When a machine boots up, the TSC generally gets reset. However,
when kexec is used to boot into a kernel, the TSC value would be
carried over from the previous kernel. The computation of
cycns_offset in set_cyc2ns_scale is prone to an overflow, if the
machine has been up more than 208 days prior to the kexec. The
overflow happens when we multiply *scale, even though there is
enough room to store the final answer.
We fix this issue by decomposing tsc_now into the quotient and
remainder of division by CYC2NS_SCALE_FACTOR and then performing
the multiplication separately on the two components.
Refactor code to share the calculation with the previous
fix in __cycles_2_ns().
Signed-off-by: Salman Qazi <sqazi@google.com>
Acked-by: John Stultz <john.stultz@linaro.org>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Paul Turner <pjt@google.com>
Cc: john stultz <johnstul@us.ibm.com>
Link: http://lkml.kernel.org/r/20120310004027.19291.88460.stgit@dungbeetle.mtv.corp.google.com
Signed-off-by: Ingo Molnar <mingo@elte.hu>
pit_expect_msb() returns success wrongly in the below SMI scenario:
a. pit_verify_msb() has not yet seen the MSB transition.
b. we are close to the MSB transition though and got a SMI immediately after
returning from pit_verify_msb() which didn't see the MSB transition. PIT MSB
transition has happened somewhere during SMI execution.
c. returned from SMI and we noted down the 'tsc', saw the pit MSB change now and
exited the loop to calculate 'deltatsc'. Instead of noting the TSC at the MSB
transition, we are way off because of the SMI. And as the SMI happened
between the pit_verify_msb() and before the 'tsc' is recorded in the
for loop, 'delattsc' (d1/d2 in quick_pit_calibrate()) will be small and
quick_pit_calibrate() will not notice this error.
Depending on whether SMI disturbance happens while computing d1 or d2, we will
see the TSC calibrated value smaller or bigger than the expected value. As a
result, in a cluster we were seeing a variation of approximately +/- 20MHz in
the calibrated values, resulting in NTP failures.
[ As far as the SMI source is concerned, this is a periodic SMI that gets
disabled after ACPI is enabled by the OS. But the TSC calibration happens
before the ACPI is enabled. ]
To address this, change pit_expect_msb() so that
- the 'tsc' is the TSC in between the two reads that read the MSB
change from the PIT (same as before)
- the 'delta' is the difference in TSC from *before* the MSB changed
to *after* the MSB changed.
Now the delta is twice as big as before (it covers four PIT accesses,
roughly 4us) and quick_pit_calibrate() will loop a bit longer to get
the calibrated value with in the 500ppm precision. As the delta (d1/d2)
covers four PIT accesses, actual calibrated result might be closer to
250ppm precision.
As the loop now takes longer to stabilize, double MAX_QUICK_PIT_MS to 50.
SMI disturbance will showup as much larger delta's and the loop will take
longer than usual for the result to be with in the accepted precision. Or will
fallback to slow PIT calibration if it takes more than 50msec.
Also while we are at this, remove the calibration correction that aims to
get the result to the middle of the error bars. We really don't know which
direction to correct into, so remove it.
Reported-and-tested-by: Suresh Siddha <suresh.b.siddha@intel.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Suresh Siddha <suresh.b.siddha@intel.com>
Link: http://lkml.kernel.org/r/1326843337.5291.4.camel@sbsiddha-mobl2
Signed-off-by: H. Peter Anvin <hpa@zytor.com>
* 'x86-platform-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/intel config: Fix the APB_TIMER selection
x86/mrst: Add additional debug prints for pb_keys
x86/intel config: Revamp configuration to allow for Moorestown and Medfield
x86/intel/scu/ipc: Match the changes in the x86 configuration
x86/apb: Fix configuration constraints
x86: Fix INTEL_MID silly
x86/Kconfig: Cyclone-timer depends on x86-summit
x86: Reduce clock calibration time during slave cpu startup
x86/config: Revamp configuration for MID devices
x86/sfi: Kill the IRQ as id hack
tsc=reliable boot parameter is supposed to skip all the TSC
stablility checks during boot time.
On a 8-socket system where we want to run an experiment with the
"tsc=reliable" boot option, TSC synchronization checks are not
getting skipped and marking the TSC as not stable.
