mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2025-01-15 07:16:47 +07:00
96cb7cf13d
13501 Commits
Author | SHA1 | Message | Date | |
---|---|---|---|---|
Alexander Duyck
|
837566e7e0 |
mm: implement new zone specific memblock iterator
Introduce a new iterator for_each_free_mem_pfn_range_in_zone. This iterator will take care of making sure a given memory range provided is in fact contained within a zone. It takes are of all the bounds checking we were doing in deferred_grow_zone, and deferred_init_memmap. In addition it should help to speed up the search a bit by iterating until the end of a range is greater than the start of the zone pfn range, and will exit completely if the start is beyond the end of the zone. Link: http://lkml.kernel.org/r/20190405221225.12227.22573.stgit@localhost.localdomain Signed-off-by: Alexander Duyck <alexander.h.duyck@linux.intel.com> Reviewed-by: Pavel Tatashin <pasha.tatashin@soleen.com> Reviewed-by: Mike Rapoport <rppt@linux.ibm.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Dave Jiang <dave.jiang@intel.com> Cc: David S. Miller <davem@davemloft.net> Cc: Ingo Molnar <mingo@kernel.org> Cc: Khalid Aziz <khalid.aziz@oracle.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Laurent Dufour <ldufour@linux.vnet.ibm.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Michal Hocko <mhocko@suse.com> Cc: Mike Rapoport <rppt@linux.vnet.ibm.com> Cc: Pavel Tatashin <pavel.tatashin@microsoft.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: <yi.z.zhang@linux.intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Alexander Duyck
|
56ec43d8b0 |
mm: drop meminit_pfn_in_nid as it is redundant
As best as I can tell the meminit_pfn_in_nid call is completely redundant. The deferred memory initialization is already making use of for_each_free_mem_range which in turn will call into __next_mem_range which will only return a memory range if it matches the node ID provided assuming it is not NUMA_NO_NODE. I am operating on the assumption that there are no zones or pgdata_t structures that have a NUMA node of NUMA_NO_NODE associated with them. If that is the case then __next_mem_range will never return a memory range that doesn't match the zone's node ID and as such the check is redundant. So one piece I would like to verify on this is if this works for ia64. Technically it was using a different approach to get the node ID, but it seems to have the node ID also encoded into the memblock. So I am assuming this is okay, but would like to get confirmation on that. On my x86_64 test system with 384GB of memory per node I saw a reduction in initialization time from 2.80s to 1.85s as a result of this patch. Link: http://lkml.kernel.org/r/20190405221219.12227.93957.stgit@localhost.localdomain Signed-off-by: Alexander Duyck <alexander.h.duyck@linux.intel.com> Reviewed-by: Pavel Tatashin <pavel.tatashin@microsoft.com> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Mike Rapoport <rppt@linux.ibm.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Dave Jiang <dave.jiang@intel.com> Cc: David S. Miller <davem@davemloft.net> Cc: Ingo Molnar <mingo@kernel.org> Cc: Khalid Aziz <khalid.aziz@oracle.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Laurent Dufour <ldufour@linux.vnet.ibm.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Mike Rapoport <rppt@linux.vnet.ibm.com> Cc: Pavel Tatashin <pasha.tatashin@soleen.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: <yi.z.zhang@linux.intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Huang Shijie
|
059d8442ea |
mm/rmap.c: use the pra.mapcount to do the check
We have the pra.mapcount already, and there is no need to call the page_mapped() which may do some complicated computing for compound page. Link: http://lkml.kernel.org/r/20190404054828.2731-1-sjhuang@iluvatar.ai Signed-off-by: Huang Shijie <sjhuang@iluvatar.ai> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Rik van Riel <riel@redhat.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Josef Bacik
|
cfcbfb1382 |
mm/filemap.c: enable error injection at add_to_page_cache()
Recently I messed up the error handling in filemap_fault() because of an unexpected ENOMEM (related to cgroup memory limits) in add_to_page_cache. Enable error injection at this point so I can add a testcase to xfstests to verify I don't mess this up again. [akpm@linux-foundation.org: include linux/error-injection.h] Link: http://lkml.kernel.org/r/20190403152604.14008-1-josef@toxicpanda.com Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: William Kucharski <william.kucharski@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Jérôme Glisse
|
c6d23413f8 |
mm/mmu_notifier: mmu_notifier_range_update_to_read_only() helper
Helper to test if a range is updated to read only (it is still valid to read from the range). This is useful for device driver or anyone who wish to optimize out update when they know that they already have the range map read only. Link: http://lkml.kernel.org/r/20190326164747.24405-9-jglisse@redhat.com Signed-off-by: Jérôme Glisse <jglisse@redhat.com> Reviewed-by: Ralph Campbell <rcampbell@nvidia.com> Reviewed-by: Ira Weiny <ira.weiny@intel.com> Cc: Christian König <christian.koenig@amd.com> Cc: Joonas Lahtinen <joonas.lahtinen@linux.intel.com> Cc: Jani Nikula <jani.nikula@linux.intel.com> Cc: Rodrigo Vivi <rodrigo.vivi@intel.com> Cc: Jan Kara <jack@suse.cz> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Peter Xu <peterx@redhat.com> Cc: Felix Kuehling <Felix.Kuehling@amd.com> Cc: Jason Gunthorpe <jgg@mellanox.com> Cc: Ross Zwisler <zwisler@kernel.org> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: Radim Krcmar <rkrcmar@redhat.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Christian Koenig <christian.koenig@amd.com> Cc: John Hubbard <jhubbard@nvidia.com> Cc: Arnd Bergmann <arnd@arndb.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Jérôme Glisse
|
7269f99993 |
mm/mmu_notifier: use correct mmu_notifier events for each invalidation
This updates each existing invalidation to use the correct mmu notifier event that represent what is happening to the CPU page table. See the patch which introduced the events to see the rational behind this. Link: http://lkml.kernel.org/r/20190326164747.24405-7-jglisse@redhat.com Signed-off-by: Jérôme Glisse <jglisse@redhat.com> Reviewed-by: Ralph Campbell <rcampbell@nvidia.com> Reviewed-by: Ira Weiny <ira.weiny@intel.com> Cc: Christian König <christian.koenig@amd.com> Cc: Joonas Lahtinen <joonas.lahtinen@linux.intel.com> Cc: Jani Nikula <jani.nikula@linux.intel.com> Cc: Rodrigo Vivi <rodrigo.vivi@intel.com> Cc: Jan Kara <jack@suse.cz> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Peter Xu <peterx@redhat.com> Cc: Felix Kuehling <Felix.Kuehling@amd.com> Cc: Jason Gunthorpe <jgg@mellanox.com> Cc: Ross Zwisler <zwisler@kernel.org> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: Radim Krcmar <rkrcmar@redhat.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Christian Koenig <christian.koenig@amd.com> Cc: John Hubbard <jhubbard@nvidia.com> Cc: Arnd Bergmann <arnd@arndb.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Jérôme Glisse
|
6f4f13e8d9 |
mm/mmu_notifier: contextual information for event triggering invalidation
CPU page table update can happens for many reasons, not only as a result of a syscall (munmap(), mprotect(), mremap(), madvise(), ...) but also as a result of kernel activities (memory compression, reclaim, migration, ...). Users of mmu notifier API track changes to the CPU page table and take specific action for them. While current API only provide range of virtual address affected by the change, not why the changes is happening. This patchset do the initial mechanical convertion of all the places that calls mmu_notifier_range_init to also provide the default MMU_NOTIFY_UNMAP event as well as the vma if it is know (most invalidation happens against a given vma). Passing down the vma allows the users of mmu notifier to inspect the new vma page protection. The MMU_NOTIFY_UNMAP is always the safe default as users of mmu notifier should assume that every for the range is going away when that event happens. A latter patch do convert mm call path to use a more appropriate events for each call. This is done as 2 patches so that no call site is forgotten especialy as it uses this following coccinelle patch: %<---------------------------------------------------------------------- @@ identifier I1, I2, I3, I4; @@ static inline void mmu_notifier_range_init(struct mmu_notifier_range *I1, +enum mmu_notifier_event event, +unsigned flags, +struct vm_area_struct *vma, struct mm_struct *I2, unsigned long I3, unsigned long I4) { ... } @@ @@ -#define mmu_notifier_range_init(range, mm, start, end) +#define mmu_notifier_range_init(range, event, flags, vma, mm, start, end) @@ expression E1, E3, E4; identifier I1; @@ <... mmu_notifier_range_init(E1, +MMU_NOTIFY_UNMAP, 0, I1, I1->vm_mm, E3, E4) ...> @@ expression E1, E2, E3, E4; identifier FN, VMA; @@ FN(..., struct vm_area_struct *VMA, ...) { <... mmu_notifier_range_init(E1, +MMU_NOTIFY_UNMAP, 0, VMA, E2, E3, E4) ...> } @@ expression E1, E2, E3, E4; identifier FN, VMA; @@ FN(...) { struct vm_area_struct *VMA; <... mmu_notifier_range_init(E1, +MMU_NOTIFY_UNMAP, 0, VMA, E2, E3, E4) ...> } @@ expression E1, E2, E3, E4; identifier FN; @@ FN(...) { <... mmu_notifier_range_init(E1, +MMU_NOTIFY_UNMAP, 0, NULL, E2, E3, E4) ...> } ---------------------------------------------------------------------->% Applied with: spatch --all-includes --sp-file mmu-notifier.spatch fs/proc/task_mmu.c --in-place spatch --sp-file mmu-notifier.spatch --dir kernel/events/ --in-place spatch --sp-file mmu-notifier.spatch --dir mm --in-place Link: http://lkml.kernel.org/r/20190326164747.24405-6-jglisse@redhat.com Signed-off-by: Jérôme Glisse <jglisse@redhat.com> Reviewed-by: Ralph Campbell <rcampbell@nvidia.com> Reviewed-by: Ira Weiny <ira.weiny@intel.com> Cc: Christian König <christian.koenig@amd.com> Cc: Joonas Lahtinen <joonas.lahtinen@linux.intel.com> Cc: Jani Nikula <jani.nikula@linux.intel.com> Cc: Rodrigo Vivi <rodrigo.vivi@intel.com> Cc: Jan Kara <jack@suse.cz> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Peter Xu <peterx@redhat.com> Cc: Felix Kuehling <Felix.Kuehling@amd.com> Cc: Jason Gunthorpe <jgg@mellanox.com> Cc: Ross Zwisler <zwisler@kernel.org> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: Radim Krcmar <rkrcmar@redhat.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Christian Koenig <christian.koenig@amd.com> Cc: John Hubbard <jhubbard@nvidia.com> Cc: Arnd Bergmann <arnd@arndb.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Jérôme Glisse
|
dfcd66604c |
mm/mmu_notifier: convert user range->blockable to helper function
Use the mmu_notifier_range_blockable() helper function instead of directly dereferencing the range->blockable field. This is done to make it easier to change the mmu_notifier range field. This patch is the outcome of the following coccinelle patch: %<------------------------------------------------------------------- @@ identifier I1, FN; @@ FN(..., struct mmu_notifier_range *I1, ...) { <... -I1->blockable +mmu_notifier_range_blockable(I1) ...> } ------------------------------------------------------------------->% spatch --in-place --sp-file blockable.spatch --dir . Link: http://lkml.kernel.org/r/20190326164747.24405-3-jglisse@redhat.com Signed-off-by: Jérôme Glisse <jglisse@redhat.com> Reviewed-by: Ralph Campbell <rcampbell@nvidia.com> Reviewed-by: Ira Weiny <ira.weiny@intel.com> Cc: Christian König <christian.koenig@amd.com> Cc: Joonas Lahtinen <joonas.lahtinen@linux.intel.com> Cc: Jani Nikula <jani.nikula@linux.intel.com> Cc: Rodrigo Vivi <rodrigo.vivi@intel.com> Cc: Jan Kara <jack@suse.cz> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Peter Xu <peterx@redhat.com> Cc: Felix Kuehling <Felix.Kuehling@amd.com> Cc: Jason Gunthorpe <jgg@mellanox.com> Cc: Ross Zwisler <zwisler@kernel.org> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: Radim Krcmar <rkrcmar@redhat.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Christian Koenig <christian.koenig@amd.com> Cc: John Hubbard <jhubbard@nvidia.com> Cc: Arnd Bergmann <arnd@arndb.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Jérôme Glisse
|
391aab11e9 |
mm/hmm: convert various hmm_pfn_* to device_entry which is a better name
Convert hmm_pfn_* to device_entry_* as here we are dealing with device driver specific entry format and hmm provide helpers to allow differents components (including HMM) to create/parse device entry. We keep wrapper with the old name so that we can convert driver to use the new API in stages in each device driver tree. This will get remove once all driver are converted. Link: http://lkml.kernel.org/r/20190403193318.16478-13-jglisse@redhat.com Signed-off-by: Jérôme Glisse <jglisse@redhat.com> Cc: Ralph Campbell <rcampbell@nvidia.com> Cc: John Hubbard <jhubbard@nvidia.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Ira Weiny <ira.weiny@intel.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Balbir Singh <bsingharora@gmail.com> Cc: Dan Carpenter <dan.carpenter@oracle.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Souptick Joarder <jrdr.linux@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Jérôme Glisse
|
55c0ece82a |
mm/hmm: add a helper function that fault pages and map them to a device
This is a all in one helper that fault pages in a range and map them to a device so that every single device driver do not have to re-implement this common pattern. This is taken from ODP RDMA in preparation of ODP RDMA convertion. It will be use by nouveau and other drivers. [jglisse@redhat.com: Was using wrong field and wrong enum] Link: http://lkml.kernel.org/r/20190409175340.26614-1-jglisse@redhat.com Link: http://lkml.kernel.org/r/20190403193318.16478-12-jglisse@redhat.com Signed-off-by: Jérôme Glisse <jglisse@redhat.com> Cc: Ralph Campbell <rcampbell@nvidia.com> Cc: John Hubbard <jhubbard@nvidia.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Souptick Joarder <jrdr.linux@gmail.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Balbir Singh <bsingharora@gmail.com> Cc: Dan Carpenter <dan.carpenter@oracle.com> Cc: Ira Weiny <ira.weiny@intel.com> Cc: Matthew Wilcox <willy@infradead.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Jérôme Glisse
|
992de9a8b7 |
mm/hmm: allow to mirror vma of a file on a DAX backed filesystem
HMM mirror is a device driver helpers to mirror range of virtual address. It means that the process jobs running on the device can access the same virtual address as the CPU threads of that process. This patch adds support for mirroring mapping of file that are on a DAX block device (ie range of virtual address that is an mmap of a file in a filesystem on a DAX block device). There is no reason to not support such case when mirroring virtual address on a device. Note that unlike GUP code we do not take page reference hence when we back-off we have nothing to undo. [jglisse@redhat.com: move THP and hugetlbfs code path behind #if KCONFIG] Link: http://lkml.kernel.org/r/20190422163741.13029-1-jglisse@redhat.com Link: http://lkml.kernel.org/r/20190403193318.16478-10-jglisse@redhat.com Signed-off-by: Jérôme Glisse <jglisse@redhat.com> Reviewed-by: Ralph Campbell <rcampbell@nvidia.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: John Hubbard <jhubbard@nvidia.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Balbir Singh <bsingharora@gmail.com> Cc: Dan Carpenter <dan.carpenter@oracle.com> Cc: Ira Weiny <ira.weiny@intel.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Souptick Joarder <jrdr.linux@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Jérôme Glisse
|
63d5066f6e |
mm/hmm: mirror hugetlbfs (snapshoting, faulting and DMA mapping)
HMM mirror is a device driver helpers to mirror range of virtual address. It means that the process jobs running on the device can access the same virtual address as the CPU threads of that process. This patch adds support for hugetlbfs mapping (ie range of virtual address that are mmap of a hugetlbfs). [rcampbell@nvidia.com: fix initial PFN for hugetlbfs pages] Link: http://lkml.kernel.org/r/20190419233536.8080-1-rcampbell@nvidia.com Link: http://lkml.kernel.org/r/20190403193318.16478-9-jglisse@redhat.com Signed-off-by: Jérôme Glisse <jglisse@redhat.com> Signed-off-by: Ralph Campbell <rcampbell@nvidia.com> Reviewed-by: Ralph Campbell <rcampbell@nvidia.com> Reviewed-by: Ira Weiny <ira.weiny@intel.com> Cc: John Hubbard <jhubbard@nvidia.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Balbir Singh <bsingharora@gmail.com> Cc: Dan Carpenter <dan.carpenter@oracle.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Souptick Joarder <jrdr.linux@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Jérôme Glisse
|
023a019a9b |
mm/hmm: add default fault flags to avoid the need to pre-fill pfns arrays
