Pull btrfs fixes from Chris Mason:
"These are bug fixes, including a really old fsync bug, and a few trace
points to help us track down problems in the quota code"
* 'for-linus-4.6' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs:
Btrfs: fix file/data loss caused by fsync after rename and new inode
btrfs: Reset IO error counters before start of device replacing
btrfs: Add qgroup tracing
Btrfs: don't use src fd for printk
btrfs: fallback to vmalloc in btrfs_compare_tree
btrfs: handle non-fatal errors in btrfs_qgroup_inherit()
btrfs: Output more info for enospc_debug mount option
Btrfs: fix invalid reference in replace_path
Btrfs: Improve FL_KEEP_SIZE handling in fallocate
PAGE_CACHE_{SIZE,SHIFT,MASK,ALIGN} macros were introduced *long* time
ago with promise that one day it will be possible to implement page
cache with bigger chunks than PAGE_SIZE.
This promise never materialized. And unlikely will.
We have many places where PAGE_CACHE_SIZE assumed to be equal to
PAGE_SIZE. And it's constant source of confusion on whether
PAGE_CACHE_* or PAGE_* constant should be used in a particular case,
especially on the border between fs and mm.
Global switching to PAGE_CACHE_SIZE != PAGE_SIZE would cause to much
breakage to be doable.
Let's stop pretending that pages in page cache are special. They are
not.
The changes are pretty straight-forward:
- <foo> << (PAGE_CACHE_SHIFT - PAGE_SHIFT) -> <foo>;
- <foo> >> (PAGE_CACHE_SHIFT - PAGE_SHIFT) -> <foo>;
- PAGE_CACHE_{SIZE,SHIFT,MASK,ALIGN} -> PAGE_{SIZE,SHIFT,MASK,ALIGN};
- page_cache_get() -> get_page();
- page_cache_release() -> put_page();
This patch contains automated changes generated with coccinelle using
script below. For some reason, coccinelle doesn't patch header files.
I've called spatch for them manually.
The only adjustment after coccinelle is revert of changes to
PAGE_CAHCE_ALIGN definition: we are going to drop it later.
There are few places in the code where coccinelle didn't reach. I'll
fix them manually in a separate patch. Comments and documentation also
will be addressed with the separate patch.
virtual patch
@@
expression E;
@@
- E << (PAGE_CACHE_SHIFT - PAGE_SHIFT)
+ E
@@
expression E;
@@
- E >> (PAGE_CACHE_SHIFT - PAGE_SHIFT)
+ E
@@
@@
- PAGE_CACHE_SHIFT
+ PAGE_SHIFT
@@
@@
- PAGE_CACHE_SIZE
+ PAGE_SIZE
@@
@@
- PAGE_CACHE_MASK
+ PAGE_MASK
@@
expression E;
@@
- PAGE_CACHE_ALIGN(E)
+ PAGE_ALIGN(E)
@@
expression E;
@@
- page_cache_get(E)
+ get_page(E)
@@
expression E;
@@
- page_cache_release(E)
+ put_page(E)
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
As one user in mail list report reproducible balance ENOSPC error, it's
better to add more debug info for enospc_debug mount option.
Reported-by: Marc Haber <mh+linux-btrfs@zugschlus.de>
Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We were getting build warning about:
fs/btrfs/extent-tree.c:7021:34: warning: ‘used_bg’ may be used
uninitialized in this function
It is not a valid warning as used_bg is never used uninitilized since
locked is initially false so we can never be in the section where
'used_bg' is used. But gcc is not able to understand that and we can
initialize it while declaring to silence the warning.
Signed-off-by: Sudip Mukherjee <sudip@vectorindia.org>
Signed-off-by: David Sterba <dsterba@suse.com>
We will sometimes start background flushing the various enospc related things
(delayed nodes, delalloc, etc) if we are getting close to reserving all of our
available space. We don't want to do this however when we are actually using
this space as it causes unneeded thrashing. We currently try to do this by
checking bytes_used >= thresh, but bytes_used is only part of the equation, we
need to use bytes_reserved as well as this represents space that is very likely
to become bytes_used in the future.