Check for tsc_clocksource_reliable (which is set via
tsc=reliable or for platforms supporting synthetic TSC_RELIABLE
feature bit etc) and when set, skip the TSC synchronization
tests during boot.
Signed-off-by: Suresh Siddha <suresh.b.siddha@intel.com>
Acked-by: John Stultz <johnstul@us.ibm.com>
Tested-by: Srivatsa S. Bhat <srivatsa.bhat@linux.vnet.ibm.com>
Link: http://lkml.kernel.org/r/1320446537.15071.14.camel@sbsiddha-desk.sc.intel.com
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Reduce the startup time for slave cpus.
Adds hooks for an arch-specific function for clock calibration.
These hooks are used on x86. If a newly started cpu has the
same phys_proc_id as a core already active, uses the TSC for the
delay loop and has a CONSTANT_TSC, use the already-calculated
value of loops_per_jiffy.
This patch reduces the time required to start slave cpus on a
4096 cpu system from: 465 sec OLD 62 sec NEW
This reduces boot time on a 4096p system by almost 7 minutes.
Nice...
Signed-off-by: Jack Steiner <steiner@sgi.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: John Stultz <john.stultz@linaro.org>
[fix CONFIG_SMP=n build]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
The tsc code uses CLOCK_TICK_RATE which on x86
is defined to just be the same as PIT_TICK_RATE.
This patch updates the code use the later
as we want to depecrate and remove the global
CLOCK_TICK_RATE symbol.
Signed-off-by: Deepak Saxena <dsaxena@linaro.org>
Signed-off-by: John Stultz <john.stultz@linaro.org>
* 'x86-detect-hyper-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip:
x86, hyper: Change hypervisor detection order
* 'x86-fpu-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip:
x86-32, fpu: Fix DNA exception during check_fpu()
* 'x86-kexec-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip:
kexec, x86: Fix incorrect jump back address if not preserving context
* 'x86-platform-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip:
x86, config: Introduce an INTEL_MID configuration
* 'x86-quirks-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip:
x86, quirks: Use pci_dev->revision
* 'x86-tsc-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip:
x86: tsc: Remove unneeded DMI-based blacklisting
* 'x86-smpboot-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip:
x86, boot: Wait for boot cpu to show up if nr_cpus limit is about to hit
The vread field was bloating struct clocksource everywhere except
x86_64, and I want to change the way this works on x86_64, so let's
split it out into per-arch data.
Cc: x86@kernel.org
Cc: Clemens Ladisch <clemens@ladisch.de>
Cc: linux-ia64@vger.kernel.org
Cc: Tony Luck <tony.luck@intel.com>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: John Stultz <johnstul@us.ibm.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Andy Lutomirski <luto@mit.edu>
Link: http://lkml.kernel.org/r/3ae5ec76a168eaaae63f08a2a1060b91aa0b7759.1310563276.git.luto@mit.edu
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
The blacklist was added in response to my bug report
(http://lkml.org/lkml/2006/1/19/362) and has never
contained more than the one entry describing my old
now dead ThinkPad 380XD laptop. As found out later
(http://lkml.org/lkml/2007/11/29/50), this special
treatment has been unnecessary for a long time, so
it can be removed.
Signed-off-by: Tero Roponen <tero.roponen@gmail.com>
Signed-off-by: John Stultz <john.stultz@linaro.org>
vread_tsc is short and hot, and it's userspace code so the usual
reasons to enable -pg and turn off sibling calls don't apply.
(OK, turning off sibling calls has no effect. But it might
someday...)
As an added benefit, tsc.c is profilable now.
Signed-off-by: Andy Lutomirski <luto@mit.edu>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Eric Dumazet <eric.dumazet@gmail.com>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Borislav Petkov <bp@amd64.org>
Link: http://lkml.kernel.org/r/%3C99c6d7f5efa3ccb65b4ac6eb443e1ab7bad47d7b.1306156808.git.luto%40mit.edu%3E
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
vread_tsc checks whether rdtsc returns something less than
cycle_last, which is an extremely predictable branch. GCC likes
to generate a cmov anyway, which is several cycles slower than
a predicted branch. This saves a couple of nanoseconds.
