If a transaction error happens in vhci_recv_ret_submit(), event
handler closes connection and changes port status to kick hub_event.
Then hub tries to flush the endpoint URBs, but that causes infinite
loop between usb_hub_flush_endpoint() and vhci_urb_dequeue() because
"vhci_priv" in vhci_urb_dequeue() was already released by
vhci_recv_ret_submit() before a transmission error occurred. Thus,
vhci_urb_dequeue() terminates early and usb_hub_flush_endpoint()
continuously calls vhci_urb_dequeue().
The root cause of this issue is that vhci_recv_ret_submit()
terminates early without giving back URB when transaction error
occurs in vhci_recv_ret_submit(). That causes the error URB to still
be linked at endpoint list without “vhci_priv".
So, in the case of transaction error in vhci_recv_ret_submit(),
unlink URB from the endpoint, insert proper error code in
urb->status and give back URB.
Reported-by: Marek Marczykowski-Górecki <marmarek@invisiblethingslab.com>
Tested-by: Marek Marczykowski-Górecki <marmarek@invisiblethingslab.com>
Signed-off-by: Suwan Kim <suwan.kim027@gmail.com>
Cc: stable <stable@vger.kernel.org>
Acked-by: Shuah Khan <skhan@linuxfoundation.org>
Link: https://lore.kernel.org/r/20191213023055.19933-3-suwan.kim027@gmail.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
There are bugs on vhci with usb 3.0 storage device. In USB, each SG
list entry buffer should be divisible by the bulk max packet size.
But with native SG support, this problem doesn't matter because the
SG buffer is treated as contiguous buffer. But without native SG
support, USB storage driver breaks SG list into several URBs and the
error occurs because of a buffer size of URB that cannot be divided
by the bulk max packet size. The error situation is as follows.
When USB Storage driver requests 31.5 KB data and has SG list which
has 3584 bytes buffer followed by 7 4096 bytes buffer for some
reason. USB Storage driver splits this SG list into several URBs
because VHCI doesn't support SG and sends them separately. So the
first URB buffer size is 3584 bytes. When receiving data from device,
USB 3.0 device sends data packet of 1024 bytes size because the max
packet size of BULK pipe is 1024 bytes. So device sends 4096 bytes.
But the first URB buffer has only 3584 bytes buffer size. So host
controller terminates the transfer even though there is more data to
receive. So, vhci needs to support SG transfer to prevent this error.
In this patch, vhci supports SG regardless of whether the server's
host controller supports SG or not, because stub driver splits SG
list into several URBs if the server's host controller doesn't
support SG.
To support SG, vhci sets URB_DMA_MAP_SG flag in urb->transfer_flags
if URB has SG list and this flag will tell stub driver to use SG
list. After receiving urb from stub driver, vhci clear URB_DMA_MAP_SG
flag to avoid unnecessary DMA unmapping in HCD.
vhci sends each SG list entry to stub driver. Then, stub driver sees
the total length of the buffer and allocates SG table and pages
according to the total buffer length calling sgl_alloc(). After stub
driver receives completed URB, it again sends each SG list entry to
vhci.
If the server's host controller doesn't support SG, stub driver
breaks a single SG request into several URBs and submits them to
the server's host controller. When all the split URBs are completed,
stub driver reassembles the URBs into a single return command and
sends it to vhci.
Moreover, in the situation where vhci supports SG, but stub driver
does not, or vice versa, usbip works normally. Because there is no
protocol modification, there is no problem in communication between
server and client even if the one has a kernel without SG support.
In the case of vhci supports SG and stub driver doesn't, because
vhci sends only the total length of the buffer to stub driver as
it did before the patch applied, stub driver only needs to allocate
the required length of buffers using only kmalloc() regardless of
whether vhci supports SG or not. But stub driver has to allocate
buffer with kmalloc() as much as the total length of SG buffer which
is quite huge when vhci sends SG request, so it has overhead in
buffer allocation in this situation.
If stub driver needs to send data buffer to vhci because of IN pipe,
stub driver also sends only total length of buffer as metadata and
then sends real data as vhci does. Then vhci receive data from stub
driver and store it to the corresponding buffer of SG list entry.
And for the case of stub driver supports SG and vhci doesn't, since
the USB storage driver checks that vhci doesn't support SG and sends
the request to stub driver by splitting the SG list into multiple
URBs, stub driver allocates a buffer for each URB with kmalloc() as
it did before this patch.
* Test environment
Test uses two difference machines and two different kernel version
to make mismatch situation between the client and the server where
vhci supports SG, but stub driver does not, or vice versa. All tests
are conducted in both full SG support that both vhci and stub support
SG and half SG support that is the mismatch situation. Test kernel
version is 5.3-rc6 with commit "usb: add a HCD_DMA flag instead of
guestimating DMA capabilities" to avoid unnecessary DMA mapping and
unmapping.
- Test kernel version
- 5.3-rc6 with SG support
- 5.1.20-200.fc29.x86_64 without SG support
* SG support test
- Test devices
- Super-speed storage device - SanDisk Ultra USB 3.0
- High-speed storage device - SMI corporation USB 2.0 flash drive
- Test description
Test read and write operation of mass storage device that uses the
BULK transfer. In test, the client reads and writes files whose size
is over 1G and it works normally.
