Commit Graph

24 Commits

Author SHA1 Message Date
Marc Zyngier
95e3de3590 arm64: Move post_ttbr_update_workaround to C code
We will soon need to invoke a CPU-specific function pointer after changing
page tables, so move post_ttbr_update_workaround out into C code to make
this possible.

Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2018-01-08 18:45:19 +00:00
Catalin Marinas
a8ffaaa060 arm64: asid: Do not replace active_asids if already 0
Under some uncommon timing conditions, a generation check and
xchg(active_asids, A1) in check_and_switch_context() on P1 can race with
an ASID roll-over on P2. If P2 has not seen the update to
active_asids[P1], it can re-allocate A1 to a new task T2 on P2. P1 ends
up waiting on the spinlock since the xchg() returned 0 while P2 can go
through a second ASID roll-over with (T2,A1,G2) active on P2. This
roll-over copies active_asids[P1] == A1,G1 into reserved_asids[P1] and
active_asids[P2] == A1,G2 into reserved_asids[P2]. A subsequent
scheduling of T1 on P1 and T2 on P2 would match reserved_asids and get
their generation bumped to G3:

P1					P2
--                                      --
TTBR0.BADDR = T0
TTBR0.ASID = A0
asid_generation = G1
check_and_switch_context(T1,A1,G1)
  generation match
					check_and_switch_context(T2,A0,G0)
 				          new_context()
					    ASID roll-over
					    asid_generation = G2
					    flush_context()
					      active_asids[P1] = 0
					      asid_map[A1] = 0
					      reserved_asids[P1] = A0,G0
  xchg(active_asids, A1)
    active_asids[P1] = A1,G1
    xchg returns 0
  spin_lock_irqsave()
					    allocated ASID (T2,A1,G2)
					    asid_map[A1] = 1
					  active_asids[P2] = A1,G2
					...
					check_and_switch_context(T3,A0,G0)
					  new_context()
					    ASID roll-over
					    asid_generation = G3
					    flush_context()
					      active_asids[P1] = 0
					      asid_map[A1] = 1
					      reserved_asids[P1] = A1,G1
					      reserved_asids[P2] = A1,G2
					    allocated ASID (T3,A2,G3)
					    asid_map[A2] = 1
					  active_asids[P2] = A2,G3
  new_context()
    check_update_reserved_asid(A1,G1)
      matches reserved_asid[P1]
      reserved_asid[P1] = A1,G3
  updated T1 ASID to (T1,A1,G3)
					check_and_switch_context(T2,A1,G2)
					  new_context()
					    check_and_switch_context(A1,G2)
					      matches reserved_asids[P2]
					      reserved_asids[P2] = A1,G3
					  updated T2 ASID to (T2,A1,G3)

At this point, we have two tasks, T1 and T2 both using ASID A1 with the
latest generation G3. Any of them is allowed to be scheduled on the
other CPU leading to two different tasks with the same ASID on the same
CPU.

This patch changes the xchg to cmpxchg so that the active_asids is only
updated if non-zero to avoid a race with an ASID roll-over on a
different CPU.

The ASID allocation algorithm has been formally verified using the TLA+
model checker (see
https://git.kernel.org/pub/scm/linux/kernel/git/cmarinas/kernel-tla.git/tree/asidalloc.tla
for the spec).

Reviewed-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2018-01-05 11:29:11 +00:00
Will Deacon
0c8ea531b7 arm64: mm: Allocate ASIDs in pairs
In preparation for separate kernel/user ASIDs, allocate them in pairs
for each mm_struct. The bottom bit distinguishes the two: if it is set,
then the ASID will map only userspace.