Signed-off-by: Andy Lutomirski <luto@mit.edu>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Eric Dumazet <eric.dumazet@gmail.com>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Borislav Petkov <bp@amd64.org>
Link: http://lkml.kernel.org/r/%3C561280649519de41352fcb620684dfb22bad6bac.1306156808.git.luto%40mit.edu%3E
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
RDTSC is completely unordered on modern Intel and AMD CPUs. The
Intel manual says that lfence;rdtsc causes all previous instructions
to complete before the tsc is read, and the AMD manual says to use
mfence;rdtsc to do the same thing.
From a decent amount of testing [1] this is enough to make rdtsc
be ordered with respect to subsequent loads across a wide variety
of CPUs.
On Sandy Bridge (i7-2600), this improves a loop of
clock_gettime(CLOCK_MONOTONIC) by more than 5 ns/iter.
[1] https://lkml.org/lkml/2011/4/18/350
Signed-off-by: Andy Lutomirski <luto@mit.edu>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Eric Dumazet <eric.dumazet@gmail.com>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Borislav Petkov <bp@amd64.org>
Link: http://lkml.kernel.org/r/%3C1c158b9d74338aa5361f96dd473d0e6a58235302.1306156808.git.luto%40mit.edu%3E
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Variables that are shared between the vdso and the kernel are
currently a bit of a mess. They are each defined with their own
magic, they are accessed differently in the kernel, the vsyscall page,
and the vdso, and one of them (vsyscall_clock) doesn't even really
exist.
This changes them all to use a common mechanism. All of them are
delcared in vvar.h with a fixed address (validated by the linker
script). In the kernel (as before), they look like ordinary
read-write variables. In the vsyscall page and the vdso, they are
accessed through a new macro VVAR, which gives read-only access.
The vdso is now loaded verbatim into memory without any fixups. As a
side bonus, access from the vdso is faster because a level of
indirection is removed.
While we're at it, pack jiffies and vgetcpu_mode into the same
cacheline.
Signed-off-by: Andy Lutomirski <luto@mit.edu>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Eric Dumazet <eric.dumazet@gmail.com>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Borislav Petkov <bp@amd64.org>
Link: http://lkml.kernel.org/r/%3C7357882fbb51fa30491636a7b6528747301b7ee9.1306156808.git.luto%40mit.edu%3E
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
They were generated by 'codespell' and then manually reviewed.
Signed-off-by: Lucas De Marchi <lucas.demarchi@profusion.mobi>
Cc: trivial@kernel.org
LKML-Reference: <1300389856-1099-3-git-send-email-lucas.demarchi@profusion.mobi>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
* 'core-fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip:
rcu: avoid pointless blocked-task warnings
rcu: demote SRCU_SYNCHRONIZE_DELAY from kernel-parameter status
rtmutex: Fix comment about why new_owner can be NULL in wake_futex_pi()
* 'x86-fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip:
x86, olpc: Add missing Kconfig dependencies
x86, mrst: Set correct APB timer IRQ affinity for secondary cpu
x86: tsc: Fix calibration refinement conditionals to avoid divide by zero
x86, ia64, acpi: Clean up x86-ism in drivers/acpi/numa.c
* 'timers-fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip:
timekeeping: Make local variables static
time: Rename misnamed minsec argument of clocks_calc_mult_shift()
* 'perf-fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip:
tracing: Remove syscall_exit_fields
tracing: Only process module tracepoints once
perf record: Add "nodelay" mode, disabled by default
perf sched: Fix list of events, dropping unsupported ':r' modifier
Revert "perf tools: Emit clearer message for sys_perf_event_open ENOENT return"
perf top: Fix annotate segv
perf evsel: Fix order of event list deletion
Konrad Wilk reported that the new delayed calibration crashes with a
divide by zero on Xen. The reason is that Xen sets the pmtimer
address, but reading from it returns 0xffffff. That results in the
ref_start and ref_stop value being the same, so the delta is zero
which causes the divide by zero later in the calculation.
The conditional (!hpet && !ref_start && !ref_stop) which sanity checks
the calibration reference values doesn't really make sense. If the
refs are null, but hpet is on, we still want to break out.
The div by zero would be possible to trigger by chance if both reads
from the hardware provided the exact same value (due to hardware
wrapping).
So checking if both the ref values are the same should handle if we
don't have hardware (both null) or if they are the same value (either by
invalid hardware, or by chance), avoiding the div by zero issue.