The HMM mirror API can be use in two fashions. The first one where the HMM user coalesce multiple page faults into one request and set flags per pfns for of those faults. The second one where the HMM user want to pre-fault a range with specific flags. For the latter one it is a waste to have the user pre-fill the pfn arrays with a default flags value. This patch adds a default flags value allowing user to set them for a range without having to pre-fill the pfn array. Link: http://lkml.kernel.org/r/20190403193318.16478-8-jglisse@redhat.com Signed-off-by: Jérôme Glisse <jglisse@redhat.com> Reviewed-by: Ralph Campbell <rcampbell@nvidia.com> Cc: John Hubbard <jhubbard@nvidia.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Balbir Singh <bsingharora@gmail.com> Cc: Dan Carpenter <dan.carpenter@oracle.com> Cc: Ira Weiny <ira.weiny@intel.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Souptick Joarder <jrdr.linux@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Jérôme Glisse
|
a3e0d41c2b |
mm/hmm: improve driver API to work and wait over a range
A common use case for HMM mirror is user trying to mirror a range and before they could program the hardware it get invalidated by some core mm event. Instead of having user re-try right away to mirror the range provide a completion mechanism for them to wait for any active invalidation affecting the range. This also changes how hmm_range_snapshot() and hmm_range_fault() works by not relying on vma so that we can drop the mmap_sem when waiting and lookup the vma again on retry. Link: http://lkml.kernel.org/r/20190403193318.16478-7-jglisse@redhat.com Signed-off-by: Jérôme Glisse <jglisse@redhat.com> Reviewed-by: Ralph Campbell <rcampbell@nvidia.com> Cc: John Hubbard <jhubbard@nvidia.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Dan Carpenter <dan.carpenter@oracle.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Balbir Singh <bsingharora@gmail.com> Cc: Ira Weiny <ira.weiny@intel.com> Cc: Souptick Joarder <jrdr.linux@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Jérôme Glisse
|
73231612dc |
mm/hmm: improve and rename hmm_vma_fault() to hmm_range_fault()
Minor optimization around hmm_pte_need_fault(). Rename for consistency between code, comments and documentation. Also improves the comments on all the possible returns values. Improve the function by returning the number of populated entries in pfns array. Link: http://lkml.kernel.org/r/20190403193318.16478-6-jglisse@redhat.com Signed-off-by: Jérôme Glisse <jglisse@redhat.com> Reviewed-by: Ralph Campbell <rcampbell@nvidia.com> Cc: John Hubbard <jhubbard@nvidia.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Balbir Singh <bsingharora@gmail.com> Cc: Dan Carpenter <dan.carpenter@oracle.com> Cc: Ira Weiny <ira.weiny@intel.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Souptick Joarder <jrdr.linux@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Jérôme Glisse
|
25f23a0c71 |
mm/hmm: improve and rename hmm_vma_get_pfns() to hmm_range_snapshot()
Rename for consistency between code, comments and documentation. Also improves the comments on all the possible returns values. Improve the function by returning the number of populated entries in pfns array. Link: http://lkml.kernel.org/r/20190403193318.16478-5-jglisse@redhat.com Signed-off-by: Jérôme Glisse <jglisse@redhat.com> Reviewed-by: Ralph Campbell <rcampbell@nvidia.com> Reviewed-by: John Hubbard <jhubbard@nvidia.com> Reviewed-by: Ira Weiny <ira.weiny@intel.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Balbir Singh <bsingharora@gmail.com> Cc: Dan Carpenter <dan.carpenter@oracle.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Souptick Joarder <jrdr.linux@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Jérôme Glisse
|
9f454612f6 |
mm/hmm: do not erase snapshot when a range is invalidated
Users of HMM might be using the snapshot information to do preparatory step like dma mapping pages to a device before checking for invalidation through hmm_vma_range_done() so do not erase that information and assume users will do the right thing. Link: http://lkml.kernel.org/r/20190403193318.16478-4-jglisse@redhat.com Signed-off-by: Jérôme Glisse <jglisse@redhat.com> Reviewed-by: Ralph Campbell <rcampbell@nvidia.com> Reviewed-by: John Hubbard <jhubbard@nvidia.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Balbir Singh <bsingharora@gmail.com> Cc: Dan Carpenter <dan.carpenter@oracle.com> Cc: Ira Weiny <ira.weiny@intel.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Souptick Joarder <jrdr.linux@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Jérôme Glisse
|
704f3f2cf6 |
mm/hmm: use reference counting for HMM struct
Every time I read the code to check that the HMM structure does not vanish before it should thanks to the many lock protecting its removal i get a headache. Switch to reference counting instead it is much easier to follow and harder to break. This also remove some code that is no longer needed with refcounting. Link: http://lkml.kernel.org/r/20190403193318.16478-3-jglisse@redhat.com Signed-off-by: Jérôme Glisse <jglisse@redhat.com> Reviewed-by: Ralph Campbell <rcampbell@nvidia.com> Cc: John Hubbard <jhubbard@nvidia.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Balbir Singh <bsingharora@gmail.com> Cc: Dan Carpenter <dan.carpenter@oracle.com> Cc: Ira Weiny <ira.weiny@intel.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Souptick Joarder <jrdr.linux@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Jérôme Glisse
|
734fb89968 |
mm/hmm: select mmu notifier when selecting HMM
To avoid random config build issue, select mmu notifier when HMM is selected. In any cases when HMM get selected it will be by users that will also wants the mmu notifier. Link: http://lkml.kernel.org/r/20190403193318.16478-2-jglisse@redhat.com Signed-off-by: Jérôme Glisse <jglisse@redhat.com> Acked-by: Balbir Singh <bsingharora@gmail.com> Cc: Ralph Campbell <rcampbell@nvidia.com> Cc: John Hubbard <jhubbard@nvidia.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Dan Carpenter <dan.carpenter@oracle.com> Cc: Ira Weiny <ira.weiny@intel.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Souptick Joarder <jrdr.linux@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Mike Kravetz
|
1b426bac66 |
hugetlb: use same fault hash key for shared and private mappings
hugetlb uses a fault mutex hash table to prevent page faults of the same pages concurrently. The key for shared and private mappings is different. Shared keys off address_space and file index. Private keys off mm and virtual address. Consider a private mappings of a populated hugetlbfs file. A fault will map the page from the file and if needed do a COW to map a writable page. Hugetlbfs hole punch uses the fault mutex to prevent mappings of file pages. It uses the address_space file index key. However, private mappings will use a different key and could race with this code to map the file page. This causes problems (BUG) for the page cache remove code as it expects the page to be unmapped. A sample stack is: page dumped because: VM_BUG_ON_PAGE(page_mapped(page)) kernel BUG at mm/filemap.c:169! ... RIP: 0010:unaccount_page_cache_page+0x1b8/0x200 ... Call Trace: __delete_from_page_cache+0x39/0x220 delete_from_page_cache+0x45/0x70 remove_inode_hugepages+0x13c/0x380 ? __add_to_page_cache_locked+0x162/0x380 hugetlbfs_fallocate+0x403/0x540 ? _cond_resched+0x15/0x30 ? __inode_security_revalidate+0x5d/0x70 ? selinux_file_permission+0x100/0x130 vfs_fallocate+0x13f/0x270 ksys_fallocate+0x3c/0x80 __x64_sys_fallocate+0x1a/0x20 do_syscall_64+0x5b/0x180 entry_SYSCALL_64_after_hwframe+0x44/0xa9 There seems to be another potential COW issue/race with this approach of different private and shared keys as noted in commit |
||
Mike Kravetz
|
0919e1b69a |
hugetlbfs: on restore reserve error path retain subpool reservation
When a huge page is allocated, PagePrivate() is set if the allocation consumed a reservation. When freeing a huge page, PagePrivate is checked. If set, it indicates the reservation should be restored. PagePrivate being set at free huge page time mostly happens on error paths. When huge page reservations are created, a check is made to determine if the mapping is associated with an explicitly mounted filesystem. If so, pages are also reserved within the filesystem. The default action when freeing a huge page is to decrement the usage count in any associated explicitly mounted filesystem. However, if the reservation is to be restored the reservation/use count within the filesystem should not be decrementd. Otherwise, a subsequent page allocation and free for the same mapping location will cause the file filesystem usage to go 'negative'. Filesystem Size Used Avail Use% Mounted on nodev 4.0G -4.0M 4.1G - /opt/hugepool To fix, when freeing a huge page do not adjust filesystem usage if PagePrivate() is set to indicate the reservation should be restored. I did not cc stable as the problem has been around since reserves were added to hugetlbfs and nobody has noticed. Link: http://lkml.kernel.org/r/20190328234704.27083-2-mike.kravetz@oracle.com Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com> Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Davidlohr Bueso <dave@stgolabs.net> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: "Kirill A . Shutemov" <kirill.shutemov@linux.intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Baoquan He
|
7567cfc5da |
mm/sparse.c: clean up obsolete code comment
The code comment above sparse_add_one_section() is obsolete and incorrect. Clean it up and write a new one. Link: http://lkml.kernel.org/r/20190329144250.14315-1-bhe@redhat.com Signed-off-by: Baoquan He <bhe@redhat.com> Acked-by: Michal Hocko <mhocko@suse.com> Reviewed-by: Oscar Salvador <osalvador@suse.de> Reviewed-by: Mukesh Ojha <mojha@codeaurora.org> Reviewed-by: Mike Rapoport <rppt@linux.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Peng Fan
|
dae966dc8f |
mm/swap.c: __pagevec_lru_add_fn: typo fix
There is no function named munlock_vma_pages(). Correct it to munlock_vma_page(). Link: http://lkml.kernel.org/r/20190402095609.27181-1-peng.fan@nxp.com Signed-off-by: Peng Fan <peng.fan@nxp.com> Reviewed-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Mukesh Ojha <mojha@codeaurora.org> Acked-by: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Oscar Salvador
|
2d0adf7e0d |
mm/hugetlb: get rid of NODEMASK_ALLOC
NODEMASK_ALLOC is used to allocate a nodemask bitmap, and it does it by first determining whether it should be allocated on the stack or dynamically, depending on NODES_SHIFT. Right now, it goes the dynamic path whenever the nodemask_t is above 32 bytes. Although we could bump it to a reasonable value, the largest a nodemask_t can get is 128 bytes, so since __nr_hugepages_store_common is called from a rather short stack we can just get rid of the NODEMASK_ALLOC call here. This reduces some code churn and complexity. Link: http://lkml.kernel.org/r/20190402133415.21983-1-osalvador@suse.de Signed-off-by: Oscar Salvador <osalvador@suse.de> Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com> Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Alex Ghiti <alex@ghiti.fr> Cc: David Rientjes <rientjes@google.com> Cc: Jing Xiangfeng <jingxiangfeng@huawei.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Mike Kravetz
|
fd875dca7c |
hugetlbfs: fix potential over/underflow setting node specific nr_hugepages
The number of node specific huge pages can be set via a file such as: /sys/devices/system/node/node1/hugepages/hugepages-2048kB/nr_hugepages When a node specific value is specified, the global number of huge pages must also be adjusted. This adjustment is calculated as the specified node specific value + (global value - current node value). If the node specific value provided by the user is large enough, this calculation could overflow an unsigned long leading to a smaller than expected number of huge pages. To fix, check the calculation for overflow. If overflow is detected, use ULONG_MAX as the requested value. This is inline with the user request to allocate as many huge pages as possible. It was also noticed that the above calculation was done outside the hugetlb_lock. Therefore, the values could be inconsistent and result in underflow. To fix, the calculation is moved within the routine set_max_huge_pages() where the lock is held. In addition, the code in __nr_hugepages_store_common() which tries to handle the case of not being able to allocate a node mask would likely result in incorrect behavior. Luckily, it is very unlikely we will ever take this path. If we do, simply return ENOMEM. Link: http://lkml.kernel.org/r/20190328220533.19884-1-mike.kravetz@oracle.com Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com> Reported-by: Jing Xiangfeng <jingxiangfeng@huawei.com> Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Reviewed-by: Oscar Salvador <osalvador@suse.de> Cc: David Rientjes <rientjes@google.com> Cc: Alex Ghiti <alex@ghiti.fr> Cc: Jing Xiangfeng <jingxiangfeng@huawei.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Linxu Fang
|
299c83dce9 |
mem-hotplug: fix node spanned pages when we have a node with only ZONE_MOVABLE
|
||
Yafang Shao
|
3481c37ffa |
mm/vmscan: drop may_writepage and classzone_idx from direct reclaim begin template
There are three tracepoints using this template, which are mm_vmscan_direct_reclaim_begin, mm_vmscan_memcg_reclaim_begin, mm_vmscan_memcg_softlimit_reclaim_begin. Regarding mm_vmscan_direct_reclaim_begin, sc.may_writepage is !laptop_mode, that's a static setting, and reclaim_idx is derived from gfp_mask which is already show in this tracepoint. Regarding mm_vmscan_memcg_reclaim_begin, may_writepage is !laptop_mode too, and reclaim_idx is (MAX_NR_ZONES-1), which are both static value. mm_vmscan_memcg_softlimit_reclaim_begin is the same with mm_vmscan_memcg_reclaim_begin. So we can drop them all. Link: http://lkml.kernel.org/r/1553736322-32235-1-git-send-email-laoar.shao@gmail.com Signed-off-by: Yafang Shao <laoar.shao@gmail.com> Acked-by: Michal Hocko <mhocko@suse.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Aneesh Kumar K.V
|
024eee0e83 |
mm: page_mkclean vs MADV_DONTNEED race
MADV_DONTNEED is handled with mmap_sem taken in read mode. We call page_mkclean without holding mmap_sem. MADV_DONTNEED implies that pages in the region are unmapped and subsequent access to the pages in that range is handled as a new page fault. This implies that if we don't have parallel access to the region when MADV_DONTNEED is run we expect those range to be unallocated. w.r.t page_mkclean() we need to make sure that we don't break the MADV_DONTNEED semantics. MADV_DONTNEED check for pmd_none without holding pmd_lock. This implies we skip the pmd if we temporarily mark pmd none. Avoid doing that while marking the page clean. Keep the sequence same for dax too even though we don't support MADV_DONTNEED for dax mapping The bug was noticed by code review and I didn't observe any failures w.r.t test run. This is similar to commit |
||
John Hubbard
|
fc1d8e7cca |
mm: introduce put_user_page*(), placeholder versions