Reviewed-by: Mark Rutland <mark.rutland@arm.com>
Tested-by: Laura Abbott <labbott@redhat.com>
Tested-by: Shanker Donthineni <shankerd@codeaurora.org>
Signed-off-by: Will Deacon <will.deacon@arm.com>
2017-12-11 13:40:38 +00:00
Will Deacon
85d13c0014 arm64: mm: Remove pre_ttbr0_update_workaround for Falkor erratum #E1003
The pre_ttbr0_update_workaround hook is called prior to context-switching
TTBR0 because Falkor erratum E1003 can cause TLB allocation with the wrong
ASID if both the ASID and the base address of the TTBR are updated at
the same time.

With the ASID sitting safely in TTBR1, we no longer update things
atomically, so we can remove the pre_ttbr0_update_workaround macro as
it's no longer required. The erratum infrastructure and documentation
is left around for #E1003, as it will be required by the entry
trampoline code in a future patch.

Reviewed-by: Mark Rutland <mark.rutland@arm.com>
Tested-by: Laura Abbott <labbott@redhat.com>
Tested-by: Shanker Donthineni <shankerd@codeaurora.org>
Signed-off-by: Will Deacon <will.deacon@arm.com>
2017-12-11 13:40:29 +00:00
Will Deacon
3a33c76057 arm64: context: Fix comments and remove pointless smp_wmb()
The comments in the ASID allocator incorrectly hint at an MP-style idiom
using the asid_generation and the active_asids array. In fact, the
synchronisation is achieved using a combination of an xchg operation
and a spinlock, so update the comments and remove the pointless smp_wmb().

Cc: James Morse <james.morse@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
2017-12-01 13:05:08 +00:00
Mark Rutland
f81a348728 arm64: mm: cleanup stale AIVIVT references
Since commit:

  155433cb36 ("arm64: cache: Remove support for ASID-tagged VIVT I-caches")

... the kernel no longer cares about AIVIVT I-caches, as these were
removed from the architecture.

This patch removes the stale references to such I-caches.

The comment in flush_context() is also updated to clarify when and where
the TLB invalidation occurs.

Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
2017-11-28 18:13:18 +00:00
Will Deacon
155433cb36 arm64: cache: Remove support for ASID-tagged VIVT I-caches
As a recent change to ARMv8, ASID-tagged VIVT I-caches are removed
retrospectively from the architecture. Consequently, we don't need to
support them in Linux either.

Acked-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2017-03-20 16:16:57 +00:00
Christopher Covington
38fd94b027 arm64: Work around Falkor erratum 1003
The Qualcomm Datacenter Technologies Falkor v1 CPU may allocate TLB entries
using an incorrect ASID when TTBRx_EL1 is being updated. When the erratum
is triggered, page table entries using the new translation table base
address (BADDR) will be allocated into the TLB using the old ASID. All
circumstances leading to the incorrect ASID being cached in the TLB arise
when software writes TTBRx_EL1[ASID] and TTBRx_EL1[BADDR], a memory
operation is in the process of performing a translation using the specific
TTBRx_EL1 being written, and the memory operation uses a translation table
descriptor designated as non-global. EL2 and EL3 code changing the EL1&0
ASID is not subject to this erratum because hardware is prohibited from
performing translations from an out-of-context translation regime.

Consider the following pseudo code.

  write new BADDR and ASID values to TTBRx_EL1

Replacing the above sequence with the one below will ensure that no TLB
entries with an incorrect ASID are used by software.

  write reserved value to TTBRx_EL1[ASID]
  ISB
  write new value to TTBRx_EL1[BADDR]
  ISB
  write new value to TTBRx_EL1[ASID]
  ISB

When the above sequence is used, page table entries using the new BADDR
value may still be incorrectly allocated into the TLB using the reserved
ASID. Yet this will not reduce functionality, since TLB entries incorrectly
tagged with the reserved ASID will never be hit by a later instruction.