My tracing tool will keep count of the number of times we kick off the async
flusher, the following are counts for the entire run of generic/027
No Patch Patch
avg: 5385 5009
median: 5500 4916
We skewed lower than the average with my patch and higher than the average with
the patch, overall it cuts the flushing from anywhere from 5-10%, which in the
case of actual ENOSPC is quite helpful. Thanks,
Signed-off-by: Josef Bacik <jbacik@fb.com>
Reviewed-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
I'm writing a tool to visualize the enospc system in order to help debug enospc
bugs and I found weird data and ran it down to when we update the global block
rsv. We add all of the remaining free space to the block rsv, do a trace event,
then remove the extra and do another trace event. This makes my visualization
look silly and is unintuitive code as well. Fix this stuff to only add the
amount we are missing, or free the amount we are missing. This is less clean to
read but more explicit in what it is doing, as well as only emitting events for
values that make sense. Thanks,
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: David Sterba <dsterba@suse.com>
I see no_space in v4.4-rc1 again in xfstests generic/102.
It happened randomly in some node only.
(one of 4 phy-node, and a kvm with non-virtio block driver)
By bisect, we can found the first-bad is:
commit bdced438ac ("block: setup bi_phys_segments after splitting")'
But above patch only triggered the bug by making bio operation
faster(or slower).
Main reason is in our space_allocating code, we need to commit
page writeback before wait it complish, this patch fixed above
bug.
BTW, there is another reason for generic/102 fail, caused by
disable default mixed-blockgroup, I'll fix it in xfstests.
Signed-off-by: Zhao Lei <zhaolei@cn.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
wait_for_snapshot_creation() is in same group with oher two:
btrfs_start_write_no_snapshoting()
btrfs_end_write_no_snapshoting()
Rename wait_for_snapshot_creation() and move it into same place
with other two.
Signed-off-by: Zhao Lei <zhaolei@cn.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
If we return 1 here, then the caller treats it as an error and returns
-EINVAL. It causes a static checker warning to treat positive returns
as an error.
Fixes: 1aba86d67f ('Btrfs: fix easily get into ENOSPC in mixed case')
Signed-off-by: Dan Carpenter <dan.carpenter@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Overloading extent_map->bdev to struct map_lookup * might have started out
as a means to an end, but it's a pattern that's used all over the place
now. Let's get rid of the casting and just add a union instead.
Signed-off-by: Jeff Mahoney <jeffm@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Replace the integers by enums for better readability. The value 2 does
not have any meaning since a717531942
"Btrfs: do less aggressive btree readahead" (2009-01-22).
Signed-off-by: David Sterba <dsterba@suse.com>
We use many constants to represent size and offset value. And to make
code readable we use '256 * 1024 * 1024' instead of '268435456' to
represent '256MB'. However we can make far more readable with 'SZ_256MB'
which is defined in the 'linux/sizes.h'.
So this patch replaces 'xxx * 1024 * 1024' kind of expression with
single 'SZ_xxxMB' if 'xxx' is a power of 2 then 'xxx * SZ_1M' if 'xxx' is
not a power of 2. And I haven't touched to '4096' & '8192' because it's
more intuitive than 'SZ_4KB' & 'SZ_8KB'.
Signed-off-by: Byongho Lee <bhlee.kernel@gmail.com>
Signed-off-by: David Sterba <dsterba@suse.com>
btrfs_delayed_extent_op can be packed in a better way, it's 40 bytes now
and has 8 unused bytes. Reducing the level type to u8 makes it possible
to squeeze it to the padding byte after key. The bitfields were switched
to bool as there's space to store the full byte without increasing the
whole structure, besides that the generated assembly is smaller.
struct btrfs_delayed_extent_op {
struct btrfs_disk_key key; /* 0 17 */
u8 level; /* 17 1 */
bool update_key; /* 18 1 */
bool update_flags; /* 19 1 */
bool is_data; /* 20 1 */
/* XXX 3 bytes hole, try to pack */
u64 flags_to_set; /* 24 8 */
/* size: 32, cachelines: 1, members: 6 */
/* sum members: 29, holes: 1, sum holes: 3 */
/* last cacheline: 32 bytes */
};
The final size is 32 bytes which gives +26 object per slab page.