A discussion of the overall problem is below. As mentioned in patch 0001, the steps are to fix the problem are: 1) Provide put_user_page*() routines, intended to be used for releasing pages that were pinned via get_user_pages*(). 2) Convert all of the call sites for get_user_pages*(), to invoke put_user_page*(), instead of put_page(). This involves dozens of call sites, and will take some time. 3) After (2) is complete, use get_user_pages*() and put_user_page*() to implement tracking of these pages. This tracking will be separate from the existing struct page refcounting. 4) Use the tracking and identification of these pages, to implement special handling (especially in writeback paths) when the pages are backed by a filesystem. Overview ======== Some kernel components (file systems, device drivers) need to access memory that is specified via process virtual address. For a long time, the API to achieve that was get_user_pages ("GUP") and its variations. However, GUP has critical limitations that have been overlooked; in particular, GUP does not interact correctly with filesystems in all situations. That means that file-backed memory + GUP is a recipe for potential problems, some of which have already occurred in the field. GUP was first introduced for Direct IO (O_DIRECT), allowing filesystem code to get the struct page behind a virtual address and to let storage hardware perform a direct copy to or from that page. This is a short-lived access pattern, and as such, the window for a concurrent writeback of GUP'd page was small enough that there were not (we think) any reported problems. Also, userspace was expected to understand and accept that Direct IO was not synchronized with memory-mapped access to that data, nor with any process address space changes such as munmap(), mremap(), etc. Over the years, more GUP uses have appeared (virtualization, device drivers, RDMA) that can keep the pages they get via GUP for a long period of time (seconds, minutes, hours, days, ...). This long-term pinning makes an underlying design problem more obvious. In fact, there are a number of key problems inherent to GUP: Interactions with file systems ============================== File systems expect to be able to write back data, both to reclaim pages, and for data integrity. Allowing other hardware (NICs, GPUs, etc) to gain write access to the file memory pages means that such hardware can dirty the pages, without the filesystem being aware. This can, in some cases (depending on filesystem, filesystem options, block device, block device options, and other variables), lead to data corruption, and also to kernel bugs of the form: kernel BUG at /build/linux-fQ94TU/linux-4.4.0/fs/ext4/inode.c:1899! backtrace: ext4_writepage __writepage write_cache_pages ext4_writepages do_writepages __writeback_single_inode writeback_sb_inodes __writeback_inodes_wb wb_writeback wb_workfn process_one_work worker_thread kthread ret_from_fork ...which is due to the file system asserting that there are still buffer heads attached: ({ \ BUG_ON(!PagePrivate(page)); \ ((struct buffer_head *)page_private(page)); \ }) Dave Chinner's description of this is very clear: "The fundamental issue is that ->page_mkwrite must be called on every write access to a clean file backed page, not just the first one. How long the GUP reference lasts is irrelevant, if the page is clean and you need to dirty it, you must call ->page_mkwrite before it is marked writeable and dirtied. Every. Time." This is just one symptom of the larger design problem: real filesystems that actually write to a backing device, do not actually support get_user_pages() being called on their pages, and letting hardware write directly to those pages--even though that pattern has been going on since about 2005 or so. Long term GUP ============= Long term GUP is an issue when FOLL_WRITE is specified to GUP (so, a writeable mapping is created), and the pages are file-backed. That can lead to filesystem corruption. What happens is that when a file-backed page is being written back, it is first mapped read-only in all of the CPU page tables; the file system then assumes that nobody can write to the page, and that the page content is therefore stable. Unfortunately, the GUP callers generally do not monitor changes to the CPU pages tables; they instead assume that the following pattern is safe (it's not): get_user_pages() Hardware can keep a reference to those pages for a very long time, and write to it at any time. Because "hardware" here means "devices that are not a CPU", this activity occurs without any interaction with the kernel's file system code. for each page set_page_dirty put_page() In fact, the GUP documentation even recommends that pattern. Anyway, the file system assumes that the page is stable (nothing is writing to the page), and that is a problem: stable page content is necessary for many filesystem actions during writeback, such as checksum, encryption, RAID striping, etc. Furthermore, filesystem features like COW (copy on write) or snapshot also rely on being able to use a new page for as memory for that memory range inside the file. Corruption during write back is clearly possible here. To solve that, one idea is to identify pages that have active GUP, so that we can use a bounce page to write stable data to the filesystem. The filesystem would work on the bounce page, while any of the active GUP might write to the original page. This would avoid the stable page violation problem, but note that it is only part of the overall solution, because other problems remain. Other filesystem features that need to replace the page with a new one can be inhibited for pages that are GUP-pinned. This will, however, alter and limit some of those filesystem features. The only fix for that would be to require GUP users to monitor and respond to CPU page table updates. Subsystems such as ODP and HMM do this, for example. This aspect of the problem is still under discussion. Direct IO ========= Direct IO can cause corruption, if userspace does Direct-IO that writes to a range of virtual addresses that are mmap'd to a file. The pages written to are file-backed pages that can be under write back, while the Direct IO is taking place. Here, Direct IO races with a write back: it calls GUP before page_mkclean() has replaced the CPU pte with a read-only entry. The race window is pretty small, which is probably why years have gone by before we noticed this problem: Direct IO is generally very quick, and tends to finish up before the filesystem gets around to do anything with the page contents. However, it's still a real problem. The solution is to never let GUP return pages that are under write back, but instead, force GUP to take a write fault on those pages. That way, GUP will properly synchronize with the active write back. This does not change the required GUP behavior, it just avoids that race. Details ======= Introduces put_user_page(), which simply calls put_page(). This provides a way to update all get_user_pages*() callers, so that they call put_user_page(), instead of put_page(). Also introduces put_user_pages(), and a few dirty/locked variations, as a replacement for release_pages(), and also as a replacement for open-coded loops that release multiple pages. These may be used for subsequent performance improvements, via batching of pages to be released. This is the first step of fixing a problem (also described in [1] and [2]) with interactions between get_user_pages ("gup") and filesystems. Problem description: let's start with a bug report. Below, is what happens sometimes, under memory pressure, when a driver pins some pages via gup, and then marks those pages dirty, and releases them. Note that the gup documentation actually recommends that pattern. The problem is that the filesystem may do a writeback while the pages were gup-pinned, and then the filesystem believes that the pages are clean. So, when the driver later marks the pages as dirty, that conflicts with the filesystem's page tracking and results in a BUG(), like this one that I experienced: kernel BUG at /build/linux-fQ94TU/linux-4.4.0/fs/ext4/inode.c:1899! backtrace: ext4_writepage __writepage write_cache_pages ext4_writepages do_writepages __writeback_single_inode writeback_sb_inodes __writeback_inodes_wb wb_writeback wb_workfn process_one_work worker_thread kthread ret_from_fork ...which is due to the file system asserting that there are still buffer heads attached: ({ \ BUG_ON(!PagePrivate(page)); \ ((struct buffer_head *)page_private(page)); \ }) Dave Chinner's description of this is very clear: "The fundamental issue is that ->page_mkwrite must be called on every write access to a clean file backed page, not just the first one. How long the GUP reference lasts is irrelevant, if the page is clean and you need to dirty it, you must call ->page_mkwrite before it is marked writeable and dirtied. Every. Time." This is just one symptom of the larger design problem: real filesystems that actually write to a backing device, do not actually support get_user_pages() being called on their pages, and letting hardware write directly to those pages--even though that pattern has been going on since about 2005 or so. The steps are to fix it are: 1) (This patch): provide put_user_page*() routines, intended to be used for releasing pages that were pinned via get_user_pages*(). 2) Convert all of the call sites for get_user_pages*(), to invoke put_user_page*(), instead of put_page(). This involves dozens of call sites, and will take some time. 3) After (2) is complete, use get_user_pages*() and put_user_page*() to implement tracking of these pages. This tracking will be separate from the existing struct page refcounting. 4) Use the tracking and identification of these pages, to implement special handling (especially in writeback paths) when the pages are backed by a filesystem. [1] https://lwn.net/Articles/774411/ : "DMA and get_user_pages()" [2] https://lwn.net/Articles/753027/ : "The Trouble with get_user_pages()" Link: http://lkml.kernel.org/r/20190327023632.13307-2-jhubbard@nvidia.com Signed-off-by: John Hubbard <jhubbard@nvidia.com> Reviewed-by: Jan Kara <jack@suse.cz> Reviewed-by: Mike Rapoport <rppt@linux.ibm.com> [docs] Reviewed-by: Ira Weiny <ira.weiny@intel.com> Reviewed-by: Jérôme Glisse <jglisse@redhat.com> Reviewed-by: Christoph Lameter <cl@linux.com> Tested-by: Ira Weiny <ira.weiny@intel.com> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Christoph Hellwig <hch@infradead.org> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Dave Chinner <david@fromorbit.com> Cc: Jason Gunthorpe <jgg@ziepe.ca> Cc: Matthew Wilcox <willy@infradead.org> Cc: Michal Hocko <mhocko@kernel.org> Cc: Ralph Campbell <rcampbell@nvidia.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Alexandre Ghiti
|
4eb0716e86 |
hugetlb: allow to free gigantic pages regardless of the configuration
On systems without CONTIG_ALLOC activated but that support gigantic pages, boottime reserved gigantic pages can not be freed at all. This patch simply enables the possibility to hand back those pages to memory allocator. Link: http://lkml.kernel.org/r/20190327063626.18421-5-alex@ghiti.fr Signed-off-by: Alexandre Ghiti <alex@ghiti.fr> Acked-by: David S. Miller <davem@davemloft.net> [sparc] Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com> Cc: Andy Lutomirsky <luto@kernel.org> Cc: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: "H . Peter Anvin" <hpa@zytor.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Paul Mackerras <paulus@samba.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rich Felker <dalias@libc.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Will Deacon <will.deacon@arm.com> Cc: Yoshinori Sato <ysato@users.sourceforge.jp> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Alexandre Ghiti
|
8df995f6bd |
mm: simplify MEMORY_ISOLATION && COMPACTION || CMA into CONTIG_ALLOC
This condition allows to define alloc_contig_range, so simplify it into a more accurate naming. Link: http://lkml.kernel.org/r/20190327063626.18421-4-alex@ghiti.fr Signed-off-by: Alexandre Ghiti <alex@ghiti.fr> Suggested-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Andy Lutomirsky <luto@kernel.org> Cc: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: David S. Miller <davem@davemloft.net> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: "H . Peter Anvin" <hpa@zytor.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Paul Mackerras <paulus@samba.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rich Felker <dalias@libc.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Will Deacon <will.deacon@arm.com> Cc: Yoshinori Sato <ysato@users.sourceforge.jp> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Yue Hu
|
1df3a33907 |
mm/cma.c: fix crash on CMA allocation if bitmap allocation fails
|
||
Johannes Weiner
|
113b7dfd82 |
mm: memcontrol: quarantine the mem_cgroup_[node_]nr_lru_pages() API
Only memcg_numa_stat_show() uses those wrappers and the lru bitmasks, group them together. Link: http://lkml.kernel.org/r/20190228163020.24100-7-hannes@cmpxchg.org Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Reviewed-by: Roman Gushchin <guro@fb.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Tejun Heo <tj@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Johannes Weiner
|
21d89d151b |
mm: memcontrol: push down mem_cgroup_nr_lru_pages()
mem_cgroup_nr_lru_pages() is just a convenience wrapper around memcg_page_state() that takes bitmasks of lru indexes and aggregates the counts for those. Replace callsites where the bitmask is simple enough with direct memcg_page_state() call(s). Link: http://lkml.kernel.org/r/20190228163020.24100-6-hannes@cmpxchg.org Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Reviewed-by: Roman Gushchin <guro@fb.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Tejun Heo <tj@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Johannes Weiner
|
2b487e59f0 |
mm: memcontrol: push down mem_cgroup_node_nr_lru_pages()
mem_cgroup_node_nr_lru_pages() is just a convenience wrapper around lruvec_page_state() that takes bitmasks of lru indexes and aggregates the counts for those. Replace callsites where the bitmask is simple enough with direct lruvec_page_state() calls. This removes the last extern user of mem_cgroup_node_nr_lru_pages(), so make that function private again, too. Link: http://lkml.kernel.org/r/20190228163020.24100-5-hannes@cmpxchg.org Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Reviewed-by: Roman Gushchin <guro@fb.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Tejun Heo <tj@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Johannes Weiner
|
22796c844f |
mm: memcontrol: replace node summing with memcg_page_state()
Instead of adding up the node counters, use memcg_page_state() to get the memcg state directly. This is a bit cheaper and more stream-lined. Link: http://lkml.kernel.org/r/20190228163020.24100-4-hannes@cmpxchg.org Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Reviewed-by: Roman Gushchin <guro@fb.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Tejun Heo <tj@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Johannes Weiner
|
1a61ab8038 |
mm: memcontrol: replace zone summing with lruvec_page_state()
Instead of adding up the zone counters, use lruvec_page_state() to get the node state directly. This is a bit cheaper and more stream-lined. Link: http://lkml.kernel.org/r/20190228163020.24100-3-hannes@cmpxchg.org Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Reviewed-by: Roman Gushchin <guro@fb.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Tejun Heo <tj@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Yafang Shao
|
132bb8cfc9 |
mm/vmscan: add tracepoints for node reclaim
The page alloc fast path it may perform node reclaim, which may cause a latency spike. We should add tracepoint for this event, and also measure the latency it causes. So bellow two tracepoints are introduced, mm_vmscan_node_reclaim_begin mm_vmscan_node_reclaim_end Link: http://lkml.kernel.org/r/1551421452-5385-1-git-send-email-laoar.shao@gmail.com Signed-off-by: Yafang Shao <laoar.shao@gmail.com> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Souptick Joarder <jrdr.linux@gmail.com> Cc: <shaoyafang@didiglobal.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Anshuman Khandual
|
5e65af19e8 |
mm/page_isolation.c: remove redundant pfn_valid_within() in __first_valid_page()
pfn_valid_within() calls pfn_valid() when CONFIG_HOLES_IN_ZONE making it redundant for both definitions (w/wo CONFIG_MEMORY_HOTPLUG) of the helper pfn_to_online_page() which either calls pfn_valid() or pfn_valid_within(). pfn_valid_within() being 1 when !CONFIG_HOLES_IN_ZONE is irrelevant either way. This does not change functionality. Link: http://lkml.kernel.org/r/1553141595-26907-1-git-send-email-anshuman.khandual@arm.com Signed-off-by: Anshuman Khandual <anshuman.khandual@arm.com> Reviewed-by: Zi Yan <ziy@nvidia.com> Reviewed-by: Oscar Salvador <osalvador@suse.de> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Yue Hu
|
2b59e01a3a |
mm/cma.c: fix the bitmap status to show failed allocation reason
Currently one bit in cma bitmap represents number of pages rather than one page, cma->count means cma size in pages. So to find available pages via find_next_zero_bit()/find_next_bit() we should use cma size not in pages but in bits although current free pages number is correct due to zero value of order_per_bit. Once order_per_bit is changed the bitmap status will be incorrect. The size input in cma_debug_show_areas() is not correct. It will affect the available pages at some position to debug the failure issue. This is an example with order_per_bit = 1 Before this change: [ 4.120060] cma: number of available pages: 1@93+4@108+7@121+7@137+7@153+7@169+7@185+7@201+3@213+3@221+3@229+3@237+3@245+3@253+3@261+3@269+3@277+3@285+3@293+3@301+3@309+3@317+3@325+19@333+15@369+512@512=> 638 free of 1024 total pages After this change: [ 4.143234] cma: number of available pages: 2@93+8@108+14@121+14@137+14@153+14@169+14@185+14@201+6@213+6@221+6@229+6@237+6@245+6@253+6@261+6@269+6@277+6@285+6@293+6@301+6@309+6@317+6@325+38@333+30@369=> 252 free of 1024 total pages Obviously the bitmap status before is incorrect. Link: http://lkml.kernel.org/r/20190320060829.9144-1-zbestahu@gmail.com Signed-off-by: Yue Hu <huyue2@yulong.com> Reviewed-by: Andrew Morton <akpm@linux-foundation.org> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Ingo Molnar <mingo@kernel.org> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Mike Rapoport <rppt@linux.vnet.ibm.com> Cc: Randy Dunlap <rdunlap@infradead.org> Cc: Laura Abbott <labbott@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Qian Cai
|
dd7ef7bd14 |
mm/compaction.c: fix an undefined behaviour
In a low-memory situation, cc->fast_search_fail can keep increasing as it
is unable to find an available page to isolate in
fast_isolate_freepages(). As the result, it could trigger an error below,
so just compare with the maximum bits can be shifted first.