Based on work by Shanker Donthineni <shankerd@codeaurora.org>

Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Christopher Covington <cov@codeaurora.org>
Signed-off-by: Will Deacon <will.deacon@arm.com>
2017-02-10 11:22:12 +00:00
Catalin Marinas
39bc88e5e3 arm64: Disable TTBR0_EL1 during normal kernel execution
When the TTBR0 PAN feature is enabled, the kernel entry points need to
disable access to TTBR0_EL1. The PAN status of the interrupted context
is stored as part of the saved pstate, reusing the PSR_PAN_BIT (22).
Restoring access to TTBR0_EL1 is done on exception return if returning
to user or returning to a context where PAN was disabled.

Context switching via switch_mm() must defer the update of TTBR0_EL1
until a return to user or an explicit uaccess_enable() call.

Special care needs to be taken for two cases where TTBR0_EL1 is set
outside the normal kernel context switch operation: EFI run-time
services (via efi_set_pgd) and CPU suspend (via cpu_(un)install_idmap).
Code has been added to avoid deferred TTBR0_EL1 switching as in
switch_mm() and restore the reserved TTBR0_EL1 when uninstalling the
special TTBR0_EL1.

User cache maintenance (user_cache_maint_handler and
__flush_cache_user_range) needs the TTBR0_EL1 re-instated since the
operations are performed by user virtual address.

This patch also removes a stale comment on the switch_mm() function.

Cc: Will Deacon <will.deacon@arm.com>
Cc: James Morse <james.morse@arm.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2016-11-21 18:48:54 +00:00
Jean-Philippe Brucker
f7e0efc9b5 arm64: update ASID limit
During a rollover, we mark the active ASID on each CPU as reserved, before
allocating a new ID for the task that caused the rollover. This means that
with N CPUs, we can only guarantee the new task to obtain a valid ASID if
we have at least N+1 ASIDs. Update this limit in the initcall check.

Note that this restriction was introduced by commit 8e648066 on the
arch/arm side, which disallow re-using the previously active ASID on the
local CPU, as it would introduce a TLB race.

In addition, we only dispose of NUM_USER_ASIDS-1, since ASID 0 is
reserved. Add this restriction as well.

Signed-off-by: Jean-Philippe Brucker <jean-philippe.brucker@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
2016-06-21 20:10:18 +01:00
Suzuki K Poulose
17eebd1a43 arm64: Add cpu_panic_kernel helper
During the activation of a secondary CPU, we could report serious
configuration issues and hence request to crash the kernel. We do
this for CPU ASID bit check now. We will need it also for handling
mismatched exception levels for the CPUs with VHE. Hence, add a
helper to do the same for reusability.

Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
2016-04-15 18:06:06 +01:00
Mark Rutland
1cc6ed90dd arm64: make mrs_s prefixing implicit in read_cpuid
Commit 0f54b14e76 ("arm64: cpufeature: Change read_cpuid() to use
sysreg's mrs_s macro") changed read_cpuid to require a SYS_ prefix on
register names, to allow manual assembly of registers unknown by the
toolchain, using tables in sysreg.h.

This interacts poorly with commit 42b5573403 ("efi/arm64: Check
for h/w support before booting a >4 KB granular kernel"), which is
curretly queued via the tip tree, and uses read_cpuid without a SYS_
prefix. Due to this, a build of next-20160304 fails if EFI and 64K pages
are selected.

To avoid this issue when trees are merged, move the required SYS_
prefixing into read_cpuid, and revert all of the updated callsites to
pass plain register names. This effectively reverts the bulk of commit
0f54b14e76.

Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Cc: James Morse <james.morse@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2016-03-04 14:12:46 +00:00
Suzuki K Poulose
28c5dcb22f arm64: Rename cpuid_feature field extract routines
Now that we have a clear understanding of the sign of a feature,
rename the routines to reflect the sign, so that it is not misused.
The cpuid_feature_extract_field() now accepts a 'sign' parameter.