text data bss dec hex filename
938811 43670 23144 1005625 f5839 fs/btrfs/btrfs.ko.before
938747 43670 23144 1005561 f57f9 fs/btrfs/btrfs.ko.after
Signed-off-by: David Sterba <dsterba@suse.com>
While running a stress test I ran into the following trace/transaction
abort:
[471626.672243] ------------[ cut here ]------------
[471626.673322] WARNING: CPU: 9 PID: 19107 at fs/btrfs/extent-tree.c:3740 btrfs_write_dirty_block_groups+0x17c/0x214 [btrfs]()
[471626.675492] BTRFS: Transaction aborted (error -2)
[471626.676748] Modules linked in: btrfs dm_flakey dm_mod crc32c_generic xor raid6_pq nfsd auth_rpcgss oid_registry nfs_acl nfs lockd grace fscache sunrpc loop fuse parport_pc i2c_piix
[471626.688802] CPU: 14 PID: 19107 Comm: fsstress Tainted: G W 4.3.0-rc5-btrfs-next-17+ #1
[471626.690148] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.8.1-0-g4adadbd-20150316_085822-nilsson.home.kraxel.org 04/01/2014
[471626.691901] 0000000000000000 ffff880016037cf0 ffffffff812566f4 ffff880016037d38
[471626.695009] ffff880016037d28 ffffffff8104d0a6 ffffffffa040c84e 00000000fffffffe
[471626.697490] ffff88011fe855f8 ffff88000c484cb0 ffff88000d195000 ffff880016037d90
[471626.699201] Call Trace:
[471626.699804] [<ffffffff812566f4>] dump_stack+0x4e/0x79
[471626.701049] [<ffffffff8104d0a6>] warn_slowpath_common+0x9f/0xb8
[471626.702542] [<ffffffffa040c84e>] ? btrfs_write_dirty_block_groups+0x17c/0x214 [btrfs]
[471626.704326] [<ffffffff8104d107>] warn_slowpath_fmt+0x48/0x50
[471626.705636] [<ffffffffa0403717>] ? write_one_cache_group.isra.32+0x77/0x82 [btrfs]
[471626.707048] [<ffffffffa040c84e>] btrfs_write_dirty_block_groups+0x17c/0x214 [btrfs]
[471626.708616] [<ffffffffa048a50a>] commit_cowonly_roots+0x1d7/0x25a [btrfs]
[471626.709950] [<ffffffffa041e34a>] btrfs_commit_transaction+0x4c4/0x991 [btrfs]
[471626.711286] [<ffffffff81081c61>] ? signal_pending_state+0x31/0x31
[471626.712611] [<ffffffffa03f6df4>] btrfs_sync_fs+0x145/0x1ad [btrfs]
[471626.715610] [<ffffffff811962a2>] ? SyS_tee+0x226/0x226
[471626.716718] [<ffffffff811962c2>] sync_fs_one_sb+0x20/0x22
[471626.717672] [<ffffffff8116fc01>] iterate_supers+0x75/0xc2
[471626.718800] [<ffffffff8119669a>] sys_sync+0x52/0x80
[471626.719990] [<ffffffff8147cd97>] entry_SYSCALL_64_fastpath+0x12/0x6f
[471626.721835] ---[ end trace baf57f43d76693f4 ]---
[471626.722954] BTRFS: error (device sdc) in btrfs_write_dirty_block_groups:3740: errno=-2 No such entry
This is a very rare situation and it happened due to a race between a free
space endio worker and writing the space caches for dirty block groups at
a transaction's commit critical section. The steps leading to this are:
1) A task calls btrfs_commit_transaction() and starts the writeout of the
space caches for all currently dirty block groups (i.e. it calls
btrfs_start_dirty_block_groups());
2) The previous step starts writeback for space caches;
3) When the writeback finishes it queues jobs for free space endio work
queue (fs_info->endio_freespace_worker) that execute
btrfs_finish_ordered_io();
4) The task committing the transaction sets the transaction's state
to TRANS_STATE_COMMIT_DOING and shortly after calls
btrfs_write_dirty_block_groups();
5) A free space endio job joins the transaction, through
btrfs_join_transaction_nolock(), and updates a free space inode item
in the root tree through btrfs_update_inode_fallback();
6) Updating the free space inode item resulted in COWing one or more
nodes/leaves of the root tree, and that resulted in creating a new
metadata block group, which gets added to the transaction's list
of dirty block groups (this is a very rare case);
7) The free space endio job has not released yet its transaction handle
at this point, so the new metadata block group was not yet fully
created (didn't go through btrfs_create_pending_block_groups() yet);
8) The transaction commit task sees the new metadata block group in
the transaction's list of dirty block groups and processes it.