UBSAN: Undefined behaviour in mm/compaction.c:1160:30
shift exponent 64 is too large for 64-bit type 'unsigned long'
CPU: 131 PID: 1308 Comm: kcompactd1 Kdump: loaded Tainted: G
W L 5.0.0+ #17
Call trace:
dump_backtrace+0x0/0x450
show_stack+0x20/0x2c
dump_stack+0xc8/0x14c
__ubsan_handle_shift_out_of_bounds+0x7e8/0x8c4
compaction_alloc+0x2344/0x2484
unmap_and_move+0xdc/0x1dbc
migrate_pages+0x274/0x1310
compact_zone+0x26ec/0x43bc
kcompactd+0x15b8/0x1a24
kthread+0x374/0x390
ret_from_fork+0x10/0x18
[akpm@linux-foundation.org: code cleanup]
Link: http://lkml.kernel.org/r/20190320203338.53367-1-cai@lca.pw
Fixes:
|
||
Baoquan He
|
d3ba3ae197 |
mm/memory_hotplug.c: fix the wrong usage of N_HIGH_MEMORY
In node_states_check_changes_online(), N_HIGH_MEMORY is used to substitute
ZONE_HIGHMEM directly. This is not right. N_HIGH_MEMORY is to mark the
memory state of node. Here zone index is checked, which should be
compared with 'ZONE_HIGHMEM' accordingly.
Replace it with ZONE_HIGHMEM.
This is a code cleanup - no known runtime effects.
Link: http://lkml.kernel.org/r/20190320080732.14933-1-bhe@redhat.com
Fixes:
|
||
Oscar Salvador
|
39186cbe65 |
mm,memory_hotplug: drop redundant hugepage_migration_supported check
has_unmovable_pages() already checks whether the hugetlb page supports migration, so all non-migratable hugetlb pages should have been caught there. Let us drop the check from scan_movable_pages() as is redundant. Link: http://lkml.kernel.org/r/20190320152658.10855-3-osalvador@suse.de Signed-off-by: Oscar Salvador <osalvador@suse.de> Acked-by: Michal Hocko <mhocko@suse.com> Reviewed-by: David Hildenbrand <david@redhat.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Oscar Salvador
|
10eeadf304 |
mm,memory_hotplug: unlock 1GB-hugetlb on x86_64
On x86_64, 1GB-hugetlb pages could never be offlined due to the fact that hugepage_migration_supported() returned false for PUD_SHIFT. So whenever we wanted to offline a memblock containing a gigantic hugetlb page, we never got beyond has_unmovable_pages() check. This changed with [1], where now we also return true for PUD_SHIFT. After that patch, the check in has_unmovable_pages() and scan_movable_pages() returned true, but we still had a final barrier in do_migrate_range(): if (compound_order(head) > PFN_SECTION_SHIFT) { ret = -EBUSY; break; } This is not really nice, and we do not really need it. It is perfectly possible to migrate a gigantic page as long as another node has a spare gigantic page for us. In alloc_huge_page_nodemask(), we calculate the __real__ number of free pages, and if any, we try to dequeue one from another node. This all works fine when we do have another node with a spare gigantic page, but if that is not the case, alloc_huge_page_nodemask() ends up calling alloc_migrate_huge_page() which bails out if the wanted page is gigantic. That is mainly because finding a 1GB (or even 16GB on powerpc) contiguous memory is quite unlikely when the system has been running for a while. In that situation, we will keep looping forever because scan_movable_pages() will give us the same page and we will fail again because there is no node where we can dequeue a gigantic page from. This is not nice, and it has been raised that we might want to treat -ENOMEM as a fatal error in do_migrate_range(), but this has to be checked further. Anyway, I would tend say that this is the administrator's job, to make sure that the system can keep up with the memory to be offlined, so that would mean that if we want to use gigantic pages, make sure that the other nodes have at least enough gigantic pages to keep up in case we need to offline memory. Just for the sake of completeness, this is one of the tests done: # echo 1 > /sys/devices/system/node/node1/hugepages/hugepages-1048576kB/nr_hugepages # echo 1 > /sys/devices/system/node/node2/hugepages/hugepages-1048576kB/nr_hugepages # cat /sys/devices/system/node/node1/hugepages/hugepages-1048576kB/nr_hugepages 1 # cat /sys/devices/system/node/node1/hugepages/hugepages-1048576kB/free_hugepages 1 # cat /sys/devices/system/node/node2/hugepages/hugepages-1048576kB/nr_hugepages 1 # cat /sys/devices/system/node/node2/hugepages/hugepages-1048576kB/free_hugepages 1 (hugetlb1gb is a program that maps 1GB region using MAP_HUGE_1GB) # numactl -m 1 ./hugetlb1gb # cat /sys/devices/system/node/node1/hugepages/hugepages-1048576kB/free_hugepages 0 # cat /sys/devices/system/node/node2/hugepages/hugepages-1048576kB/free_hugepages 1 # offline node1 memory # cat /sys/devices/system/node/node2/hugepages/hugepages-1048576kB/free_hugepages 0 [1] https://lore.kernel.org/patchwork/patch/998796/ Link: http://lkml.kernel.org/r/20190320152658.10855-2-osalvador@suse.de Signed-off-by: Oscar Salvador <osalvador@suse.de> Acked-by: Michal Hocko <mhocko@suse.com> Cc: David Hildenbrand <david@redhat.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Ira Weiny
|
7af75561e1 |
mm/gup: add FOLL_LONGTERM capability to GUP fast
DAX pages were previously unprotected from longterm pins when users called get_user_pages_fast(). Use the new FOLL_LONGTERM flag to check for DEVMAP pages and fall back to regular GUP processing if a DEVMAP page is encountered. [ira.weiny@intel.com: v3] Link: http://lkml.kernel.org/r/20190328084422.29911-5-ira.weiny@intel.com Link: http://lkml.kernel.org/r/20190328084422.29911-5-ira.weiny@intel.com Link: http://lkml.kernel.org/r/20190317183438.2057-5-ira.weiny@intel.com Signed-off-by: Ira Weiny <ira.weiny@intel.com> Reviewed-by: Andrew Morton <akpm@linux-foundation.org> Cc: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Dan Williams <dan.j.williams@intel.com> Cc: "David S. Miller" <davem@davemloft.net> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: James Hogan <jhogan@kernel.org> Cc: Jason Gunthorpe <jgg@ziepe.ca> Cc: John Hubbard <jhubbard@nvidia.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Paul Mackerras <paulus@samba.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Ralf Baechle <ralf@linux-mips.org> Cc: Rich Felker <dalias@libc.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Yoshinori Sato <ysato@users.sourceforge.jp> Cc: Mike Marshall <hubcap@omnibond.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Ira Weiny
|
73b0140bf0 |
mm/gup: change GUP fast to use flags rather than a write 'bool'
To facilitate additional options to get_user_pages_fast() change the singular write parameter to be gup_flags. This patch does not change any functionality. New functionality will follow in subsequent patches. Some of the get_user_pages_fast() call sites were unchanged because they already passed FOLL_WRITE or 0 for the write parameter. NOTE: It was suggested to change the ordering of the get_user_pages_fast() arguments to ensure that callers were converted. This breaks the current GUP call site convention of having the returned pages be the final parameter. So the suggestion was rejected. Link: http://lkml.kernel.org/r/20190328084422.29911-4-ira.weiny@intel.com Link: http://lkml.kernel.org/r/20190317183438.2057-4-ira.weiny@intel.com Signed-off-by: Ira Weiny <ira.weiny@intel.com> Reviewed-by: Mike Marshall <hubcap@omnibond.com> Cc: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Dan Williams <dan.j.williams@intel.com> Cc: "David S. Miller" <davem@davemloft.net> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: James Hogan <jhogan@kernel.org> Cc: Jason Gunthorpe <jgg@ziepe.ca> Cc: John Hubbard <jhubbard@nvidia.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Paul Mackerras <paulus@samba.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Ralf Baechle <ralf@linux-mips.org> Cc: Rich Felker <dalias@libc.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Yoshinori Sato <ysato@users.sourceforge.jp> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Ira Weiny
|
b798bec474 |
mm/gup: change write parameter to flags in fast walk
In order to support more options in the GUP fast walk, change the write parameter to flags throughout the call stack. This patch does not change functionality and passes FOLL_WRITE where write was previously used. Link: http://lkml.kernel.org/r/20190328084422.29911-3-ira.weiny@intel.com Link: http://lkml.kernel.org/r/20190317183438.2057-3-ira.weiny@intel.com Signed-off-by: Ira Weiny <ira.weiny@intel.com> Reviewed-by: Dan Williams <dan.j.williams@intel.com> Cc: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Borislav Petkov <bp@alien8.de> Cc: "David S. Miller" <davem@davemloft.net> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: James Hogan <jhogan@kernel.org> Cc: Jason Gunthorpe <jgg@ziepe.ca> Cc: John Hubbard <jhubbard@nvidia.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Paul Mackerras <paulus@samba.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Ralf Baechle <ralf@linux-mips.org> Cc: Rich Felker <dalias@libc.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Yoshinori Sato <ysato@users.sourceforge.jp> Cc: Mike Marshall <hubcap@omnibond.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Ira Weiny
|
932f4a630a |
mm/gup: replace get_user_pages_longterm() with FOLL_LONGTERM
Pach series "Add FOLL_LONGTERM to GUP fast and use it". HFI1, qib, and mthca, use get_user_pages_fast() due to its performance advantages. These pages can be held for a significant time. But get_user_pages_fast() does not protect against mapping FS DAX pages. Introduce FOLL_LONGTERM and use this flag in get_user_pages_fast() which retains the performance while also adding the FS DAX checks. XDP has also shown interest in using this functionality.[1] In addition we change get_user_pages() to use the new FOLL_LONGTERM flag and remove the specialized get_user_pages_longterm call. [1] https://lkml.org/lkml/2019/3/19/939 "longterm" is a relative thing and at this point is probably a misnomer. This is really flagging a pin which is going to be given to hardware and can't move. I've thought of a couple of alternative names but I think we have to settle on if we are going to use FL_LAYOUT or something else to solve the "longterm" problem. Then I think we can change the flag to a better name. Secondly, it depends on how often you are registering memory. I have spoken with some RDMA users who consider MR in the performance path... For the overall application performance. I don't have the numbers as the tests for HFI1 were done a long time ago. But there was a significant advantage. Some of which is probably due to the fact that you don't have to hold mmap_sem. Finally, architecturally I think it would be good for everyone to use *_fast. There are patches submitted to the RDMA list which would allow the use of *_fast (they reworking the use of mmap_sem) and as soon as they are accepted I'll submit a patch to convert the RDMA core as well. Also to this point others are looking to use *_fast. As an aside, Jasons pointed out in my previous submission that *_fast and *_unlocked look very much the same. I agree and I think further cleanup will be coming. But I'm focused on getting the final solution for DAX at the moment. This patch (of 7): This patch starts a series which aims to support FOLL_LONGTERM in get_user_pages_fast(). Some callers who would like to do a longterm (user controlled pin) of pages with the fast variant of GUP for performance purposes. Rather than have a separate get_user_pages_longterm() call, introduce FOLL_LONGTERM and change the longterm callers to use it. This patch does not change any functionality. In the short term "longterm" or user controlled pins are unsafe for Filesystems and FS DAX in particular has been blocked. However, callers of get_user_pages_fast() were not "protected". FOLL_LONGTERM can _only_ be supported with get_user_pages[_fast]() as it requires vmas to determine if DAX is in use. NOTE: In merging with the CMA changes we opt to change the get_user_pages() call in check_and_migrate_cma_pages() to a call of __get_user_pages_locked() on the newly migrated pages. This makes the code read better in that we are calling __get_user_pages_locked() on the pages before and after a potential migration. As a side affect some of the interfaces are cleaned up but this is not the primary purpose of the series. In review[1] it was asked: <quote> > This I don't get - if you do lock down long term mappings performance > of the actual get_user_pages call shouldn't matter to start with. > > What do I miss? A couple of points. First "longterm" is a relative thing and at this point is probably a misnomer. This is really flagging a pin which is going to be given to hardware and can't move. I've thought of a couple of alternative names but I think we have to settle on if we are going to use FL_LAYOUT or something else to solve the "longterm" problem. Then I think we can change the flag to a better name. Second, It depends on how often you are registering memory. I have spoken with some RDMA users who consider MR in the performance path... For the overall application performance. I don't have the numbers as the tests for HFI1 were done a long time ago. But there was a significant advantage. Some of which is probably due to the fact that you don't have to hold mmap_sem. Finally, architecturally I think it would be good for everyone to use *_fast. There are patches submitted to the RDMA list which would allow the use of *_fast (they reworking the use of mmap_sem) and as soon as they are accepted I'll submit a patch to convert the RDMA core as well. Also to this point others are looking to use *_fast. As an asside, Jasons pointed out in my previous submission that *_fast and *_unlocked look very much the same. I agree and I think further cleanup will be coming. But I'm focused on getting the final solution for DAX at the moment. </quote> [1] https://lore.kernel.org/lkml/20190220180255.GA12020@iweiny-DESK2.sc.intel.com/T/#md6abad2569f3bf6c1f03686c8097ab6563e94965 [ira.weiny@intel.com: v3] Link: http://lkml.kernel.org/r/20190328084422.29911-2-ira.weiny@intel.com Link: http://lkml.kernel.org/r/20190328084422.29911-2-ira.weiny@intel.com Link: http://lkml.kernel.org/r/20190317183438.2057-2-ira.weiny@intel.com Signed-off-by: Ira Weiny <ira.weiny@intel.com> Reviewed-by: Andrew Morton <akpm@linux-foundation.org> Cc: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: John Hubbard <jhubbard@nvidia.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Jason Gunthorpe <jgg@ziepe.ca> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Paul Mackerras <paulus@samba.org> Cc: "David S. Miller" <davem@davemloft.net> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: Rich Felker <dalias@libc.org> Cc: Yoshinori Sato <ysato@users.sourceforge.jp> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Ingo Molnar <mingo@redhat.com> Cc: Borislav Petkov <bp@alien8.de> Cc: Ralf Baechle <ralf@linux-mips.org> Cc: James Hogan <jhogan@kernel.org> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Mike Marshall <hubcap@omnibond.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Kirill Tkhai