Signed-off-by: Suzuki K. Poulose <suzuki.poulose@arm.com>
Acked-by: Will Deacon <will.deacon@arm.com>
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2016-02-25 10:33:08 +00:00
Suzuki K Poulose
13f417f3b8 arm64: Ensure the secondary CPUs have safe ASIDBits size
Adds a hook for checking whether a secondary CPU has the
features used already by the kernel during early boot, based
on the boot CPU and plugs in the check for ASID size.

The ID_AA64MMFR0_EL1:ASIDBits determines the size of the mm context
id and is used in the early boot to make decisions. The value is
picked up from the Boot CPU and cannot be delayed until other CPUs
are up. If a secondary CPU has a smaller size than that of the Boot
CPU, things will break horribly and the usual SANITY check is not good
enough to prevent the system from crashing. So, crash the system with
enough information.

Cc: Mark Rutland <mark.rutland@arm.com>
Acked-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2016-02-25 10:33:06 +00:00
Suzuki K Poulose
038dc9c66a arm64: Add helper for extracting ASIDBits
Add a helper to extract ASIDBits on the current cpu

Cc: Mark Rutland <mark.rutland@arm.com>
Acked-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2016-02-25 10:33:06 +00:00
James Morse
0f54b14e76 arm64: cpufeature: Change read_cpuid() to use sysreg's mrs_s macro
Older assemblers may not have support for newer feature registers. To get
round this, sysreg.h provides a 'mrs_s' macro that takes a register
encoding and generates the raw instruction.

Change read_cpuid() to use mrs_s in all cases so that new registers
don't have to be a special case. Including sysreg.h means we need to move
the include and definition of read_cpuid() after the #ifndef __ASSEMBLY__
to avoid syntax errors in vmlinux.lds.

Signed-off-by: James Morse <james.morse@arm.com>
Acked-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2016-02-18 11:59:54 +00:00
Will Deacon
0ebea80880 arm64: mm: keep reserved ASIDs in sync with mm after multiple rollovers
Under some unusual context-switching patterns, it is possible to end up
with multiple threads from the same mm running concurrently with
different ASIDs:

1. CPU x schedules task t with mm p containing ASID a and generation g
   This task doesn't block and the CPU doesn't context switch.
   So:
     * per_cpu(active_asid, x) = {g,a}
     * p->context.id = {g,a}

2. Some other CPU generates an ASID rollover. The global generation is
   now (g + 1). CPU x is still running t, with no context switch and
   so per_cpu(reserved_asid, x) = {g,a}

3. CPU y schedules task t', which shares mm p with t. The generation
   mismatches, so we take the slowpath and hit the reserved ASID from
   CPU x. p is then updated so that p->context.id = {g + 1,a}

4. CPU y schedules some other task u, which has an mm != p.

5. Some other CPU generates *another* CPU rollover. The global
   generation is now (g + 2). CPU x is still running t, with no context
   switch and so per_cpu(reserved_asid, x) = {g,a}.

6. CPU y once again schedules task t', but now *fails* to hit the
   reserved ASID from CPU x because of the generation mismatch. This
   results in a new ASID being allocated, despite the fact that t is
   still running on CPU x with the same mm.

Consequently, TLBIs (e.g. as a result of CoW) will not be synchronised
between the two threads.

This patch fixes the problem by updating all of the matching reserved
ASIDs when we hit on the slowpath (i.e. in step 3 above). This keeps
the reserved ASIDs in-sync with the mm and avoids the problem.

Reported-by: Tony Thompson <anthony.thompson@arm.com>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2015-11-26 15:27:10 +00:00
Will Deacon
38d9628750 arm64: mm: kill mm_cpumask usage
mm_cpumask isn't actually used for anything on arm64, so remove all the
code trying to keep it up-to-date.

Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2015-10-07 11:56:29 +01:00
Will Deacon
c2775b2ee5 arm64: switch_mm: simplify mm and CPU checks
switch_mm performs some checks to try and avoid entering the ASID
allocator:

  (1) If we're switching to the init_mm (no user mappings), then simply
      set a reserved TTBR0 value with no page table (the zero page)

  (2) If prev == next *and* the mm_cpumask indicates that we've run on
      this CPU before, then we can skip the allocator.