[ tglx: Applied the same fix to native_calibrate_tsc() where this
check was copied from ]
Reported-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Tested-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Signed-off-by: John Stultz <johnstul@us.ibm.com>
LKML-Reference: <1295024788-15619-1-git-send-email-johnstul@us.ibm.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
* 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip:
x86: Fix Moorestown VRTC fixmap placement
x86/gpio: Implement x86 gpio_to_irq convert function
x86, UV: Fix APICID shift for Westmere processors
x86: Use PCI method for enabling AMD extended config space before MSR method
x86: tsc: Prevent delayed init if initial tsc calibration failed
x86, lapic-timer: Increase the max_delta to 31 bits
x86: Fix sparse non-ANSI function warnings in smpboot.c
x86, numa: Fix CONFIG_DEBUG_PER_CPU_MAPS without NUMA emulation
x86, AMD, PCI: Add AMD northbridge PCI device id for CPU families 12h and 14h
x86, numa: Fix cpu to node mapping for sparse node ids
x86, numa: Fake node-to-cpumask for NUMA emulation
x86, numa: Fake apicid and pxm mappings for NUMA emulation
x86, numa: Avoid compiling NUMA emulation functions without CONFIG_NUMA_EMU
x86, numa: Reduce minimum fake node size to 32M
Fix up trivial conflict in arch/x86/kernel/apic/x2apic_uv_x.c
commit a8760ec (x86: Check tsc available/disabled in the delayed init
function) missed to prevent the setup of the delayed init function in
case the initial tsc calibration failed. This results in the same
divide by zero bug as we have seen without the tsc disabled check.
Skip the delayed work setup when tsc_khz (the initial calibration
value) is 0.
Bisected-and-tested-by: Kirill A. Shutemov <kas@openvz.org>
Cc: John Stultz <john.stultz@linaro.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
* 'for-2.6.38' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/percpu: (30 commits)
gameport: use this_cpu_read instead of lookup
x86: udelay: Use this_cpu_read to avoid address calculation
x86: Use this_cpu_inc_return for nmi counter
x86: Replace uses of current_cpu_data with this_cpu ops
x86: Use this_cpu_ops to optimize code
vmstat: User per cpu atomics to avoid interrupt disable / enable
irq_work: Use per cpu atomics instead of regular atomics
cpuops: Use cmpxchg for xchg to avoid lock semantics
x86: this_cpu_cmpxchg and this_cpu_xchg operations
percpu: Generic this_cpu_cmpxchg() and this_cpu_xchg support
percpu,x86: relocate this_cpu_add_return() and friends
connector: Use this_cpu operations
xen: Use this_cpu_inc_return
taskstats: Use this_cpu_ops
random: Use this_cpu_inc_return
fs: Use this_cpu_inc_return in buffer.c
highmem: Use this_cpu_xx_return() operations
vmstat: Use this_cpu_inc_return for vm statistics
x86: Support for this_cpu_add, sub, dec, inc_return
percpu: Generic support for this_cpu_add, sub, dec, inc_return
...
Fixed up conflicts: in arch/x86/kernel/{apic/nmi.c, apic/x2apic_uv_x.c, process.c}
as per Tejun.
Go through x86 code and replace __get_cpu_var and get_cpu_var
instances that refer to a scalar and are not used for address
determinations.
Cc: Yinghai Lu <yinghai@kernel.org>
Cc: Ingo Molnar <mingo@elte.hu>
Acked-by: Tejun Heo <tj@kernel.org>
Acked-by: "H. Peter Anvin" <hpa@zytor.com>
Signed-off-by: Christoph Lameter <cl@linux.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
The delayed TSC init function does not check whether the system has no
TSC or TSC is disabled at the kernel command line, which results in a
crash in the work queue based extended calibration due to division by
zero because the basic calibration never happened.
Add the missing checks and do not touch TSC when not available or
disabled.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: John Stultz <johnstul@us.ibm.com>
Boot to boot the TSC calibration may vary by quite a large amount.
While normal variance of 50-100ppm can easily be seen, the quick
calibration code only requires 500ppm accuracy, which is the limit
of what NTP can correct for.
This can cause problems for systems being used as NTP servers, as
every time they reboot it can take hours for them to calculate the
new drift error caused by the calibration.