|
a222f34158 |
mm: generalize putback scan functions
This combines two similar functions move_active_pages_to_lru() and putback_inactive_pages() into single move_pages_to_lru(). This remove duplicate code and makes object file size smaller. Before: text data bss dec hex filename 57082 4732 128 61942 f1f6 mm/vmscan.o After: text data bss dec hex filename 55112 4600 128 59840 e9c0 mm/vmscan.o Note, that now we are checking for !page_evictable() coming from shrink_active_list(), which shouldn't change any behavior since that path works with evictable pages only. Link: http://lkml.kernel.org/r/155290129627.31489.8321971028677203248.stgit@localhost.localdomain Signed-off-by: Kirill Tkhai <ktkhai@virtuozzo.com> Reviewed-by: Daniel Jordan <daniel.m.jordan@oracle.com> Cc: Michal Hocko <mhocko@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Kirill Tkhai
|
f372d89e5d |
mm: remove pages_to_free argument of move_active_pages_to_lru()
We may use input argument list as output argument too. This makes the function more similar to putback_inactive_pages(). Link: http://lkml.kernel.org/r/155290129079.31489.16180612694090502942.stgit@localhost.localdomain Signed-off-by: Kirill Tkhai <ktkhai@virtuozzo.com> Reviewed-by: Daniel Jordan <daniel.m.jordan@oracle.com> Cc: Michal Hocko <mhocko@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Kirill Tkhai
|
9851ac1359 |
mm: move nr_deactivate accounting to shrink_active_list()
We know which LRU is not active. [chris@chrisdown.name: fix build on !CONFIG_MEMCG] Link: http://lkml.kernel.org/r/20190322150513.GA22021@chrisdown.name Link: http://lkml.kernel.org/r/155290128498.31489.18250485448913338607.stgit@localhost.localdomain Signed-off-by: Kirill Tkhai <ktkhai@virtuozzo.com> Signed-off-by: Chris Down <chris@chrisdown.name> Reviewed-by: Daniel Jordan <daniel.m.jordan@oracle.com> Cc: Michal Hocko <mhocko@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Kirill Tkhai
|
886cf1901d |
mm: move recent_rotated pages calculation to shrink_inactive_list()
Patch series "mm: Generalize putback functions"] putback_inactive_pages() and move_active_pages_to_lru() are almost similar, so this patchset merges them ina single function. This patch (of 4): The patch moves the calculation from putback_inactive_pages() to shrink_inactive_list(). This makes putback_inactive_pages() looking more similar to move_active_pages_to_lru(). To do that, we account activated pages in reclaim_stat::nr_activate. Since a page may change its LRU type from anon to file cache inside shrink_page_list() (see ClearPageSwapBacked()), we have to account pages for the both types. So, nr_activate becomes an array. Previously we used nr_activate to account PGACTIVATE events, but now we account them into pgactivate variable (since they are about number of pages in general, not about sum of hpage_nr_pages). Link: http://lkml.kernel.org/r/155290127956.31489.3393586616054413298.stgit@localhost.localdomain Signed-off-by: Kirill Tkhai <ktkhai@virtuozzo.com> Reviewed-by: Daniel Jordan <daniel.m.jordan@oracle.com> Cc: Michal Hocko <mhocko@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Vlastimil Babka
|
63931eb975 |
mm, page_alloc: disallow __GFP_COMP in alloc_pages_exact()
alloc_pages_exact*() allocates a page of sufficient order and then splits it to return only the number of pages requested. That makes it incompatible with __GFP_COMP, because compound pages cannot be split. As shown by [1] things may silently work until the requested size (possibly depending on user) stops being power of two. Then for CONFIG_DEBUG_VM, BUG_ON() triggers in split_page(). Without CONFIG_DEBUG_VM, consequences are unclear. There are several options here, none of them great: 1) Don't do the splitting when __GFP_COMP is passed, and return the whole compound page. However if caller then returns it via free_pages_exact(), that will be unexpected and the freeing actions there will be wrong. 2) Warn and remove __GFP_COMP from the flags. But the caller may have really wanted it, so things may break later somewhere. 3) Warn and return NULL. However NULL may be unexpected, especially for small sizes. This patch picks option 2, because as Michal Hocko put it: "callers wanted it" is much less probable than "caller is simply confused and more gfp flags is surely better than fewer". [1] https://lore.kernel.org/lkml/20181126002805.GI18977@shao2-debian/T/#u Link: http://lkml.kernel.org/r/0c6393eb-b28d-4607-c386-862a71f09de6@suse.cz Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Michal Hocko <mhocko@suse.com> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Acked-by: Mel Gorman <mgorman@techsingularity.net> Cc: Takashi Iwai <tiwai@suse.de> Cc: Hugh Dickins <hughd@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Matthew Wilcox
|
5fd4ca2d84 |
mm: page cache: store only head pages in i_pages
Transparent Huge Pages are currently stored in i_pages as pointers to consecutive subpages. This patch changes that to storing consecutive pointers to the head page in preparation for storing huge pages more efficiently in i_pages. Large parts of this are "inspired" by Kirill's patch https://lore.kernel.org/lkml/20170126115819.58875-2-kirill.shutemov@linux.intel.com/ [willy@infradead.org: fix swapcache pages] Link: http://lkml.kernel.org/r/20190324155441.GF10344@bombadil.infradead.org [kirill@shutemov.name: hugetlb stores pages in page cache differently] Link: http://lkml.kernel.org/r/20190404134553.vuvhgmghlkiw2hgl@kshutemo-mobl1 Link: http://lkml.kernel.org/r/20190307153051.18815-1-willy@infradead.org Signed-off-by: Matthew Wilcox <willy@infradead.org> Acked-by: Jan Kara <jack@suse.cz> Reviewed-by: Kirill Shutemov <kirill@shutemov.name> Reviewed-and-tested-by: Song Liu <songliubraving@fb.com> Tested-by: William Kucharski <william.kucharski@oracle.com> Reviewed-by: William Kucharski <william.kucharski@oracle.com> Tested-by: Qian Cai <cai@lca.pw> Cc: Hugh Dickins <hughd@google.com> Cc: Song Liu <liu.song.a23@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Yue Hu
|
f0fd50504a |
mm/cma_debug.c: fix the break condition in cma_maxchunk_get()
If not find zero bit in find_next_zero_bit(), it will return the size parameter passed in, so the start bit should be compared with bitmap_maxno rather than cma->count. Although getting maxchunk is working fine due to zero value of order_per_bit currently, the operation will be stuck if order_per_bit is set as non-zero. Link: http://lkml.kernel.org/r/20190319092734.276-1-zbestahu@gmail.com Signed-off-by: Yue Hu <huyue2@yulong.com> Reviewed-by: Andrew Morton <akpm@linux-foundation.org> Cc: Michal Hocko <mhocko@suse.com> Cc: Joe Perches <joe@perches.com> Cc: David Rientjes <rientjes@google.com> Cc: Dmitry Safonov <d.safonov@partner.samsung.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Qian Cai
|
745e10146c |
mm/slab.c: fix an infinite loop in leaks_show()
"cat /proc/slab_allocators" could hang forever on SMP machines with
kmemleak or object debugging enabled due to other CPUs running do_drain()
will keep making kmemleak_object or debug_objects_cache dirty and unable
to escape the first loop in leaks_show(),
do {
set_store_user_clean(cachep);
drain_cpu_caches(cachep);
...
} while (!is_store_user_clean(cachep));
For example,
do_drain
slabs_destroy
slab_destroy
kmem_cache_free
__cache_free
___cache_free
kmemleak_free_recursive
delete_object_full
__delete_object
put_object
free_object_rcu
kmem_cache_free
cache_free_debugcheck --> dirty kmemleak_object
One approach is to check cachep->name and skip both kmemleak_object and
debug_objects_cache in leaks_show(). The other is to set store_user_clean
after drain_cpu_caches() which leaves a small window between
drain_cpu_caches() and set_store_user_clean() where per-CPU caches could
be dirty again lead to slightly wrong information has been stored but
could also speed up things significantly which sounds like a good
compromise. For example,
# cat /proc/slab_allocators
0m42.778s # 1st approach
0m0.737s # 2nd approach
[akpm@linux-foundation.org: tweak comment]
Link: http://lkml.kernel.org/r/20190411032635.10325-1-cai@lca.pw
Fixes:
|
||
Liu Xiang
|
632b2ef0c7 |
mm/slub.c: update the comment about slab frozen
Now frozen slab can only be on the per cpu partial list. Link: http://lkml.kernel.org/r/1554022325-11305-1-git-send-email-liu.xiang6@zte.com.cn Signed-off-by: Liu Xiang <liu.xiang6@zte.com.cn> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Li RongQing
|
517f9f1ee5 |
mm/slab.c: remove unneed check in cpuup_canceled
nc is a member of percpu allocation memory, and cannot be NULL. Link: http://lkml.kernel.org/r/1553159353-5056-1-git-send-email-lirongqing@baidu.com Signed-off-by: Li RongQing <lirongqing@baidu.com> Reviewed-by: Andrew Morton <akpm@linux-foundation.org> Acked-by: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Liu Xiang
|
a4d3f8916c |
slub: remove useless kmem_cache_debug() before remove_full()
When CONFIG_SLUB_DEBUG is not enabled, remove_full() is empty. While CONFIG_SLUB_DEBUG is enabled, remove_full() can check s->flags by itself. So kmem_cache_debug() is useless and can be removed. Link: http://lkml.kernel.org/r/1552577313-2830-1-git-send-email-liu.xiang6@zte.com.cn Signed-off-by: Liu Xiang <liu.xiang6@zte.com.cn> Acked-by: David Rientjes <rientjes@google.com> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Tobin C. Harding
|
16cb0ec75b |
slab: use slab_list instead of lru
Currently we use the page->lru list for maintaining lists of slabs. We have a list in the page structure (slab_list) that can be used for this purpose. Doing so makes the code cleaner since we are not overloading the lru list. Use the slab_list instead of the lru list for maintaining lists of slabs. Link: http://lkml.kernel.org/r/20190402230545.2929-7-tobin@kernel.org Signed-off-by: Tobin C. Harding <tobin@kernel.org> Acked-by: Christoph Lameter <cl@linux.com> Reviewed-by: Roman Gushchin <guro@fb.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Pekka Enberg <penberg@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Tobin C. Harding
|
916ac05278 |
slub: use slab_list instead of lru
Currently we use the page->lru list for maintaining lists of slabs. We have a list in the page structure (slab_list) that can be used for this purpose. Doing so makes the code cleaner since we are not overloading the lru list. Use the slab_list instead of the lru list for maintaining lists of slabs. Link: http://lkml.kernel.org/r/20190402230545.2929-6-tobin@kernel.org Signed-off-by: Tobin C. Harding <tobin@kernel.org> Acked-by: Christoph Lameter <cl@linux.com> Reviewed-by: Roman Gushchin <guro@fb.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Pekka Enberg <penberg@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Tobin C. Harding
|
6dfd1b653c |
slub: add comments to endif pre-processor macros
SLUB allocator makes heavy use of ifdef/endif pre-processor macros. The pairing of these statements is at times hard to follow e.g. if the pair are further than a screen apart or if there are nested pairs. We can reduce cognitive load by adding a comment to the endif statement of form #ifdef CONFIG_FOO ... #endif /* CONFIG_FOO */ Add comments to endif pre-processor macros if ifdef/endif pair is not immediately apparent. Link: http://lkml.kernel.org/r/20190402230545.2929-5-tobin@kernel.org Signed-off-by: Tobin C. Harding <tobin@kernel.org> Acked-by: Christoph Lameter <cl@linux.com> Reviewed-by: Roman Gushchin <guro@fb.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Pekka Enberg <penberg@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Tobin C. Harding
|
adab7b6818 |
slob: use slab_list instead of lru
Currently we use the page->lru list for maintaining lists of slabs. We
have a list_head in the page structure (slab_list) that can be used for
this purpose. Doing so makes the code cleaner since we are not
overloading the lru list.
The slab_list is part of a union within the page struct (included here
stripped down):
union {
struct { /* Page cache and anonymous pages */
struct list_head lru;
...
};
struct {
dma_addr_t dma_addr;
};
struct { /* slab, slob and slub */
union {
struct list_head slab_list;
struct { /* Partial pages */
struct page *next;
int pages; /* Nr of pages left */
int pobjects; /* Approximate count */
};
};
...
Here we see that slab_list and lru are the same bits. We can verify that
this change is safe to do by examining the object file produced from
slob.c before and after this patch is applied.
Steps taken to verify:
1. checkout current tip of Linus' tree
commit
|
||
Tobin C. Harding
|
130e8e09e2 |
slob: respect list_head abstraction layer
Currently we reach inside the list_head. This is a violation of the layer of abstraction provided by the list_head. It makes the code fragile. More importantly it makes the code wicked hard to understand. The code reaches into the list_head structure to counteract the fact that the list _may_ have been changed during slob_page_alloc(). Instead of this we can add a return parameter to slob_page_alloc() to signal that the list was modified (list_del() called with page->lru to remove page from the freelist). This code is concerned with an optimisation that counters the tendency for first fit allocation algorithm to fragment memory into many small chunks at the front of the memory pool. Since the page is only removed from the list when an allocation uses _all_ the remaining memory in the page then in this special case fragmentation does not occur and we therefore do not need the optimisation. Add a return parameter to slob_page_alloc() to signal that the allocation used up the whole page and that the page was removed from the free list. After calling slob_page_alloc() check the return value just added and only attempt optimisation if the page is still on the list. Use list_head API instead of reaching into the list_head structure to check if sp is at the front of the list. Link: http://lkml.kernel.org/r/20190402230545.2929-3-tobin@kernel.org Signed-off-by: Tobin C. Harding <tobin@kernel.org> Acked-by: Christoph Lameter <cl@linux.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Pekka Enberg <penberg@kernel.org> Cc: Roman Gushchin <guro@fb.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Kai Shen
|
2bf753e64b |
mm/hugetlb.c: don't put_page in lock of hugetlb_lock
spinlock recursion happened when do LTP test:
#!/bin/bash
./runltp -p -f hugetlb &
./runltp -p -f hugetlb &
./runltp -p -f hugetlb &
./runltp -p -f hugetlb &
./runltp -p -f hugetlb &
The dtor returned by get_compound_page_dtor in __put_compound_page may be
the function of free_huge_page which will lock the hugetlb_lock, so don't
put_page in lock of hugetlb_lock.
