The patch drops PHB operation get_log() and merges its logic to
eeh_ops::get_log().
Signed-off-by: Gavin Shan <gwshan@linux.vnet.ibm.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
The patch drops PHB EEH operation post_init() and merge its logic
to eeh_ops::post_init().
Signed-off-by: Gavin Shan <gwshan@linux.vnet.ibm.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
The patch drops PHB EEH operation err_inject() and merge its logic
to eeh_ops::err_inject().
Signed-off-by: Gavin Shan <gwshan@linux.vnet.ibm.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
The patch renames alloc_m64_pe() to reserve_m64_pe() to reflect
its real usage: We reserve PE numbers for M64 segments in advance
and then pick up the reserved PE numbers when building the mapping
between PE numbers and M64 segments.
Signed-off-by: Gavin Shan <gwshan@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
The dma_get_required_mask() function is used by some drivers to
query the platform about what DMA mask is needed to cover all of
memory. This is a bit of a strange semantic when we have to choose
between IOMMU translation or bypass, but essentially what it means
is "what DMA mask will give best performances".
Currently, our IOMMU backend always returns a 32-bit mask here, we
don't do anything special to it when we have bypass available. This
causes some drivers to choose a 32-bit mask, thus losing the ability
to use the bypass window, thinking this is more efficient. The problem
was reported from the driver of following device:
0004:03:00.0 0107: 1000:0087 (rev 05)
0004:03:00.0 Serial Attached SCSI controller: LSI Logic / Symbios \
Logic SAS2308 PCI-Express Fusion-MPT SAS-2 (rev 05)
This patch adds an override of that function in order to, instead,
return a 64-bit mask whenever a bypass window is available in order
for drivers to prefer this configuration.
Reported-by: Murali N. Iyer <mniyer@us.ibm.com>
Suggested-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Gavin Shan <gwshan@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
The patch introduces eeh_ops::err_inject(), which allows to inject
specified errors to indicated PE for testing purpose. The functionality
isn't support on pSeries platform. On PowerNV, the functionality
relies on OPAL API opal_pci_err_inject().
Signed-off-by: Mike Qiu <qiudayu@linux.vnet.ibm.com>
Signed-off-by: Gavin Shan <gwshan@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
The patch introduces 3 PHB callbacks: compound PE state retrieval,
force freezing and unfreezing compound PE. The PCI config accessors
and PowerNV EEH backend can use them in subsequent patches.
We don't export the capability of compound PE to EEH core, which
helps avoiding more complexity to EEH core.
Signed-off-by: Gavin Shan <gwshan@linux.vnet.ibm.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
This patch enables M64 aperatus for PHB3.
We already had platform hook (ppc_md.pcibios_window_alignment) to affect
the PCI resource assignment done in PCI core so that each PE's M32 resource
was built on basis of M32 segment size. Similarly, we're using that for
M64 assignment on basis of M64 segment size.
* We're using last M64 BAR to cover M64 aperatus, and it's shared by all
256 PEs.
* We don't support P7IOC yet. However, some function callbacks are added
to (struct pnv_phb) so that we can reuse them on P7IOC in future.
* PE, corresponding to PCI bus with large M64 BAR device attached, might
span multiple M64 segments. We introduce "compound" PE to cover the case.
The compound PE is a list of PEs and the master PE is used as before.
The slave PEs are just for MMIO isolation.
Signed-off-by: Guo Chao <yan@linux.vnet.ibm.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Since a TCE page size can be other than 4K, make it configurable for
P5IOC2 and IODA PHBs.
Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
In the kdump scenario, the first kerenl doesn't shutdown PCI devices
and the kdump kerenl clean PHB IODA table at the early probe time.
That means the kdump kerenl can't support PCI transactions piled
by the first kerenl. Otherwise, lots of EEH errors and frozen PEs
will be detected.
In order to avoid the EEH errors, the PHB is resetted to drop all
PCI transaction from the first kerenl.