The classic trade-off here is calibration accuracy vs slow boot times,
as during the calibration nothing else can run.
This patch uses a delayed workqueue to calibrate the TSC over the
period of a second. This allows very accurate calibration (in my
tests only varying by 1khz or 0.4ppm boot to boot). Additionally this
refined calibration step does not block the boot process, and only
delays the TSC clocksoure registration by a few seconds in early boot.
If the refined calibration strays 1% from the early boot calibration
value, the system will fall back to already calculated early boot
calibration.
Credit to Andi Kleen who suggested using a timer quite awhile back,
but I dismissed it thinking the timer calibration would be done after
the clocksource was registered (which would break things). Forgive
me for my short-sightedness.
This patch has worked very well in my testing, but TSC hardware is
quite varied so it would probably be good to get some extended
testing, possibly pushing inclusion out to 2.6.39.
Signed-off-by: John Stultz <johnstul@us.ibm.com>
LKML-Reference: <1289003985-29060-1-git-send-email-johnstul@us.ibm.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
CC: Thomas Gleixner <tglx@linutronix.de>
CC: Ingo Molnar <mingo@elte.hu>
CC: Martin Schwidefsky <schwidefsky@de.ibm.com>
CC: Clark Williams <williams@redhat.com>
CC: Andi Kleen <andi@firstfloor.org>
* 'x86-amd-nb-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip:
x86, amd_nb: Enable GART support for AMD family 0x15 CPUs
x86, amd: Use compute unit information to determine thread siblings
x86, amd: Extract compute unit information for AMD CPUs
x86, amd: Add support for CPUID topology extension of AMD CPUs
x86, nmi: Support NMI watchdog on newer AMD CPU families
x86, mtrr: Assume SYS_CFG[Tom2ForceMemTypeWB] exists on all future AMD CPUs
x86, k8: Rename k8.[ch] to amd_nb.[ch] and CONFIG_K8_NB to CONFIG_AMD_NB
x86, k8-gart: Decouple handling of garts and northbridges
x86, cacheinfo: Fix dependency of AMD L3 CID
x86, kvm: add new AMD SVM feature bits
x86, cpu: Fix allowed CPUID bits for KVM guests
x86, cpu: Update AMD CPUID feature bits
x86, cpu: Fix renamed, not-yet-shipping AMD CPUID feature bit
x86, AMD: Remove needless CPU family check (for L3 cache info)
x86, tsc: Remove CPU frequency calibration on AMD
This patch adds IRQ_TIME_ACCOUNTING option on x86 and runtime enables it
when TSC is enabled.
This change just enables fine grained irq time accounting, isn't used yet.
Following patches use it for different purposes.
Signed-off-by: Venkatesh Pallipadi <venki@google.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
LKML-Reference: <1286237003-12406-6-git-send-email-venki@google.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
A real life genuine preemption leak..
Reported-and-tested-by: Jeff Chua <jeff.chua.linux@gmail.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Acked-by: Suresh Siddha <suresh.b.siddha@intel.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
6b37f5a20c introduced the CPU frequency
calibration code for AMD CPUs whose TSCs didn't increment with the
core's P0 frequency. From F10h, revB onward, however, the TSC increment
rate is denoted by MSRC001_0015[24] and when this bit is set (which
should be done by the BIOS) the TSC increments with the P0 frequency
so the calibration is not needed and booting can be a couple of mcecs
faster on those machines.
Besides, there should be virtually no machines out there which don't
have this bit set, therefore this calibration can be safely removed. It
is a shaky hack anyway since it assumes implicitly that the core is in
P0 when BIOS hands off to the OS, which might not always be the case.
Signed-off-by: Borislav Petkov <borislav.petkov@amd.com>
LKML-Reference: <20100825162823.GE26438@aftab>
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
TSC's get reset after suspend/resume (even on cpu's with invariant TSC
which runs at a constant rate across ACPI P-, C- and T-states). And in
some systems BIOS seem to reinit TSC to arbitrary large value (still
sync'd across cpu's) during resume.
This leads to a scenario of scheduler rq->clock (sched_clock_cpu()) less
than rq->age_stamp (introduced in 2.6.32). This leads to a big value
returned by scale_rt_power() and the resulting big group power set by the
update_group_power() is causing improper load balancing between busy and
idle cpu's after suspend/resume.