BUG: spinlock recursion on CPU#0, hugemmap05/1079
lock: hugetlb_lock+0x0/0x18, .magic: dead4ead, .owner: hugemmap05/1079, .owner_cpu: 0
Call trace:
dump_backtrace+0x0/0x198
show_stack+0x24/0x30
dump_stack+0xa4/0xcc
spin_dump+0x84/0xa8
do_raw_spin_lock+0xd0/0x108
_raw_spin_lock+0x20/0x30
free_huge_page+0x9c/0x260
__put_compound_page+0x44/0x50
__put_page+0x2c/0x60
alloc_surplus_huge_page.constprop.19+0xf0/0x140
hugetlb_acct_memory+0x104/0x378
hugetlb_reserve_pages+0xe0/0x250
hugetlbfs_file_mmap+0xc0/0x140
mmap_region+0x3e8/0x5b0
do_mmap+0x280/0x460
vm_mmap_pgoff+0xf4/0x128
ksys_mmap_pgoff+0xb4/0x258
__arm64_sys_mmap+0x34/0x48
el0_svc_common+0x78/0x130
el0_svc_handler+0x38/0x78
el0_svc+0x8/0xc
Link: http://lkml.kernel.org/r/b8ade452-2d6b-0372-32c2-703644032b47@huawei.com
Fixes:
|
||
Dan Williams
|
fce86ff580 |
mm/huge_memory: fix vmf_insert_pfn_{pmd, pud}() crash, handle unaligned addresses
Starting with |
||
Linus Torvalds
|
3aff5fac54 |
Merge branch 'for-5.2' of git://git.kernel.org/pub/scm/linux/kernel/git/dennis/percpu
Pull percpu updates from Dennis Zhou: - scan hint update which helps address performance issues with heavily fragmented blocks - lockdep fix when freeing an allocation causes balance work to be scheduled * 'for-5.2' of git://git.kernel.org/pub/scm/linux/kernel/git/dennis/percpu: percpu: remove spurious lock dependency between percpu and sched percpu: use chunk scan_hint to skip some scanning percpu: convert chunk hints to be based on pcpu_block_md percpu: make pcpu_block_md generic percpu: use block scan_hint to only scan forward percpu: remember largest area skipped during allocation percpu: add block level scan_hint percpu: set PCPU_BITMAP_BLOCK_SIZE to PAGE_SIZE percpu: relegate chunks unusable when failing small allocations percpu: manage chunks based on contig_bits instead of free_bytes percpu: introduce helper to determine if two regions overlap percpu: do not search past bitmap when allocating an area percpu: update free path with correct new free region |
||
Dave Hansen
|
5a28fc94c9 |
x86/mpx, mm/core: Fix recursive munmap() corruption
This is a bit of a mess, to put it mildly. But, it's a bug that only seems to have showed up in 4.20 but wasn't noticed until now, because nobody uses MPX. MPX has the arch_unmap() hook inside of munmap() because MPX uses bounds tables that protect other areas of memory. When memory is unmapped, there is also a need to unmap the MPX bounds tables. Barring this, unused bounds tables can eat 80% of the address space. But, the recursive do_munmap() that gets called vi arch_unmap() wreaks havoc with __do_munmap()'s state. It can result in freeing populated page tables, accessing bogus VMA state, double-freed VMAs and more. See the "long story" further below for the gory details. To fix this, call arch_unmap() before __do_unmap() has a chance to do anything meaningful. Also, remove the 'vma' argument and force the MPX code to do its own, independent VMA lookup. == UML / unicore32 impact == Remove unused 'vma' argument to arch_unmap(). No functional change. I compile tested this on UML but not unicore32. == powerpc impact == powerpc uses arch_unmap() well to watch for munmap() on the VDSO and zeroes out 'current->mm->context.vdso_base'. Moving arch_unmap() makes this happen earlier in __do_munmap(). But, 'vdso_base' seems to only be used in perf and in the signal delivery that happens near the return to userspace. I can not find any likely impact to powerpc, other than the zeroing happening a little earlier. powerpc does not use the 'vma' argument and is unaffected by its removal. I compile-tested a 64-bit powerpc defconfig. == x86 impact == For the common success case this is functionally identical to what was there before. For the munmap() failure case, it's possible that some MPX tables will be zapped for memory that continues to be in use. But, this is an extraordinarily unlikely scenario and the harm would be that MPX provides no protection since the bounds table got reset (zeroed). I can't imagine anyone doing this: ptr = mmap(); // use ptr ret = munmap(ptr); if (ret) // oh, there was an error, I'll // keep using ptr. Because if you're doing munmap(), you are *done* with the memory. There's probably no good data in there _anyway_. This passes the original reproducer from Richard Biener as well as the existing mpx selftests/. The long story: munmap() has a couple of pieces: 1. Find the affected VMA(s) 2. Split the start/end one(s) if neceesary 3. Pull the VMAs out of the rbtree 4. Actually zap the memory via unmap_region(), including freeing page tables (or queueing them to be freed). 5. Fix up some of the accounting (like fput()) and actually free the VMA itself. This specific ordering was actually introduced by: |
||
John Sperbeck
|
198790d9a3 |
percpu: remove spurious lock dependency between percpu and sched
In free_percpu() we sometimes call pcpu_schedule_balance_work() to queue a work item (which does a wakeup) while holding pcpu_lock. This creates an unnecessary lock dependency between pcpu_lock and the scheduler's pi_lock. There are other places where we call pcpu_schedule_balance_work() without hold pcpu_lock, and this case doesn't need to be different. Moving the call outside the lock prevents the following lockdep splat when running tools/testing/selftests/bpf/{test_maps,test_progs} in sequence with lockdep enabled: ====================================================== WARNING: possible circular locking dependency detected 5.1.0-dbg-DEV #1 Not tainted ------------------------------------------------------ kworker/23:255/18872 is trying to acquire lock: 000000000bc79290 (&(&pool->lock)->rlock){-.-.}, at: __queue_work+0xb2/0x520 but task is already holding lock: 00000000e3e7a6aa (pcpu_lock){..-.}, at: free_percpu+0x36/0x260 which lock already depends on the new lock. the existing dependency chain (in reverse order) is: -> #4 (pcpu_lock){..-.}: lock_acquire+0x9e/0x180 _raw_spin_lock_irqsave+0x3a/0x50 pcpu_alloc+0xfa/0x780 __alloc_percpu_gfp+0x12/0x20 alloc_htab_elem+0x184/0x2b0 __htab_percpu_map_update_elem+0x252/0x290 bpf_percpu_hash_update+0x7c/0x130 __do_sys_bpf+0x1912/0x1be0 __x64_sys_bpf+0x1a/0x20 do_syscall_64+0x59/0x400 entry_SYSCALL_64_after_hwframe+0x49/0xbe -> #3 (&htab->buckets[i].lock){....}: lock_acquire+0x9e/0x180 _raw_spin_lock_irqsave+0x3a/0x50 htab_map_update_elem+0x1af/0x3a0 -> #2 (&rq->lock){-.-.}: lock_acquire+0x9e/0x180 _raw_spin_lock+0x2f/0x40 task_fork_fair+0x37/0x160 sched_fork+0x211/0x310 copy_process.part.43+0x7b1/0x2160 _do_fork+0xda/0x6b0 kernel_thread+0x29/0x30 rest_init+0x22/0x260 arch_call_rest_init+0xe/0x10 start_kernel+0x4fd/0x520 x86_64_start_reservations+0x24/0x26 x86_64_start_kernel+0x6f/0x72 secondary_startup_64+0xa4/0xb0 -> #1 (&p->pi_lock){-.-.}: lock_acquire+0x9e/0x180 _raw_spin_lock_irqsave+0x3a/0x50 try_to_wake_up+0x41/0x600 wake_up_process+0x15/0x20 create_worker+0x16b/0x1e0 workqueue_init+0x279/0x2ee kernel_init_freeable+0xf7/0x288 kernel_init+0xf/0x180 ret_from_fork+0x24/0x30 -> #0 (&(&pool->lock)->rlock){-.-.}: __lock_acquire+0x101f/0x12a0 lock_acquire+0x9e/0x180 _raw_spin_lock+0x2f/0x40 __queue_work+0xb2/0x520 queue_work_on+0x38/0x80 free_percpu+0x221/0x260 pcpu_freelist_destroy+0x11/0x20 stack_map_free+0x2a/0x40 bpf_map_free_deferred+0x3c/0x50 process_one_work+0x1f7/0x580 worker_thread+0x54/0x410 kthread+0x10f/0x150 ret_from_fork+0x24/0x30 other info that might help us debug this: Chain exists of: &(&pool->lock)->rlock --> &htab->buckets[i].lock --> pcpu_lock Possible unsafe locking scenario: CPU0 CPU1 ---- ---- lock(pcpu_lock); lock(&htab->buckets[i].lock); lock(pcpu_lock); lock(&(&pool->lock)->rlock); *** DEADLOCK *** 3 locks held by kworker/23:255/18872: #0: 00000000b36a6e16 ((wq_completion)events){+.+.}, at: process_one_work+0x17a/0x580 #1: 00000000dfd966f0 ((work_completion)(&map->work)){+.+.}, at: process_one_work+0x17a/0x580 #2: 00000000e3e7a6aa (pcpu_lock){..-.}, at: free_percpu+0x36/0x260 stack backtrace: CPU: 23 PID: 18872 Comm: kworker/23:255 Not tainted 5.1.0-dbg-DEV #1 Hardware name: ... Workqueue: events bpf_map_free_deferred Call Trace: dump_stack+0x67/0x95 print_circular_bug.isra.38+0x1c6/0x220 check_prev_add.constprop.50+0x9f6/0xd20 __lock_acquire+0x101f/0x12a0 lock_acquire+0x9e/0x180 _raw_spin_lock+0x2f/0x40 __queue_work+0xb2/0x520 queue_work_on+0x38/0x80 free_percpu+0x221/0x260 pcpu_freelist_destroy+0x11/0x20 stack_map_free+0x2a/0x40 bpf_map_free_deferred+0x3c/0x50 process_one_work+0x1f7/0x580 worker_thread+0x54/0x410 kthread+0x10f/0x150 ret_from_fork+0x24/0x30 Signed-off-by: John Sperbeck <jsperbeck@google.com> Signed-off-by: Dennis Zhou <dennis@kernel.org> |
||
Linus Torvalds
|
168e153d5e |
Merge branch 'work.icache' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs
Pull vfs inode freeing updates from Al Viro: "Introduction of separate method for RCU-delayed part of ->destroy_inode() (if any). Pretty much as posted, except that destroy_inode() stashes ->free_inode into the victim (anon-unioned with ->i_fops) before scheduling i_callback() and the last two patches (sockfs conversion and folding struct socket_wq into struct socket) are excluded - that pair should go through netdev once davem reopens his tree" * 'work.icache' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs: (58 commits) orangefs: make use of ->free_inode() shmem: make use of ->free_inode() hugetlb: make use of ->free_inode() overlayfs: make use of ->free_inode() jfs: switch to ->free_inode() fuse: switch to ->free_inode() ext4: make use of ->free_inode() ecryptfs: make use of ->free_inode() ceph: use ->free_inode() btrfs: use ->free_inode() afs: switch to use of ->free_inode() dax: make use of ->free_inode() ntfs: switch to ->free_inode() securityfs: switch to ->free_inode() apparmor: switch to ->free_inode() rpcpipe: switch to ->free_inode() bpf: switch to ->free_inode() mqueue: switch to ->free_inode() ufs: switch to ->free_inode() coda: switch to ->free_inode() ... |
||
Linus Torvalds
|
0968621917 |
Printk changes for 5.2
-----BEGIN PGP SIGNATURE----- iQIzBAABCAAdFiEESH4wyp42V4tXvYsjUqAMR0iAlPIFAlzP8nQACgkQUqAMR0iA lPK79A/+NkRouqA9ihAZhUbgW0DHzOAFvUJSBgX11HQAZbGjngakuoyYFvwUx0T0 m80SUTCysxQrWl+xLdccPZ9ZrhP2KFQrEBEdeYHZ6ymcYcl83+3bOIBS7VwdZAbO EzB8u/58uU/sI6ABL4lF7ZF/+R+U4CXveEUoVUF04bxdPOxZkRX4PT8u3DzCc+RK r4yhwQUXGcKrHa2GrRL3GXKsDxcnRdFef/nzq4RFSZsi0bpskzEj34WrvctV6j+k FH/R3kEcZrtKIMPOCoDMMWq07yNqK/QKj0MJlGoAlwfK4INgcrSXLOx+pAmr6BNq uMKpkxCFhnkZVKgA/GbKEGzFf+ZGz9+2trSFka9LD2Ig6DIstwXqpAgiUK8JFQYj lq1mTaJZD3DfF2vnGHGeAfBFG3XETv+mIT/ow6BcZi3NyNSVIaqa5GAR+lMc6xkR waNkcMDkzLFuP1r0p7ZizXOksk9dFkMP3M6KqJomRtApwbSNmtt+O2jvyLPvB3+w wRyN9WT7IJZYo4v0rrD5Bl6BjV15ZeCPRSFZRYofX+vhcqJQsFX1M9DeoNqokh55 Cri8f6MxGzBVjE1G70y2/cAFFvKEKJud0NUIMEuIbcy+xNrEAWPF8JhiwpKKnU10 c0u674iqHJ2HeVsYWZF0zqzqQ6E1Idhg/PrXfuVuhAaL5jIOnYY= =WZfC -----END PGP SIGNATURE----- Merge tag 'printk-for-5.2' of git://git.kernel.org/pub/scm/linux/kernel/git/pmladek/printk Pull printk updates from Petr Mladek: - Allow state reset of printk_once() calls. - Prevent crashes when dereferencing invalid pointers in vsprintf(). Only the first byte is checked for simplicity. - Make vsprintf warnings consistent and inlined. - Treewide conversion of obsolete %pf, %pF to %ps, %pF printf modifiers. - Some clean up of vsprintf and test_printf code. * tag 'printk-for-5.2' of git://git.kernel.org/pub/scm/linux/kernel/git/pmladek/printk: lib/vsprintf: Make function pointer_string static vsprintf: Limit the length of inlined error messages vsprintf: Avoid confusion between invalid address and value vsprintf: Prevent crash when dereferencing invalid pointers vsprintf: Consolidate handling of unknown pointer specifiers vsprintf: Factor out %pO handler as kobject_string() vsprintf: Factor out %pV handler as va_format() vsprintf: Factor out %p[iI] handler as ip_addr_string() vsprintf: Do not check address of well-known strings vsprintf: Consistent %pK handling for kptr_restrict == 0 vsprintf: Shuffle restricted_pointer() printk: Tie printk_once / printk_deferred_once into .data.once for reset treewide: Switch printk users from %pf and %pF to %ps and %pS, respectively lib/test_printf: Switch to bitmap_zalloc() |
||
Linus Torvalds
|
c620f7bd0b |
arm64 updates for 5.2
Mostly just incremental improvements here: - Introduce AT_HWCAP2 for advertising CPU features to userspace - Expose SVE2 availability to userspace - Support for "data cache clean to point of deep persistence" (DC PODP) - Honour "mitigations=off" on the cmdline and advertise status via sysfs - CPU timer erratum workaround (Neoverse-N1 #1188873) - Introduce perf PMU driver for the SMMUv3 performance counters - Add config option to disable the kuser helpers page for AArch32 tasks - Futex modifications to ensure liveness under contention - Rework debug exception handling to seperate kernel and user handlers - Non-critical fixes and cleanup -----BEGIN PGP SIGNATURE----- iQEzBAABCgAdFiEEPxTL6PPUbjXGY88ct6xw3ITBYzQFAlzMFGgACgkQt6xw3ITB YzTicAf/TX1h1+ecbx4WJAa4qeiOCPoNpG9efldQumqJhKL44MR5bkhuShna5mwE ptm5qUXkZCxLTjzssZKnbdbgwa3t+emW8Of3D91IfI9akiZbMoDx5FGgcNbqjazb RLrhOFHwgontA38yppZN+DrL+sXbvif/CVELdHahkEx6KepSGaS2lmPXRmz/W56v 4yIRy/zxc3Dhjgfm3wKh72nBwoZdLiIc4mchd5pthNlR9E2idrYkQegG1C+gA00r o8uZRVOWgoh7H+QJE+xLUc8PaNCg8xqRRXOuZYg9GOz6hh7zSWhm+f1nRz9S2tIR gIgsCHNqoO2I3E1uJpAQXDGtt2kFhA== =ulpJ -----END PGP SIGNATURE----- Merge tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux Pull arm64 updates from Will Deacon: "Mostly just incremental improvements here: - Introduce AT_HWCAP2 for advertising CPU features to userspace - Expose SVE2 availability to userspace - Support for "data cache clean to point of deep persistence" (DC PODP) - Honour "mitigations=off" on the cmdline and advertise status via sysfs - CPU timer erratum workaround (Neoverse-N1 #1188873) - Introduce perf PMU driver for the SMMUv3 performance counters - Add config option to disable the kuser helpers page for AArch32 tasks - Futex modifications to ensure liveness under contention - Rework debug exception handling to seperate kernel and user handlers - Non-critical fixes and cleanup" * tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux: (92 commits) Documentation: Add ARM64 to kernel-parameters.rst arm64/speculation: Support 'mitigations=' cmdline option arm64: ssbs: Don't treat CPUs with SSBS as unaffected by SSB arm64: enable generic CPU vulnerabilites support arm64: add sysfs vulnerability show for speculative store bypass arm64: Fix size of __early_cpu_boot_status clocksource/arm_arch_timer: Use arch_timer_read_counter to access stable counters clocksource/arm_arch_timer: Remove use of workaround static key clocksource/arm_arch_timer: Drop use of static key in arch_timer_reg_read_stable clocksource/arm_arch_timer: Direcly assign set_next_event workaround arm64: Use arch_timer_read_counter instead of arch_counter_get_cntvct watchdog/sbsa: Use arch_timer_read_counter instead of arch_counter_get_cntvct ARM: vdso: Remove dependency with the arch_timer driver internals arm64: Apply ARM64_ERRATUM_1188873 to Neoverse-N1 arm64: Add part number for Neoverse N1 arm64: Make ARM64_ERRATUM_1188873 depend on COMPAT arm64: Restrict ARM64_ERRATUM_1188873 mitigation to AArch32 arm64: mm: Remove pte_unmap_nested() arm64: Fix compiler warning from pte_unmap() with -Wunused-but-set-variable arm64: compat: Reduce address limit for 64K pages ... |
||
Linus Torvalds
|
0bc40e549a |