When it attempts to update the block group's block group item in
the extent tree, through write_one_cache_group(), it isn't able
to find it and aborts the transaction with error -ENOENT - this
is because the free space endio job hasn't yet released its
transaction handle (which calls btrfs_create_pending_block_groups())
and therefore the block group item was not yet added to the extent
tree.
Fix this waiting for free space endio jobs if we fail to find a block
group item in the extent tree and then retry once updating the block
group item.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
This is a short term solution to make sure btrfs_run_delayed_refs()
doesn't change the extent tree while we are scanning it to create the
free space tree.
Longer term we need to synchronize scanning the block groups one by one,
similar to what happens during a balance.
Signed-off-by: Chris Mason <clm@fb.com>
We call btrfs_write_dirty_block_groups() in the critical section of a
transaction's commit, when no other tasks can join the transaction and
add more block groups to the transaction's list of dirty block groups,
so we not taking the dirty block groups spinlock when checking for the
list's emptyness, grabbing its first element or deleting elements from
it.
However there's a special and rare case where we can have a concurrent
task adding elements to this list. We trigger writeback for space
caches before at btrfs_start_dirty_block_groups() and in past iterations
of the loop at btrfs_write_dirty_block_groups(), this means that when
the writeback finishes (which happens asynchronously) it creates a
task for the endio free space work queue that executes
btrfs_finish_ordered_io() - this function is able to join the transaction,
through btrfs_join_transaction_nolock(), and update the free space cache's
inode item in the root tree, which can result in COWing nodes of this tree
and therefore allocation of a new block group can happen, which gets added
to the transaction's list of dirty block groups while the transaction
commit task is operating on it concurrently.
So fix this by taking the dirty block groups spinlock before doing
operations on the dirty block groups list at
btrfs_write_dirty_block_groups().
Signed-off-by: Filipe Manana <fdmanana@suse.com>
The free space tree is updated in tandem with the extent tree. There are
only a handful of places where we need to hook in:
1. Block group creation
2. Block group deletion
3. Delayed refs (extent creation and deletion)
4. Block group caching
Signed-off-by: Omar Sandoval <osandov@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
The free space cache has turned out to be a scalability bottleneck on
large, busy filesystems. When the cache for a lot of block groups needs
to be written out, we can get extremely long commit times; if this
happens in the critical section, things are especially bad because we
block new transactions from happening.
The main problem with the free space cache is that it has to be written
out in its entirety and is managed in an ad hoc fashion. Using a B-tree
to store free space fixes this: updates can be done as needed and we get
all of the benefits of using a B-tree: checksumming, RAID handling,
well-understood behavior.
With the free space tree, we get commit times that are about the same as
the no cache case with load times slower than the free space cache case
but still much faster than the no cache case. Free space is represented
with extents until it becomes more space-efficient to use bitmaps,
giving us similar space overhead to the free space cache.
The operations on the free space tree are: adding and removing free
space, handling the creation and deletion of block groups, and loading
the free space for a block group. We can also create the free space tree
by walking the extent tree and clear the free space tree.
Signed-off-by: Omar Sandoval <osandov@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
We're also going to load the free space tree from caching_thread(), so
we should refactor some of the common code.