However, there is plenty of redundancy here. With the new ASID allocator,
if prev == next, then we know that our ASID is valid and do not need to
worry about re-allocation. Consequently, we can drop the mm_cpumask check
in (2) and move the prev == next check before the init_mm check, since
if prev == next == init_mm then there's nothing to do.

Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2015-10-07 11:56:25 +01:00
Will Deacon
5aec715d7d arm64: mm: rewrite ASID allocator and MM context-switching code
Our current switch_mm implementation suffers from a number of problems:

  (1) The ASID allocator relies on IPIs to synchronise the CPUs on a
      rollover event

  (2) Because of (1), we cannot allocate ASIDs with interrupts disabled
      and therefore make use of a TIF_SWITCH_MM flag to postpone the
      actual switch to finish_arch_post_lock_switch

  (3) We run context switch with a reserved (invalid) TTBR0 value, even
      though the ASID and pgd are updated atomically

  (4) We take a global spinlock (cpu_asid_lock) during context-switch

  (5) We use h/w broadcast TLB operations when they are not required
      (e.g. in flush_context)

This patch addresses these problems by rewriting the ASID algorithm to
match the bitmap-based arch/arm/ implementation more closely. This in
turn allows us to remove much of the complications surrounding switch_mm,
including the ugly thread flag.

Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2015-10-07 11:55:41 +01:00
Will Deacon
8e63d38876 arm64: flush: use local TLB and I-cache invalidation
There are a number of places where a single CPU is running with a
private page-table and we need to perform maintenance on the TLB and
I-cache in order to ensure correctness, but do not require the operation
to be broadcast to other CPUs.

This patch adds local variants of tlb_flush_all and __flush_icache_all
to support these use-cases and updates the callers respectively.
__local_flush_icache_all also implies an isb, since it is intended to be
used synchronously.

Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Acked-by: David Daney <david.daney@cavium.com>
Acked-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2015-10-07 11:45:27 +01:00
Will Deacon
4b3dc9679c arm64: force CONFIG_SMP=y and remove redundant #ifdefs
Nobody seems to be producing !SMP systems anymore, so this is just
becoming a source of kernel bugs, particularly if people want to use
coherent DMA with non-shared pages.

This patch forces CONFIG_SMP=y for arm64, removing a modest amount of
code in the process.

Signed-off-by: Will Deacon <will.deacon@arm.com>
2015-07-27 11:08:40 +01:00
Catalin Marinas
565630d503 arm64: Do not attempt to use init_mm in reset_context()
After secondary CPU boot or hotplug, the active_mm of the idle thread is
&init_mm. The init_mm.pgd (swapper_pg_dir) is only meant for TTBR1_EL1
and must not be set in TTBR0_EL1. Since when active_mm == &init_mm the
TTBR0_EL1 is already set to the reserved value, there is no need to
perform any context reset.

Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Cc: <stable@vger.kernel.org>
2015-06-12 15:36:18 +01:00
Catalin Marinas
b3901d54dc arm64: Process management
The patch adds support for thread creation and context switching. The
context switching CPU specific code is introduced with the CPU support
patch (part of the arch/arm64/mm/proc.S file). AArch64 supports
ASID-tagged TLBs and the ASID can be either 8 or 16-bit wide (detectable
via the ID_AA64AFR0_EL1 register).

Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Acked-by: Tony Lindgren <tony@atomide.com>
Acked-by: Nicolas Pitre <nico@linaro.org>
Acked-by: Olof Johansson <olof@lixom.net>
Acked-by: Santosh Shilimkar <santosh.shilimkar@ti.com>
Acked-by: Arnd Bergmann <arnd@arndb.de>
2012-09-17 13:41:58 +01:00