* Regression test
- Test devices
- Super-speed device - Logitech Brio webcam
- High-speed device - Logitech C920 HD Pro webcam
- Full-speed device - Logitech bluetooth mouse
- Britz BR-Orion speaker
- Low-speed device - Logitech wired mouse
- Test description
Moving and click test for mouse. To test the webcam, use gnome-cheese.
To test the speaker, play music and video on the client. All works
normally.
* VUDC compatibility test
VUDC also works well with this patch. Tests are done with two USB
gadget created by CONFIGFS USB gadget. Both use the BULK pipe.
1. Serial gadget
2. Mass storage gadget
- Serial gadget test
Serial gadget on the host sends and receives data using cat command
on the /dev/ttyGS<N>. The client uses minicom to communicate with
the serial gadget.
- Mass storage gadget test
After connecting the gadget with vhci, use "dd" to test read and
write operation on the client side.
Read - dd if=/dev/sd<N> iflag=direct of=/dev/null bs=1G count=1
Write - dd if=<my file path> iflag=direct of=/dev/sd<N> bs=1G count=1
Signed-off-by: Suwan Kim <suwan.kim027@gmail.com>
Acked-by: Shuah khan <skhan@linuxfoundation.org>
Link: https://lore.kernel.org/r/20190828032741.12234-1-suwan.kim027@gmail.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Trivial fix to spelling mistake in dev_dbg debug message.
Signed-off-by: Colin Ian King <colin.king@canonical.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Now that the SPDX tag is in all USB files, that identifies the license
in a specific and legally-defined manner. So the extra GPL text wording
can be removed as it is no longer needed at all.
This is done on a quest to remove the 700+ different ways that files in
the kernel describe the GPL license text. And there's unneeded stuff
like the address (sometimes incorrect) for the FSF which is never
needed.
No copyright headers or other non-license-description text was removed.
Cc: Valentina Manea <valentina.manea.m@gmail.com>
Acked-by: Shuah Khan <shuahkh@osg.samsung.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
It's good to have SPDX identifiers in all files to make it easier to
audit the kernel tree for correct licenses.
Update the drivers/usb/ and include/linux/usb* files with the correct
SPDX license identifier based on the license text in the file itself.
The SPDX identifier is a legally binding shorthand, which can be used
instead of the full boiler plate text.
This work is based on a script and data from Thomas Gleixner, Philippe
Ombredanne, and Kate Stewart.
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Kate Stewart <kstewart@linuxfoundation.org>
Cc: Philippe Ombredanne <pombredanne@nexb.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Acked-by: Felipe Balbi <felipe.balbi@linux.intel.com>
Acked-by: Johan Hovold <johan@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
This patch enables the new vhci structure. Its lock protects
both the USB2 hub and the shared USB3 hub.
Signed-off-by: Yuyang Du <yuyang.du@intel.com>
Acked-by: Shuah Khan <shuahkh@osg.samsung.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
These helper function names are renamed to have their full struct
names to avoid confusion:
- hcd_to_vhci() -> hcd_to_vhci_hcd()
- vhci_to_hcd() -> vhci_hcd_to_hcd()
- vdev_to_vhci() -> vdev_to_vhci_hcd()
Signed-off-by: Yuyang Du <yuyang.du@intel.com>
Acked-by: Shuah Khan <shuahkh@osg.samsung.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Modification to Kconfig, vhci_hc.c, vhci.h and vhci_sysfs.c.
1. kernel config
Followings are added.
USBIP_VHCI_HC_PORTS: Number of ports per USB/IP virtual host
controller. The default is 8 - same as current VHCI_NPORTS.
USBIP_VHCI_NR_HCS: Number of USB/IP virtual host controllers. The
default is 1. This paratmeter is replaced with USBIP_VHCI_INIT_HCS and
USBIP_VHCI_MAX_HCS included in succeeding dynamic extension patch.
2. the_controller to controllers
the_controller is changed to vhci_pdevs: array of struct
platform_device.
3. vhci_sysfs.c
Sysfs structure is changed as following.
BEFORE:
/sys/devices/platform
+-- vhci
+-- status
+-- attach
+-- detach
+-- usbip_debug
AFTER: example for CONFIG_USBIP_NR_HCS=4
/sys/devices/platform
+-- vhci
| +-- nports
| +-- status
| +-- status.1
| +-- status.2
| +-- status.3
| +-- attach
| +-- detach
| +-- usbip_debug
+-- vhci.1
+-- vhci.2
+-- vhci.3
vhci[.N] is shown for each host controller kobj. vhch.1, vhci.2, ...
are shown only when CONFIG_USBIP_NR_HCS is more than 1. Only 'vhci'
(without number) has user space interfaces. 'nports' is newly added to
give ports-per-controller and number of controlles. Before that, number
of ports is acquired by reading status lines. Status is divided for
each controller to avoid page size (4KB) limitation.
Old userspace tool binaries work with the first status within the first
controller.
Inconsistency between status header and content is fixed.
4th and 5th column are
header: "dev bus"
content(unused): "000 000"
content(used): "%08x", devid
Only 1st and 2nd column are used by program. In old version, sscanf()
in parse_status expect no bus column. And bus_id string is shown in the
last column. Then bus in the header is removed and unused content is
replaced with 8 zeros. The sscanf() expects more than 5 columns and new
has 6 columns so there's no compatibility issue in this change.
Signed-off-by: Nobuo Iwata <nobuo.iwata@fujixerox.co.jp>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
At this point, USB/IP kernel code is fully functional
and can be moved out of staging.
Signed-off-by: Valentina Manea <valentina.manea.m@gmail.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>