Signed-off-by: Omar Sandoval <osandov@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
As of my previous change titled "Btrfs: fix scrub preventing unused block
groups from being deleted", the following warning at
extent-tree.c:btrfs_delete_unused_bgs() can be hit when we mount the a
filesysten with "-o discard":
10263 void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info)
10264 {
(...)
10405 if (trimming) {
10406 WARN_ON(!list_empty(&block_group->bg_list));
10407 spin_lock(&trans->transaction->deleted_bgs_lock);
10408 list_move(&block_group->bg_list,
10409 &trans->transaction->deleted_bgs);
10410 spin_unlock(&trans->transaction->deleted_bgs_lock);
10411 btrfs_get_block_group(block_group);
10412 }
(...)
This happens because scrub can now add back the block group to the list of
unused block groups (fs_info->unused_bgs). This is dangerous because we
are moving the block group from the unused block groups list to the list
of deleted block groups without holding the lock that protects the source
list (fs_info->unused_bgs_lock).
The following diagram illustrates how this happens:
CPU 1 CPU 2
cleaner_kthread()
btrfs_delete_unused_bgs()
sees bg X in list
fs_info->unused_bgs
deletes bg X from list
fs_info->unused_bgs
scrub_enumerate_chunks()
searches device tree using
its commit root
finds device extent for
block group X
gets block group X from the tree
fs_info->block_group_cache_tree
(via btrfs_lookup_block_group())
sets bg X to RO (again)
scrub_chunk(bg X)
sets bg X back to RW mode
adds bg X to the list
fs_info->unused_bgs again,
since it's still unused and
currently not in that list
sets bg X to RO mode
btrfs_remove_chunk(bg X)
--> discard is enabled and bg X
is in the fs_info->unused_bgs
list again so the warning is
triggered
--> we move it from that list into
the transaction's delete_bgs
list, but we can have another
task currently manipulating
the first list (fs_info->unused_bgs)
Fix this by using the same lock (fs_info->unused_bgs_lock) to protect both
the list of unused block groups and the list of deleted block groups. This
makes it safe and there's not much worry for more lock contention, as this
lock is seldom used and only the cleaner kthread adds elements to the list
of deleted block groups. The warning goes away too, as this was previously
an impossible case (and would have been better a BUG_ON/ASSERT) but it's
not impossible anymore.
Reproduced with fstest btrfs/073 (using MOUNT_OPTIONS="-o discard").
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Commit 0ed4792 ('btrfs: qgroup: Switch to new extent-oriented qgroup
mechanism.') removed our qgroup accounting during
btrfs_drop_snapshot(). Predictably, this results in qgroup numbers
going bad shortly after a snapshot is removed.
Fix this by adding a dirty extent record when we encounter extents during
our shared subtree walk. This effectively restores the functionality we had
with the original shared subtree walking code in 1152651 (btrfs: qgroup:
account shared subtrees during snapshot delete).
The idea with the original patch (and this one) is that shared subtrees can
get skipped during drop_snapshot. The shared subtree walk then allows us a
chance to visit those extents and add them to the qgroup work for later
processing. This ultimately makes the accounting for drop snapshot work.
The new qgroup code nicely handles all the other extents during the tree
walk via the ref dec/inc functions so we don't have to add actions beyond
what we had originally.
Signed-off-by: Mark Fasheh <mfasheh@suse.de>
Signed-off-by: Chris Mason <clm@fb.com>
When a block group becomes unused and the cleaner kthread is currently
running, we can end up getting the current transaction aborted with error
-ENOENT when we try to commit the transaction, leading to the following
trace:
[59779.258768] WARNING: CPU: 3 PID: 5990 at fs/btrfs/extent-tree.c:3740 btrfs_write_dirty_block_groups+0x17c/0x214 [btrfs]()
[59779.272594] BTRFS: Transaction aborted (error -2)
(...)