Signed-off-by: Gavin Shan <gwshan@linux.vnet.ibm.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
The problem was initially reported by Wendy who tried pass through
IPR adapter, which was connected to PHB root port directly, to KVM
based guest. When doing that, pci_reset_bridge_secondary_bus() was
called by VFIO driver and linkDown was detected by the root port.
That caused all PEs to be frozen.
The patch fixes the issue by routing the reset for the secondary bus
of root port to underly firmware. For that, one more weak function
pci_reset_secondary_bus() is introduced so that the individual platforms
can override that and do specific reset for bridge's secondary bus.
Reported-by: Wendy Xiong <wenxiong@linux.vnet.ibm.com>
Signed-off-by: Gavin Shan <gwshan@linux.vnet.ibm.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
The patch introduces bootarg "eeh=off" to disable EEH functinality.
Also, it creates /sys/kerenl/debug/powerpc/eeh_enable to disable
or enable EEH functionality. By default, we have the functionality
enabled.
For PowerNV platform, we will restore to have the conventional
mechanism of clearing frozen PE during PCI config access if we're
going to disable EEH functionality. Conversely, we will rely on
EEH for error recovery.
The patch also fixes the issue that we missed to cover the case
of disabled EEH functionality in function ioda_eeh_event(). Those
events driven by interrupt should be cleared to avoid endless
reporting.
Signed-off-by: Gavin Shan <gwshan@linux.vnet.ibm.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
The flag PNV_EEH_STATE_ENABLED is put into pnv_phb::eeh_state,
which is protected by CONFIG_EEH. We needn't that. Instead, we
can have pnv_phb::flags and maintain all flags there, which is
the purpose of the patch. The patch also renames PNV_EEH_STATE_ENABLED
to PNV_PHB_FLAG_EEH.
Signed-off-by: Gavin Shan <gwshan@linux.vnet.ibm.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
The PHB state PNV_EEH_STATE_REMOVED maintained in pnv_phb isn't
so useful any more and it's duplicated to EEH_PE_ISOLATED. The
patch replaces PNV_EEH_STATE_REMOVED with EEH_PE_ISOLATED.
Signed-off-by: Gavin Shan <gwshan@linux.vnet.ibm.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
This patch adds the support for to create a direct iommu "bypass"
window on IODA2 bridges (such as Power8) allowing to bypass iommu
page translation completely for 64-bit DMA capable devices, thus
significantly improving DMA performances.
Additionally, this adds a hook to the struct iommu_table so that
the IOMMU API / VFIO can disable the bypass when external ownership
is requested, since in that case, the device will be used by an
environment such as userspace or a KVM guest which must not be
allowed to bypass translations.
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Merge a pile of fixes that went into the "merge" branch (3.13-rc's) such
as Anton Little Endian fixes.
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Prevent ioda_eeh_hub_diag() from clobbering itself when called by supplying
a per-PHB buffer for P7IOC hub diagnostic data. Take care to inform OPAL of
the correct size for the buffer.
[Small style change to the use of sizeof -- BenH]
Signed-off-by: Brian W Hart <hartb@linux.vnet.ibm.com>
Acked-by: Gavin Shan <shangw@linux.vnet.ibm.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Prior to the completion of PCI enumeration, we actively detects
EEH errors on PCI config cycles and dump PHB diag-data if necessary.
The EEH backend also dumps PHB diag-data in case of frozen PE or
fenced PHB. However, we are using different functions to dump the
PHB diag-data for those 2 cases.
The patch merges the functions for dumping PHB diag-data to one so
that we can avoid duplicate code. Also, we never dump PHB3 diag-data
during PCI config cycles with frozen PE. The patch fixes it as well.
Signed-off-by: Gavin Shan <shangw@linux.vnet.ibm.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
We're assigning PE numbers after the completion of PCI probe. During
the PCI probe, we had PE#0 as the super container to encompass all
PCI devices. However, that's inappropriate since PELTM has ascending
order of priority on search on P7IOC. So we need PE#127 takes the
role that PE#0 has previously. For PHB3, we still have PE#0 as the
reserved PE.