This resulted in multi-threaded workloads (like kernel-compilation) go
slower after suspend/resume cycle on core i5 laptops.
Fix this by recomputing cyc2ns_offset's during resume, so that
sched_clock() continues from the point where it was left off during
suspend.
Reported-by: Florian Pritz <flo@xssn.at>
Signed-off-by: Suresh Siddha <suresh.b.siddha@intel.com>
Cc: <stable@kernel.org> # [v2.6.32+]
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
LKML-Reference: <1282262618.2675.24.camel@sbsiddha-MOBL3.sc.intel.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
This converts the most common of the x86 clocksources over to use
clocksource_register_hz/khz.
Signed-off-by: John Stultz <johnstul@us.ibm.com>
LKML-Reference: <1279068988-21864-11-git-send-email-johnstul@us.ibm.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
In particular, several occurances of funny versions of 'success',
'unknown', 'therefore', 'acknowledge', 'argument', 'achieve', 'address',
'beginning', 'desirable', 'separate' and 'necessary' are fixed.
Signed-off-by: Daniel Mack <daniel@caiaq.de>
Cc: Joe Perches <joe@perches.com>
Cc: Junio C Hamano <gitster@pobox.com>
Signed-off-by: Jiri Kosina <jkosina@suse.cz>
Pass the clocksource as an argument to the clocksource resume callback.
Needed so we can point out which CMT channel the sh_cmt.c driver shall
resume.
Signed-off-by: Magnus Damm <damm@opensource.se>
Cc: john stultz <johnstul@us.ibm.com>
Cc: Paul Mundt <lethal@linux-sh.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Commit 83ce4009 did the following change
If the TSC is constant and non-stop, also set it reliable.
But, there seems to be few systems that will end up with TSC warp across
sockets, depending on how the cpus come out of reset. Skipping TSC sync
test on such systems may result in time inconsistency later.
So, reenable TSC sync test even on constant and non-stop TSC systems.
Set, sched_clock_stable to 1 by default and reset it in
mark_tsc_unstable, if TSC sync fails.
This change still gives perf benefit mentioned in 83ce4009 for systems
where TSC is reliable.
Signed-off-by: Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
Acked-by: Suresh Siddha <suresh.b.siddha@intel.com>
LKML-Reference: <20091217202702.GA18015@linux-os.sc.intel.com>
Signed-off-by: H. Peter Anvin <hpa@zytor.com>
Signed-off-by: Felipe Contreras <felipe.contreras@gmail.com>
Cc: Vegard Nossum <vegardno@ifi.uio.no>
Cc: Pekka Enberg <penberg@cs.helsinki.fi>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Alok N Kataria <akataria@vmware.com>
Cc: "Tan Wei Chong" <wei.chong.tan@intel.com>
Cc: Len Brown <len.brown@intel.com>
Cc: Lin Ming <ming.m.lin@intel.com>
Cc: Bob Moore <robert.moore@intel.com>
LKML-Reference: <1253137123-18047-2-git-send-email-felipe.contreras@gmail.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
* 'x86-platform-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip: (38 commits)
x86: Move get/set_wallclock to x86_platform_ops
x86: platform: Fix section annotations
x86: apic namespace cleanup
x86: Distangle ioapic and i8259
x86: Add Moorestown early detection
x86: Add hardware_subarch ID for Moorestown
x86: Add early platform detection
x86: Move tsc_init to late_time_init
x86: Move tsc_calibration to x86_init_ops
x86: Replace the now identical time_32/64.c by time.c
x86: time_32/64.c unify profile_pc
x86: Move calibrate_cpu to tsc.c
x86: Make timer setup and global variables the same in time_32/64.c
x86: Remove mca bus ifdef from timer interrupt
x86: Simplify timer_ack magic in time_32.c
x86: Prepare unification of time_32/64.c
x86: Remove do_timer hook
x86: Add timer_init to x86_init_ops
x86: Move percpu clockevents setup to x86_init_ops
x86: Move xen_post_allocator_init into xen_pagetable_setup_done
...