[59779.291137] Call Trace:
[59779.291621] [<ffffffff812566f4>] dump_stack+0x4e/0x79
[59779.292543] [<ffffffff8104d0a6>] warn_slowpath_common+0x9f/0xb8
[59779.293435] [<ffffffffa04cb81f>] ? btrfs_write_dirty_block_groups+0x17c/0x214 [btrfs]
[59779.295000] [<ffffffff8104d107>] warn_slowpath_fmt+0x48/0x50
[59779.296138] [<ffffffffa04c2721>] ? write_one_cache_group.isra.32+0x77/0x82 [btrfs]
[59779.297663] [<ffffffffa04cb81f>] btrfs_write_dirty_block_groups+0x17c/0x214 [btrfs]
[59779.299141] [<ffffffffa0549b0d>] commit_cowonly_roots+0x1de/0x261 [btrfs]
[59779.300359] [<ffffffffa04dd5b6>] btrfs_commit_transaction+0x4c4/0x99c [btrfs]
[59779.301805] [<ffffffffa04b5df4>] btrfs_sync_fs+0x145/0x1ad [btrfs]
[59779.302893] [<ffffffff81196634>] sync_filesystem+0x7f/0x93
(...)
[59779.318186] ---[ end trace 577e2daff90da33a ]---
The following diagram illustrates a sequence of steps leading to this
problem:
CPU 1 CPU 2
<at transaction N>
adds bg A to list
fs_info->unused_bgs
adds bg B to list
fs_info->unused_bgs
<transaction kthread
commits transaction N
and wakes up the
cleaner kthread>
cleaner kthread
delete_unused_bgs()
sees bg A in list
fs_info->unused_bgs
btrfs_start_transaction()
<transaction N + 1 starts>
deletes bg A
update_block_group(bg C)
--> adds bg C to list
fs_info->unused_bgs
deletes bg B
sees bg C in the list
fs_info->unused_bgs
btrfs_remove_chunk(bg C)
btrfs_remove_block_group(bg C)
--> checks if the block group
is in a dirty list, and
because it isn't now, it
does nothing
--> the block group item
is deleted from the
extent tree
--> adds bg C to list
transaction->dirty_bgs
some task calls
btrfs_commit_transaction(t N + 1)
commit_cowonly_roots()
btrfs_write_dirty_block_groups()
--> sees bg C in cur_trans->dirty_bgs
--> calls write_one_cache_group()
which returns -ENOENT because
it did not find the block group
item in the extent tree
--> transaction aborte with -ENOENT
because write_one_cache_group()
returned that error
So fix this by adding a block group to the list of dirty block groups
before adding it to the list of unused block groups.
This happened on a stress test using fsstress plus concurrent calls to
fallocate 20G and truncate (releasing part of the space allocated with
fallocate).
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
Currently scrub can race with the cleaner kthread when the later attempts
to delete an unused block group, and the result is preventing the cleaner
kthread from ever deleting later the block group - unless the block group
becomes used and unused again. The following diagram illustrates that
race:
CPU 1 CPU 2
cleaner kthread
btrfs_delete_unused_bgs()
gets block group X from
fs_info->unused_bgs and
removes it from that list
scrub_enumerate_chunks()
searches device tree using
its commit root
finds device extent for
block group X
gets block group X from the tree
fs_info->block_group_cache_tree
(via btrfs_lookup_block_group())
sets bg X to RO
sees the block group is
already RO and therefore
doesn't delete it nor adds
it back to unused list
So fix this by making scrub add the block group again to the list of
unused block groups if the block group is still unused when it finished
scrubbing it and it hasn't been removed already.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
We were using only 1 transaction unit when attempting to delete an unused
block group but in reality we need 3 + N units, where N corresponds to the
number of stripes. We were accounting only for the addition of the orphan
item (for the block group's free space cache inode) but we were not
accounting that we need to delete one block group item from the extent
tree, one free space item from the tree of tree roots and N device extent
items from the device tree.
While one unit is not enough, it worked most of the time because for each
single unit we are too pessimistic and assume an entire tree path, with
the highest possible heigth (8), needs to be COWed with eventual node
splits at every possible level in the tree, so there was usually enough
reserved space for removing all the items and adding the orphan item.