The patch supposes that the underly firmware has built the RID to
PE# mapping after resetting IODA tables: all PELTM entries except
last one has invalid mapping on P7IOC, but all RTEs have binding
to PE#0. The reserved PE# is being exported by firmware by device
tree.
Signed-off-by: Gavin Shan <shangw@linux.vnet.ibm.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Topic branch for commits that the KVM tree might want to pull
in separately.
Hand merged a few files due to conflicts with the LE stuff
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
The existing TCE machine calls (tce_build and tce_free) only support
virtual mode as they call __raw_writeq for TCE invalidation what
fails in real mode.
This introduces tce_build_rm and tce_free_rm real mode versions
which do mostly the same but use "Store Doubleword Caching Inhibited
Indexed" instruction for TCE invalidation.
This new feature is going to be utilized by real mode support of VFIO.
Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Each PHB instance (struct pnv_phb) has its corresponding log blob,
which is used to hold the retrieved error log from firmware. The
current size of that (4096) isn't enough for PHB3 case and the patch
makes that double to 8192.
Signed-off-by: Gavin Shan <shangw@linux.vnet.ibm.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
pnv_pci_setup_bml_iommu was missing a byteswap of a device
tree property.
Signed-off-by: Anton Blanchard <anton@samba.org>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Currently, we're using the combo (PCI bus + devfn) in the PCI
config accessors and PCI config accessors in EEH depends on them.
However, it's not safe to refer the PCI bus which might have been
removed during hotplug. So we're using device node in the PCI
config accessors and the corresponding backends just reuse them.
The patch also fix one potential risk: We possiblly have frozen
PE during the early PCI probe time, but we haven't setup the PE
mapping yet. So the errors should be counted to PE#0.
Signed-off-by: Gavin Shan <shangw@linux.vnet.ibm.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
We have 2 fields in "struct pnv_phb" to trace the states. The patch
replace the fields with one and introduces flags for that. The patch
doesn't impact the logic.
Signed-off-by: Gavin Shan <shangw@linux.vnet.ibm.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
The patch creates one debugfs directory ("powerpc/PCIxxxx") for
each PHB so that we can hook EEH error injection debugfs entry
there in proceeding patch.
Signed-off-by: Gavin Shan <shangw@linux.vnet.ibm.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
The patch implements the backend for EEH core to retrieve next
EEH error to handle. For the informational errors, we won't bother
the EEH core. Otherwise, the EEH should take appropriate actions
depending on the return value:
0 - No further errors detected
1 - Frozen PE
2 - Fenced PHB
3 - Dead PHB
4 - Dead IOC
Signed-off-by: Gavin Shan <shangw@linux.vnet.ibm.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
For EEH on PowerNV platform, the overall architecture is different
from that on pSeries platform. In order to support multiple I/O chips
in future, we split EEH to 3 layers for PowerNV platform: EEH core,
platform layer, I/O layer. It would give EEH implementation on PowerNV
platform much more flexibility in future.
The patch adds the EEH backend for P7IOC.
Signed-off-by: Gavin Shan <shangw@linux.vnet.ibm.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
We add a machine_shutdown hook that frees the OPAL interrupts
(so they get masked at the source and don't fire while kexec'ing)
and which triggers an IODA reset on all the PCIe host bridges
which will have the effect of blocking all DMAs and subsequent
PCIs interrupts.
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
The TCE should be invalidated while it's created or free'd. The
approach to do that for IODA1 and IODA2 compliant PHBs are different.
So the patch differentiate them with different functions called to
do that for IODA1 and IODA2 compliant PHBs. It's notable that the
PCI address is used to invalidate the corresponding TCE on IODA2
compliant PHB3.
