nr_pages=0 ]

kmem_cache_alloc(@c):
  call memcg_kmem_get_cache(@c);
  proceed to allocation from @mc:
    alloc a page for @mc:
      ...

				move @t from @memcg
				destroy @memcg:
				  mem_cgroup_css_offline(@memcg):
				    memcg_unregister_all_caches(@memcg):
				      kmem_cache_destroy(@mc)

    add page to @mc

We could fix this issue by taking a reference to a per-memcg cache, but
that would require adding a per-cpu reference counter to per-memcg caches,
which would look cumbersome.

Instead, let's take a reference to a memory cgroup, which already has a
per-cpu reference counter, in the beginning of kmem_cache_alloc to be
dropped in the end, and move per memcg caches destruction from css offline
to css free.  As a side effect, per-memcg caches will be destroyed not one
by one, but all at once when the last page accounted to the memory cgroup
is freed.  This doesn't sound as a high price for code readability though.

Note, this patch does add some overhead to the kmem_cache_alloc hot path,
but it is pretty negligible - it's just a function call plus a per cpu
counter decrement, which is comparable to what we already have in
memcg_kmem_get_cache.  Besides, it's only relevant if there are memory
cgroups with kmem accounting enabled.  I don't think we can find a way to
handle this race w/o it, because alloc_page called from kmem_cache_alloc
may sleep so we can't flush all pending kmallocs w/o reference counting.

Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Acked-by: Christoph Lameter <cl@linux.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-12-13 12:42:49 -08:00