Merge branch 'x86-mm-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 mm updates from Ingo Molnar: "The changes in here are: - text_poke() fixes and an extensive set of executability lockdowns, to (hopefully) eliminate the last residual circumstances under which we are using W|X mappings even temporarily on x86 kernels. This required a broad range of surgery in text patching facilities, module loading, trampoline handling and other bits. - tweak page fault messages to be more informative and more structured. - remove DISCONTIGMEM support on x86-32 and make SPARSEMEM the default. - reduce KASLR granularity on 5-level paging kernels from 512 GB to 1 GB. - misc other changes and updates" * 'x86-mm-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (36 commits) x86/mm: Initialize PGD cache during mm initialization x86/alternatives: Add comment about module removal races x86/kprobes: Use vmalloc special flag x86/ftrace: Use vmalloc special flag bpf: Use vmalloc special flag modules: Use vmalloc special flag mm/vmalloc: Add flag for freeing of special permsissions mm/hibernation: Make hibernation handle unmapped pages x86/mm/cpa: Add set_direct_map_*() functions x86/alternatives: Remove the return value of text_poke_*() x86/jump-label: Remove support for custom text poker x86/modules: Avoid breaking W^X while loading modules x86/kprobes: Set instruction page as executable x86/ftrace: Set trampoline pages as executable x86/kgdb: Avoid redundant comparison of patched code x86/alternatives: Use temporary mm for text poking x86/alternatives: Initialize temporary mm for patching fork: Provide a function for copying init_mm uprobes: Initialize uprobes earlier x86/mm: Save debug registers when loading a temporary mm ... |
||
Linus Torvalds
|
8f14772703 |
Merge branch 'x86-irq-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 irq updates from Ingo Molnar: "Here are the main changes in this tree: - Introduce x86-64 IRQ/exception/debug stack guard pages to detect stack overflows immediately and deterministically. - Clean up over a decade worth of cruft accumulated. The outcome of this should be more clear-cut faults/crashes when any of the low level x86 CPU stacks overflow, instead of silent memory corruption and sporadic failures much later on" * 'x86-irq-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (33 commits) x86/irq: Fix outdated comments x86/irq/64: Remove stack overflow debug code x86/irq/64: Remap the IRQ stack with guard pages x86/irq/64: Split the IRQ stack into its own pages x86/irq/64: Init hardirq_stack_ptr during CPU hotplug x86/irq/32: Handle irq stack allocation failure proper x86/irq/32: Invoke irq_ctx_init() from init_IRQ() x86/irq/64: Rename irq_stack_ptr to hardirq_stack_ptr x86/irq/32: Rename hard/softirq_stack to hard/softirq_stack_ptr x86/irq/32: Make irq stack a character array x86/irq/32: Define IRQ_STACK_SIZE x86/dumpstack/64: Speedup in_exception_stack() x86/exceptions: Split debug IST stack x86/exceptions: Enable IST guard pages x86/exceptions: Disconnect IST index and stack order x86/cpu: Remove orig_ist array x86/cpu: Prepare TSS.IST setup for guard pages x86/dumpstack/64: Use cpu_entry_area instead of orig_ist x86/irq/64: Use cpu entry area instead of orig_ist x86/traps: Use cpu_entry_area instead of orig_ist ... |
||
Linus Torvalds
|
2c6a392cdd |
Merge branch 'core-stacktrace-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull stack trace updates from Ingo Molnar: "So Thomas looked at the stacktrace code recently and noticed a few weirdnesses, and we all know how such stories of crummy kernel code meeting German engineering perfection end: a 45-patch series to clean it all up! :-) Here's the changes in Thomas's words: 'Struct stack_trace is a sinkhole for input and output parameters which is largely pointless for most usage sites. In fact if embedded into other data structures it creates indirections and extra storage overhead for no benefit. Looking at all usage sites makes it clear that they just require an interface which is based on a storage array. That array is either on stack, global or embedded into some other data structure. Some of the stack depot usage sites are outright wrong, but fortunately the wrongness just causes more stack being used for nothing and does not have functional impact. Another oddity is the inconsistent termination of the stack trace with ULONG_MAX. It's pointless as the number of entries is what determines the length of the stored trace. In fact quite some call sites remove the ULONG_MAX marker afterwards with or without nasty comments about it. Not all architectures do that and those which do, do it inconsistenly either conditional on nr_entries == 0 or unconditionally. The following series cleans that up by: 1) Removing the ULONG_MAX termination in the architecture code 2) Removing the ULONG_MAX fixups at the call sites 3) Providing plain storage array based interfaces for stacktrace and stackdepot. 4) Cleaning up the mess at the callsites including some related cleanups. 5) Removing the struct stack_trace based interfaces This is not changing the struct stack_trace interfaces at the architecture level, but it removes the exposure to the generic code'" * 'core-stacktrace-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (45 commits) x86/stacktrace: Use common infrastructure stacktrace: Provide common infrastructure lib/stackdepot: Remove obsolete functions stacktrace: Remove obsolete functions livepatch: Simplify stack trace retrieval tracing: Remove the last struct stack_trace usage tracing: Simplify stack trace retrieval tracing: Make ftrace_trace_userstack() static and conditional tracing: Use percpu stack trace buffer more intelligently tracing: Simplify stacktrace retrieval in histograms lockdep: Simplify stack trace handling lockdep: Remove save argument from check_prev_add() lockdep: Remove unused trace argument from print_circular_bug() drm: Simplify stacktrace handling dm persistent data: Simplify stack trace handling dm bufio: Simplify stack trace retrieval btrfs: ref-verify: Simplify stack trace retrieval dma/debug: Simplify stracktrace retrieval fault-inject: Simplify stacktrace retrieval mm/page_owner: Simplify stack trace handling ... |
||
Linus Torvalds
|
6ec62961e6 |
Merge branch 'core-objtool-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull objtool updates from Ingo Molnar: "This is a series from Peter Zijlstra that adds x86 build-time uaccess validation of SMAP to objtool, which will detect and warn about the following uaccess API usage bugs and weirdnesses: - call to %s() with UACCESS enabled - return with UACCESS enabled - return with UACCESS disabled from a UACCESS-safe function - recursive UACCESS enable - redundant UACCESS disable - UACCESS-safe disables UACCESS As it turns out not leaking uaccess permissions outside the intended uaccess functionality is hard when the interfaces are complex and when such bugs are mostly dormant. As a bonus we now also check the DF flag. We had at least one high-profile bug in that area in the early days of Linux, and the checking is fairly simple. The checks performed and warnings emitted are: - call to %s() with DF set - return with DF set - return with modified stack frame - recursive STD - redundant CLD It's all x86-only for now, but later on this can also be used for PAN on ARM and objtool is fairly cross-platform in principle. While all warnings emitted by this new checking facility that got reported to us were fixed, there might be GCC version dependent warnings that were not reported yet - which we'll address, should they trigger. The warnings are non-fatal build warnings" * 'core-objtool-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (27 commits) mm/uaccess: Use 'unsigned long' to placate UBSAN warnings on older GCC versions x86/uaccess: Dont leak the AC flag into __put_user() argument evaluation sched/x86_64: Don't save flags on context switch objtool: Add Direction Flag validation objtool: Add UACCESS validation objtool: Fix sibling call detection objtool: Rewrite alt->skip_orig objtool: Add --backtrace support objtool: Rewrite add_ignores() objtool: Handle function aliases objtool: Set insn->func for alternatives x86/uaccess, kcov: Disable stack protector x86/uaccess, ftrace: Fix ftrace_likely_update() vs. SMAP x86/uaccess, ubsan: Fix UBSAN vs. SMAP x86/uaccess, kasan: Fix KASAN vs SMAP x86/smap: Ditch __stringify() x86/uaccess: Introduce user_access_{save,restore}() x86/uaccess, signal: Fix AC=1 bloat x86/uaccess: Always inline user_access_begin() x86/uaccess, xen: Suppress SMAP warnings ... |
||
Linus Torvalds
|
171c2bcbcb |
Merge branch 'core-mm-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull unified TLB flushing from Ingo Molnar: "This contains the generic mmu_gather feature from Peter Zijlstra, which is an all-arch unification of TLB flushing APIs, via the following (broad) steps: - enhance the <asm-generic/tlb.h> APIs to cover more arch details - convert most TLB flushing arch implementations to the generic <asm-generic/tlb.h> APIs. - remove leftovers of per arch implementations After this series every single architecture makes use of the unified TLB flushing APIs" * 'core-mm-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: mm/resource: Use resource_overlaps() to simplify region_intersects() ia64/tlb: Eradicate tlb_migrate_finish() callback asm-generic/tlb: Remove tlb_table_flush() asm-generic/tlb: Remove tlb_flush_mmu_free() asm-generic/tlb: Remove CONFIG_HAVE_GENERIC_MMU_GATHER asm-generic/tlb: Remove arch_tlb*_mmu() s390/tlb: Convert to generic mmu_gather asm-generic/tlb: Introduce CONFIG_HAVE_MMU_GATHER_NO_GATHER=y arch/tlb: Clean up simple architectures um/tlb: Convert to generic mmu_gather sh/tlb: Convert SH to generic mmu_gather ia64/tlb: Convert to generic mmu_gather arm/tlb: Convert to generic mmu_gather asm-generic/tlb, arch: Invert CONFIG_HAVE_RCU_TABLE_INVALIDATE asm-generic/tlb, ia64: Conditionally provide tlb_migrate_finish() asm-generic/tlb: Provide generic tlb_flush() based on flush_tlb_mm() asm-generic/tlb, arch: Provide generic tlb_flush() based on flush_tlb_range() asm-generic/tlb, arch: Provide generic VIPT cache flush asm-generic/tlb, arch: Provide CONFIG_HAVE_MMU_GATHER_PAGE_SIZE asm-generic/tlb: Provide a comment |
||
Al Viro
|
74b1da5645 |
shmem: make use of ->free_inode()
same situation as for hugetlbfs Signed-off-by: Al Viro <viro@zeniv.linux.org.uk> |
||
Rick Edgecombe
|
868b104d73 |
mm/vmalloc: Add flag for freeing of special permsissions
Add a new flag VM_FLUSH_RESET_PERMS, for enabling vfree operations to immediately clear executable TLB entries before freeing pages, and handle resetting permissions on the directmap. This flag is useful for any kind of memory with elevated permissions, or where there can be related permissions changes on the directmap. Today this is RO+X and RO memory. Although this enables directly vfreeing non-writeable memory now, non-writable memory cannot be freed in an interrupt because the allocation itself is used as a node on deferred free list. So when RO memory needs to be freed in an interrupt the code doing the vfree needs to have its own work queue, as was the case before the deferred vfree list was added to vmalloc. For architectures with set_direct_map_ implementations this whole operation can be done with one TLB flush when centralized like this. For others with directmap permissions, currently only arm64, a backup method using set_memory functions is used to reset the directmap. When arm64 adds set_direct_map_ functions, this backup can be removed. When the TLB is flushed to both remove TLB entries for the vmalloc range mapping and the direct map permissions, the lazy purge operation could be done to try to save a TLB flush later. However today vm_unmap_aliases could flush a TLB range that does not include the directmap. So a helper is added with extra parameters that can allow both the vmalloc address and the direct mapping to be flushed during this operation. The behavior of the normal vm_unmap_aliases function is unchanged. Suggested-by: Dave Hansen <dave.hansen@intel.com> Suggested-by: Andy Lutomirski <luto@kernel.org> Suggested-by: Will Deacon <will.deacon@arm.com> Signed-off-by: Rick Edgecombe <rick.p.edgecombe@intel.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: <akpm@linux-foundation.org> Cc: <ard.biesheuvel@linaro.org> Cc: <deneen.t.dock@intel.com> Cc: <kernel-hardening@lists.openwall.com> Cc: <kristen@linux.intel.com> Cc: <linux_dti@icloud.com> Cc: Borislav Petkov <bp@alien8.de> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Nadav Amit <nadav.amit@gmail.com> Cc: Rik van Riel <riel@surriel.com> Cc: Thomas Gleixner <tglx@linutronix.de> Link: https://lkml.kernel.org/r/20190426001143.4983-17-namit@vmware.com Signed-off-by: Ingo Molnar <mingo@kernel.org> |
||
Rick Edgecombe
|
d633269286 |
mm/hibernation: Make hibernation handle unmapped pages
Make hibernate handle unmapped pages on the direct map when CONFIG_ARCH_HAS_SET_ALIAS=y is set. These functions allow for setting pages to invalid configurations, so now hibernate should check if the pages have valid mappings and handle if they are unmapped when doing a hibernate save operation. Previously this checking was already done when CONFIG_DEBUG_PAGEALLOC=y was configured. It does not appear to have a big hibernating performance impact. The speed of the saving operation before this change was measured as 819.02 MB/s, and after was measured at 813.32 MB/s. Before: [ 4.670938] PM: Wrote 171996 kbytes in 0.21 seconds (819.02 MB/s) After: [ 4.504714] PM: Wrote 178932 kbytes in 0.22 seconds (813.32 MB/s) Signed-off-by: Rick Edgecombe <rick.p.edgecombe@intel.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Acked-by: Pavel Machek <pavel@ucw.cz> Cc: <akpm@linux-foundation.org> Cc: <ard.biesheuvel@linaro.org> Cc: <deneen.t.dock@intel.com> Cc: <kernel-hardening@lists.openwall.com> Cc: <kristen@linux.intel.com> Cc: <linux_dti@icloud.com> Cc: <will.deacon@arm.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Nadav Amit <nadav.amit@gmail.com> Cc: Rafael J. Wysocki <rjw@rjwysocki.net> Cc: Rik van Riel <riel@surriel.com> Cc: Thomas Gleixner <tglx@linutronix.de> Link: https://lkml.kernel.org/r/20190426001143.4983-16-namit@vmware.com Signed-off-by: Ingo Molnar <mingo@kernel.org> |
||
Thomas Gleixner
|
af52bf6b92 |
mm/page_owner: Simplify stack trace handling
Replace the indirection through struct stack_trace by using the storage array based interfaces. The original code in all printing functions is really wrong. It allocates a storage array on stack which is unused because depot_fetch_stack() does not store anything in it. It overwrites the entries pointer in the stack_trace struct so it points to the depot storage. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: linux-mm@kvack.org Cc: Mike Rapoport <rppt@linux.vnet.ibm.com> Cc: David Rientjes <rientjes@google.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Alexander Potapenko <glider@google.com> Cc: Alexey Dobriyan <adobriyan@gmail.com> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: kasan-dev@googlegroups.com Cc: Akinobu Mita <akinobu.mita@gmail.com> Cc: Christoph Hellwig <hch@lst.de> Cc: iommu@lists.linux-foundation.org Cc: Robin Murphy <robin.murphy@arm.com> Cc: Marek Szyprowski <m.szyprowski@samsung.com> Cc: Johannes Thumshirn <jthumshirn@suse.de> Cc: David Sterba <dsterba@suse.com> Cc: Chris Mason <clm@fb.com> Cc: Josef Bacik <josef@toxicpanda.com> Cc: linux-btrfs@vger.kernel.org Cc: dm-devel@redhat.com Cc: Mike Snitzer <snitzer@redhat.com> Cc: Alasdair Kergon <agk@redhat.com> Cc: Daniel Vetter <daniel@ffwll.ch> Cc: intel-gfx@lists.freedesktop.org Cc: Joonas Lahtinen <joonas.lahtinen@linux.intel.com> Cc: Maarten Lankhorst <maarten.lankhorst@linux.intel.com> Cc: dri-devel@lists.freedesktop.org Cc: David Airlie <airlied@linux.ie> Cc: Jani Nikula <jani.nikula@linux.intel.com> Cc: Rodrigo Vivi <rodrigo.vivi@intel.com> Cc: Tom Zanussi <tom.zanussi@linux.intel.com> Cc: Miroslav Benes <mbenes@suse.cz> Cc: linux-arch@vger.kernel.org Link: https://lkml.kernel.org/r/20190425094802.067210525@linutronix.de |