Signed-off-by: Gavin Shan <shangw@linux.vnet.ibm.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
The EOI handler of MSI/MSI-X interrupts for P8 (PHB3) need additional
steps to handle the P/Q bits in IVE before EOIing the corresponding
interrupt. The patch changes the EOI handler to cover that. we have
individual IRQ chip in each PHB instance. During the MSI IRQ setup
time, the IRQ chip is copied over from the original one for that IRQ,
and the EOI handler is patched with the one that will handle the P/Q
bits (As Ben suggested).
Signed-off-by: Gavin Shan <shangw@linux.vnet.ibm.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
The patch intends to initialize PHB3 during system boot stage. The
flag "PNV_PHB_MODEL_PHB3" is introduced to differentiate IODA2
compatible PHB3 from other types of PHBs.
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
As Michael Ellerman mentioned, arch/powerpc/sysdev/msi_bitmap.c
already implemented bitmap to manage (alloc/free) MSI interrupts.
The patch intends to use that mechanism to manage MSI interrupts
for PowerNV platform.
Signed-off-by: Gavin Shan <shangw@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <michael@ellerman.id.au>
While the device driver or PCI core tries to enable PCI device, the
platform dependent callback "ppc_md.pcibios_enable_device_hook" will
be called to check if there has one associated PE for the PCI device.
If we don't have the associated PE for the PCI device, it's not allowed
to enable the PCI device. Unfortunately, there might have some cases
we have to enable the PCI device (e.g. P2P bridge), but the PEs have
not been created yet.
The patch handles the unfortunate cases. Each PHB (struct pnv_phb)
has one field "initialized" to trace if the PEs have been created
and configured or not. When the PEs are not available, we won't check
the associated PE for the PCI device to be enabled.
Signed-off-by: Gavin Shan <shangw@linux.vnet.ibm.com>
Reviewed-by: Ram Pai <linuxram@us.ibm.com>
Reviewed-by: Richard Yang <weiyang@linux.vnet.ibm.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
The resource (I/O and MMIO) will be assigned on basis of PE from
top to bottom so that we can implement the trick here: the resource
that has been assigned to parent PE could be taken by child PE if
necessary.
The current implementation already has PE list per PHB basis, but
the list doesn't meet our requirment: tracing PE based on their
cration time from top to bottom. So the patch does rename for the
DMA based PE list and introduces the list to trace the PEs sequentially
based on their creation time.
Signed-off-by: Gavin Shan <shangw@linux.vnet.ibm.com>
Reviewed-by: Ram Pai <linuxram@us.ibm.com>
Reviewed-by: Richard Yang <weiyang@linux.vnet.ibm.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
This adds support for p7IOC (and possibly other IODA v1 IO Hubs)
using OPAL v2 interfaces.
We completely take over resource assignment and assign them using an
algorithm that hands out device BARs in a way that makes them fit in
individual segments of the M32 window of the bridge, which enables us
to assign individual PEs to devices and functions.
The current implementation gives out a PE per functions on PCIe, and a
PE for the entire bridge for PCIe to PCI-X bridges.
This can be adjusted / fine tuned later.
We also setup DMA resources (32-bit only for now) and MSIs (both 32-bit
and 64-bit MSI are supported).
The DMA allocation tries to divide the available 256M segments of the
32-bit DMA address space "fairly" among PEs. This is done using a
"weight" heuristic which assigns less value to things like OHCI USB
controllers than, for example SCSI RAID controllers. This algorithm
will probably want some fine tuning for specific devices or device
types.
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
This implements support for MSIs on p5ioc2 PHBs. We only support
MSIs on the PCIe PHBs, not the PCI-X ones as the later hasn't been
properly verified in HW.
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
This adds support for PCI-X and PCIe on the p5ioc2 IO hub using
OPAL. This includes allocating & setting up TCE tables and config
space access routines.
This also supports fallbacks via RTAS when OPAL is absent, using
legacy TCE format pre-allocated via the device-tree (BML style)
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>