Fix up conflicts in arch/x86/include/asm/io_apic.h
TSC calibration is modified by the vmware hypervisor and paravirt by
separate means. Moorestown wants to add its own calibration routine as
well. So make calibrate_tsc a proper x86_init_ops function and
override it by paravirt or by the early setup of the vmware
hypervisor.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Move the code where it's only user is. Also we need to look whether
this hardwired hackery might interfere with perfcounters.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
The timer init code is convoluted with several quirks and the paravirt
timer chooser. Figuring out which code path is actually taken is not
for the faint hearted.
Move the numaq TSC quirk to tsc_pre_init x86_init_ops function and
replace the paravirt time chooser and the remaining x86 quirk with a
simple x86_init_ops function.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
This patch makes the tsc=reliable option disable the boot time
stability checks. Currently the option only disables the runtime
watchdog checks. This change allows folks who want to override the
boot time TSC stability checks and use the TSC when the system would
otherwise disqualify it.
There still are some situations that the TSC will be disqualified,
such as cpufreq scaling. But these are situations where the box will
hang if allowed.
Patch also includes a fix for an issue found by Thomas Gleixner, where
the TSC disqualification message wouldn't be printed after a call to
unsynchronized_tsc().
Signed-off-by: John Stultz <johnstul@us.ibm.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: akataria@vmware.com
Cc: Stephen Hemminger <shemminger@vyatta.com>
LKML-Reference: <1250552447.7212.92.camel@localhost.localdomain>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Martin Schwidefsky analyzed it:
To register a clocksource the clocksource_mutex is acquired and if
necessary timekeeping_notify is called to install the clocksource as
the timekeeper clock. timekeeping_notify uses stop_machine which needs
to take cpu_add_remove_lock mutex.
Starting a new cpu is done with the cpu_add_remove_lock mutex held.
native_cpu_up checks the tsc of the new cpu and if the tsc is no good
clocksource_change_rating is called. Which needs the clocksource_mutex
and the deadlock is complete.
The solution is to replace the TSC via the clocksource watchdog
mechanism. Mark the TSC as unstable and schedule the watchdog work so
it gets removed in the watchdog thread context.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
LKML-Reference: <new-submission>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: John Stultz <johnstul@us.ibm.com>
change_clocksource resets the cycle_last value to zero then sets it to
a value read from the clocksource. The reset to zero is required only
for the TSC clocksource to make the read_tsc function work after a
resume. The reason is that the TSC read function uses cycle_last to
detect backwards going TSCs. In the resume case cycle_last contains
the TSC value from the last update before the suspend. On resume the
TSC starts counting from 0 again and would trip over the cycle_last
comparison.
This is subtle and surprising. Move the reset to a resume function in
the tsc code.
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: John Stultz <johnstul@us.ibm.com>
Cc: Daniel Walker <dwalker@fifo99.com>
LKML-Reference: <20090814134808.142191175@de.ibm.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Wei Chong Tan reported a fast-PIT-calibration corner-case:
| pit_expect_msb() is vulnerable to SMI disturbance corner case
| in some platforms which causes /proc/cpuinfo to show wrong
| CPU MHz value when quick_pit_calibrate() jumps to success
| section.
I think that the real issue isn't even an SMI - but the fact
that in the very last iteration of the loop, there's no
serializing instruction _after_ the last 'rdtsc'. So even in
the absense of SMI's, we do have a situation where the cycle
counter was read without proper serialization.
The last check should be done outside the outer loop, since
_inside_ the outer loop, we'll be testing that the PIT has
the right MSB value has the right value in the next iteration.
So only the _last_ iteration is special, because that's the one
that will not check the PIT MSB value any more, and because the
final 'get_cycles()' isn't serialized.
In other words:
- I'd like to move the PIT MSB check to after the last
iteration, rather than in every iteration
- I think we should comment on the fact that it's also a
serializing instruction and so 'fences in' the TSC read.
Here's a suggested replacement.
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Reported-by: "Tan, Wei Chong" <wei.chong.tan@intel.com>
Tested-by: "Tan, Wei Chong" <wei.chong.tan@intel.com>
LKML-Reference: <B28277FD4E0F9247A3D55704C440A140D5D683F3@pgsmsx504.gar.corp.intel.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
* 'sched-fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip:
sched: Fix out of scope variable access in sched_slice()
sched: Hide runqueues from direct refer at source code level
sched: Remove unneeded __ref tag
sched, x86: Fix cpufreq + sched_clock() TSC scaling