||
Thomas Gleixner
|
880e049c9c |
mm/kasan: Simplify stacktrace handling
Replace the indirection through struct stack_trace by using the storage array based interfaces. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Josh Poimboeuf <jpoimboe@redhat.com> Acked-by: Dmitry Vyukov <dvyukov@google.com> Acked-by: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: Alexander Potapenko <glider@google.com> Cc: kasan-dev@googlegroups.com Cc: linux-mm@kvack.org Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Alexey Dobriyan <adobriyan@gmail.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Mike Rapoport <rppt@linux.vnet.ibm.com> Cc: Akinobu Mita <akinobu.mita@gmail.com> Cc: Christoph Hellwig <hch@lst.de> Cc: iommu@lists.linux-foundation.org Cc: Robin Murphy <robin.murphy@arm.com> Cc: Marek Szyprowski <m.szyprowski@samsung.com> Cc: Johannes Thumshirn <jthumshirn@suse.de> Cc: David Sterba <dsterba@suse.com> Cc: Chris Mason <clm@fb.com> Cc: Josef Bacik <josef@toxicpanda.com> Cc: linux-btrfs@vger.kernel.org Cc: dm-devel@redhat.com Cc: Mike Snitzer <snitzer@redhat.com> Cc: Alasdair Kergon <agk@redhat.com> Cc: Daniel Vetter <daniel@ffwll.ch> Cc: intel-gfx@lists.freedesktop.org Cc: Joonas Lahtinen <joonas.lahtinen@linux.intel.com> Cc: Maarten Lankhorst <maarten.lankhorst@linux.intel.com> Cc: dri-devel@lists.freedesktop.org Cc: David Airlie <airlied@linux.ie> Cc: Jani Nikula <jani.nikula@linux.intel.com> Cc: Rodrigo Vivi <rodrigo.vivi@intel.com> Cc: Tom Zanussi <tom.zanussi@linux.intel.com> Cc: Miroslav Benes <mbenes@suse.cz> Cc: linux-arch@vger.kernel.org Link: https://lkml.kernel.org/r/20190425094801.963261479@linutronix.de |
||
Thomas Gleixner
|
07984aad1c |
mm/kmemleak: Simplify stacktrace handling
Replace the indirection through struct stack_trace by using the storage array based interfaces. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Josh Poimboeuf <jpoimboe@redhat.com> Acked-by: Catalin Marinas <catalin.marinas@arm.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: linux-mm@kvack.org Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Alexander Potapenko <glider@google.com> Cc: Alexey Dobriyan <adobriyan@gmail.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: kasan-dev@googlegroups.com Cc: Mike Rapoport <rppt@linux.vnet.ibm.com> Cc: Akinobu Mita <akinobu.mita@gmail.com> Cc: Christoph Hellwig <hch@lst.de> Cc: iommu@lists.linux-foundation.org Cc: Robin Murphy <robin.murphy@arm.com> Cc: Marek Szyprowski <m.szyprowski@samsung.com> Cc: Johannes Thumshirn <jthumshirn@suse.de> Cc: David Sterba <dsterba@suse.com> Cc: Chris Mason <clm@fb.com> Cc: Josef Bacik <josef@toxicpanda.com> Cc: linux-btrfs@vger.kernel.org Cc: dm-devel@redhat.com Cc: Mike Snitzer <snitzer@redhat.com> Cc: Alasdair Kergon <agk@redhat.com> Cc: Daniel Vetter <daniel@ffwll.ch> Cc: intel-gfx@lists.freedesktop.org Cc: Joonas Lahtinen <joonas.lahtinen@linux.intel.com> Cc: Maarten Lankhorst <maarten.lankhorst@linux.intel.com> Cc: dri-devel@lists.freedesktop.org Cc: David Airlie <airlied@linux.ie> Cc: Jani Nikula <jani.nikula@linux.intel.com> Cc: Rodrigo Vivi <rodrigo.vivi@intel.com> Cc: Tom Zanussi <tom.zanussi@linux.intel.com> Cc: Miroslav Benes <mbenes@suse.cz> Cc: linux-arch@vger.kernel.org Link: https://lkml.kernel.org/r/20190425094801.863716911@linutronix.de |
||
Thomas Gleixner
|
7971679994 |
mm/slub: Simplify stack trace retrieval
Replace the indirection through struct stack_trace with an invocation of the storage array based interface. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Josh Poimboeuf <jpoimboe@redhat.com> Acked-by: Christoph Lameter <cl@linux.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Pekka Enberg <penberg@kernel.org> Cc: linux-mm@kvack.org Cc: David Rientjes <rientjes@google.com> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Alexander Potapenko <glider@google.com> Cc: Alexey Dobriyan <adobriyan@gmail.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: kasan-dev@googlegroups.com Cc: Mike Rapoport <rppt@linux.vnet.ibm.com> Cc: Akinobu Mita <akinobu.mita@gmail.com> Cc: Christoph Hellwig <hch@lst.de> Cc: iommu@lists.linux-foundation.org Cc: Robin Murphy <robin.murphy@arm.com> Cc: Marek Szyprowski <m.szyprowski@samsung.com> Cc: Johannes Thumshirn <jthumshirn@suse.de> Cc: David Sterba <dsterba@suse.com> Cc: Chris Mason <clm@fb.com> Cc: Josef Bacik <josef@toxicpanda.com> Cc: linux-btrfs@vger.kernel.org Cc: dm-devel@redhat.com Cc: Mike Snitzer <snitzer@redhat.com> Cc: Alasdair Kergon <agk@redhat.com> Cc: Daniel Vetter <daniel@ffwll.ch> Cc: intel-gfx@lists.freedesktop.org Cc: Joonas Lahtinen <joonas.lahtinen@linux.intel.com> Cc: Maarten Lankhorst <maarten.lankhorst@linux.intel.com> Cc: dri-devel@lists.freedesktop.org Cc: David Airlie <airlied@linux.ie> Cc: Jani Nikula <jani.nikula@linux.intel.com> Cc: Rodrigo Vivi <rodrigo.vivi@intel.com> Cc: Tom Zanussi <tom.zanussi@linux.intel.com> Cc: Miroslav Benes <mbenes@suse.cz> Cc: linux-arch@vger.kernel.org Link: https://lkml.kernel.org/r/20190425094801.771410441@linutronix.de |
||
Andrey Ryabinin
|
8118b82eb7 |
mm/page_alloc.c: fix never set ALLOC_NOFRAGMENT flag
Commit |
||
Andrey Ryabinin
|
8139ad043d |
mm/page_alloc.c: avoid potential NULL pointer dereference
ac.preferred_zoneref->zone passed to alloc_flags_nofragment() can be NULL.
'zone' pointer unconditionally derefernced in alloc_flags_nofragment().
Bail out on NULL zone to avoid potential crash. Currently we don't see
any crashes only because alloc_flags_nofragment() has another bug which
allows compiler to optimize away all accesses to 'zone'.
Link: http://lkml.kernel.org/r/20190423120806.3503-1-aryabinin@virtuozzo.com
Fixes:
|
||
Mel Gorman
|
ee8ab0eeb4 |
mm, page_alloc: always use a captured page regardless of compaction result
During the development of commit |
||
Mel Gorman
|
24512228b7 |
mm: do not boost watermarks to avoid fragmentation for the DISCONTIG memory model
Mikulas Patocka reported that commit |
||
David Hildenbrand
|
89c02e69fc |
mm/memory_hotplug.c: drop memory device reference after find_memory_block()
Right now we are using find_memory_block() to get the node id for the
pfn range to online. We are missing to drop a reference to the memory
block device. While the device still gets unregistered via
device_unregister(), resulting in no user visible problem, the device is
never released via device_release(), resulting in a memory leak. Fix
that by properly using a put_device().
Link: http://lkml.kernel.org/r/20190411110955.1430-1-david@redhat.com
Fixes:
|
||
Linus Torvalds
|
4c3f49ae13 |
Merge branch 'for-5.1-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/dennis/percpu
Pull percpu fixlet from Dennis Zhou: "This stops printing the base address of percpu memory on initialization" * 'for-5.1-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/dennis/percpu: percpu: stop printing kernel addresses |
||
Andrea Arcangeli
|
04f5866e41 |
coredump: fix race condition between mmget_not_zero()/get_task_mm() and core dumping
The core dumping code has always run without holding the mmap_sem for
writing, despite that is the only way to ensure that the entire vma
layout will not change from under it. Only using some signal
serialization on the processes belonging to the mm is not nearly enough.
This was pointed out earlier. For example in Hugh's post from Jul 2017:
https://lkml.kernel.org/r/alpine.LSU.2.11.1707191716030.2055@eggly.anvils
"Not strictly relevant here, but a related note: I was very surprised
to discover, only quite recently, how handle_mm_fault() may be called
without down_read(mmap_sem) - when core dumping. That seems a
misguided optimization to me, which would also be nice to correct"
In particular because the growsdown and growsup can move the
vm_start/vm_end the various loops the core dump does around the vma will
not be consistent if page faults can happen concurrently.
Pretty much all users calling mmget_not_zero()/get_task_mm() and then
taking the mmap_sem had the potential to introduce unexpected side
effects in the core dumping code.
Adding mmap_sem for writing around the ->core_dump invocation is a
viable long term fix, but it requires removing all copy user and page
faults and to replace them with get_dump_page() for all binary formats
which is not suitable as a short term fix.
For the time being this solution manually covers the places that can
confuse the core dump either by altering the vma layout or the vma flags
while it runs. Once ->core_dump runs under mmap_sem for writing the
function mmget_still_valid() can be dropped.
Allowing mmap_sem protected sections to run in parallel with the
coredump provides some minor parallelism advantage to the swapoff code
(which seems to be safe enough by never mangling any vma field and can
keep doing swapins in parallel to the core dumping) and to some other
corner case.
In order to facilitate the backporting I added "Fixes: 86039bd3b4e6"
however the side effect of this same race condition in /proc/pid/mem
should be reproducible since before 2.6.12-rc2 so I couldn't add any
other "Fixes:" because there's no hash beyond the git genesis commit.
Because find_extend_vma() is the only location outside of the process
context that could modify the "mm" structures under mmap_sem for
reading, by adding the mmget_still_valid() check to it, all other cases
that take the mmap_sem for reading don't need the new check after
mmget_not_zero()/get_task_mm(). The expand_stack() in page fault
context also doesn't need the new check, because all tasks under core
dumping are frozen.
Link: http://lkml.kernel.org/r/20190325224949.11068-1-aarcange@redhat.com
Fixes:
|
||
Arnd Bergmann
|
dce5b0bdee |
mm/kmemleak.c: fix unused-function warning
The only references outside of the #ifdef have been removed, so now we
get a warning in non-SMP configurations:
mm/kmemleak.c:1404:13: error: unused function 'scan_large_block' [-Werror,-Wunused-function]
Add a new #ifdef around it.
Link: http://lkml.kernel.org/r/20190416123148.3502045-1-arnd@arndb.de
Fixes:
|
||
Johannes Weiner
|
3b991208b8 |
mm: fix inactive list balancing between NUMA nodes and cgroups
During !CONFIG_CGROUP reclaim, we expand the inactive list size if it's
thrashing on the node that is about to be reclaimed. But when cgroups
are enabled, we suddenly ignore the node scope and use the cgroup scope
only. The result is that pressure bleeds between NUMA nodes depending
on whether cgroups are merely compiled into Linux. This behavioral
difference is unexpected and undesirable.
When the refault adaptivity of the inactive list was first introduced,
there were no statistics at the lruvec level - the intersection of node
and memcg - so it was better than nothing.
But now that we have that infrastructure, use lruvec_page_state() to
make the list balancing decision always NUMA aware.
[hannes@cmpxchg.org: fix bisection hole]
Link: http://lkml.kernel.org/r/20190417155241.GB23013@cmpxchg.org
Link: http://lkml.kernel.org/r/20190412144438.2645-1-hannes@cmpxchg.org
Fixes:
|
||
Qian Cai
|
1a9f219157 |
mm/hotplug: treat CMA pages as unmovable
has_unmovable_pages() is used by allocating CMA and gigantic pages as well as the memory hotplug. The later doesn't know how to offline CMA pool properly now, but if an unused (free) CMA page is encountered, then has_unmovable_pages() happily considers it as a free memory and propagates this up the call chain. Memory offlining code then frees the page without a proper CMA tear down which leads to an accounting issues. Moreover if the same memory range is onlined again then the memory never gets back to the CMA pool. State after memory offline: # grep cma /proc/vmstat nr_free_cma 205824 # cat /sys/kernel/debug/cma/cma-kvm_cma/count 209920 Also, kmemleak still think those memory address are reserved below but have already been used by the buddy allocator after onlining. This patch fixes the situation by treating CMA pageblocks as unmovable except when has_unmovable_pages() is called as part of CMA allocation. Offlined Pages 4096 kmemleak: Cannot insert 0xc000201f7d040008 into the object search tree (overlaps existing) Call Trace: dump_stack+0xb0/0xf4 (unreliable) create_object+0x344/0x380 __kmalloc_node+0x3ec/0x860 kvmalloc_node+0x58/0x110 seq_read+0x41c/0x620 __vfs_read+0x3c/0x70 vfs_read+0xbc/0x1a0 ksys_read+0x7c/0x140 system_call+0x5c/0x70 kmemleak: Kernel memory leak detector disabled kmemleak: Object 0xc000201cc8000000 (size 13757317120): kmemleak: comm "swapper/0", pid 0, jiffies 4294937297 kmemleak: min_count = -1 kmemleak: count = 0 kmemleak: flags = 0x5 kmemleak: checksum = 0 kmemleak: backtrace: cma_declare_contiguous+0x2a4/0x3b0 kvm_cma_reserve+0x11c/0x134 setup_arch+0x300/0x3f8 start_kernel+0x9c/0x6e8 start_here_common+0x1c/0x4b0 kmemleak: Automatic memory scanning thread ended [cai@lca.pw: use is_migrate_cma_page() and update commit log] Link: http://lkml.kernel.org/r/20190416170510.20048-1-cai@lca.pw Link: http://lkml.kernel.org/r/20190413002623.8967-1-cai@lca.pw Signed-off-by: Qian Cai <cai@lca.pw> Acked-by: Michal Hocko <mhocko@suse.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Reviewed-by: Oscar Salvador <osalvador@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Konstantin Khlebnikov
|
e8277b3b52 |
mm/vmstat.c: fix /proc/vmstat format for CONFIG_DEBUG_TLBFLUSH=y CONFIG_SMP=n
Commit |
||
Hugh Dickins
|
af53d3e9e0 |
mm: swapoff: shmem_unuse() stop eviction without igrab()
The igrab() in shmem_unuse() looks good, but we forgot that it gives no protection against concurrent unmounting: a point made by Konstantin Khlebnikov eight years ago, and then fixed in 2.6.39 by |
||
Hugh Dickins
|
64165b1aff |
mm: swapoff: take notice of completion sooner
The old try_to_unuse() implementation was driven by find_next_to_unuse(),
which terminated as soon as all the swap had been freed.
Add inuse_pages checks now (alongside signal_pending()) to stop scanning
mms and swap_map once finished.
The same ought to be done in shmem_unuse() too, but never was before,
and needs a different interface: so leave it as is for now.
Link: http://lkml.kernel.org/r/alpine.LSU.2.11.1904081258200.1523@eggly.anvils
Fixes:
|
||
Hugh Dickins
|
dd862deb15 |
mm: swapoff: remove too limiting SWAP_UNUSE_MAX_TRIES
SWAP_UNUSE_MAX_TRIES 3 appeared to work well in earlier testing, but
further testing has proved it to be a source of unnecessary swapoff
EBUSY failures (which can then be followed by unmount EBUSY failures).
When mmget_not_zero() or shmem's igrab() fails, there is an mm exiting
or inode being evicted, freeing up swap independent of try_to_unuse().
Those typically completed much sooner than the old quadratic swapoff,
but now it's more common that swapoff may need to wait for them.
It's possible to move those cases from init_mm.mmlist and shmem_swaplist
to separate "exiting" swaplists, and try_to_unuse() then wait for those
lists to be emptied; but we've not bothered with that in the past, and
don't want to risk missing some other forgotten case. So just revert to
cycling around until the swap is gone, without any retries limit.
Link: http://lkml.kernel.org/r/alpine.LSU.2.11.1904081256170.1523@eggly.anvils
Fixes:
|
||
Hugh Dickins
|
8703954654 |
mm: swapoff: shmem_find_swap_entries() filter out other types
Swapfile "type" was passed all the way down to shmem_unuse_inode(), but
then forgotten from shmem_find_swap_entries(): with the result that
removing one swapfile would try to free up all the swap from shmem - no
problem when only one swapfile anyway, but counter-productive when more,
causing swapoff to be unnecessarily OOM-killed when it should succeed.
Link: http://lkml.kernel.org/r/alpine.LSU.2.11.1904081254470.1523@eggly.anvils
Fixes:
|
||
Qian Cai
|
1a62b18d51 |
slab: store tagged freelist for off-slab slabmgmt
Commit |