However after adding the orphan item, writepages() can by called by the VM
subsystem against the btree inode when we are under memory pressure, which
causes writeback to start for the nodes we COWed before, this forces the
operation to remove the free space item to COW again some (or all of) the
same nodes (in the tree of tree roots). Even without writepages() being
called, we could fail with ENOSPC because these items are located in
multiple trees and one of them might have a higher heigth and require
node/leaf splits at many levels, exhausting all the reserved space before
removing all the items and adding the orphan.
In the kernel 4.0 release, commit 3d84be7991 ("Btrfs: fix BUG_ON in
btrfs_orphan_add() when delete unused block group"), we attempted to fix
a BUG_ON due to ENOSPC when trying to add the orphan item by making the
cleaner kthread reserve one transaction unit before attempting to remove
the block group, but this was not enough. We had a couple user reports
still hitting the same BUG_ON after 4.0, like Stefan Priebe's report on
a 4.2-rc6 kernel for example:
http://www.spinics.net/lists/linux-btrfs/msg46070.html
So fix this by reserving all the necessary units of metadata.
Reported-by: Stefan Priebe <s.priebe@profihost.ag>
Fixes: 3d84be7991 ("Btrfs: fix BUG_ON in btrfs_orphan_add() when delete unused block group")
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
It's possible to reach a state where the cleaner kthread isn't able to
start a transaction to delete an unused block group due to lack of enough
free metadata space and due to lack of unallocated device space to allocate
a new metadata block group as well. If this happens try to use space from
the global block group reserve just like we do for unlink operations, so
that we don't reach a permanent state where starting a transaction for
filesystem operations (file creation, renames, etc) keeps failing with
-ENOSPC. Such an unfortunate state was observed on a machine where over
a dozen unused data block groups existed and the cleaner kthread was
failing to delete them due to ENOSPC error when attempting to start a
transaction, and even running balance with a -dusage=0 filter failed with
ENOSPC as well. Also unmounting and mounting again the filesystem didn't
help. Allowing the cleaner kthread to use the global block reserve to
delete the unused data block groups fixed the problem.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Jeff Mahoney <jeffm@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
No need to use root->fs_info in btrfs_delete_unused_bgs(),
use fs_info directly instead.
Signed-off-by: Zhao Lei <zhaolei@cn.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
Reproduce:
(In integration-4.3 branch)
TEST_DEV=(/dev/vdg /dev/vdh)
TEST_DIR=/mnt/tmp
umount "$TEST_DEV" >/dev/null
mkfs.btrfs -f -d raid1 "${TEST_DEV[@]}"
mount -o nospace_cache "$TEST_DEV" "$TEST_DIR"
umount "$TEST_DEV"
mount -o nospace_cache "$TEST_DEV" "$TEST_DIR"
btrfs filesystem usage $TEST_DIR
We can see the data chunk changed from raid1 to single:
# btrfs filesystem usage $TEST_DIR
Data,single: Size:8.00MiB, Used:0.00B
/dev/vdg 8.00MiB
#
Reason:
When a empty filesystem mount with -o nospace_cache, the last
data blockgroup will be auto-removed in umount.
Then if we mount it again, there is no data chunk in the
filesystem, so the only available data profile is 0x0, result
is all new chunks are created as single type.
Fix:
Don't auto-delete last blockgroup for a raid type.
Test:
Test by above script, and confirmed the logic by debug output.
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Zhao Lei <zhaolei@cn.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
When executing generic/001 in a loop on a ppc64 machine (with both sectorsize
and nodesize set to 64k), the following call trace is observed,
WARNING: at /root/repos/linux/fs/btrfs/locking.c:253
Modules linked in:
CPU: 2 PID: 8353 Comm: umount Not tainted 4.3.0-rc5-13676-ga5e681d #54
task: c0000000f2b1f560 ti: c0000000f6008000 task.ti: c0000000f6008000
NIP: c000000000520c88 LR: c0000000004a3b34 CTR: 0000000000000000
REGS: c0000000f600a820 TRAP: 0700 Not tainted (4.3.0-rc5-13676-ga5e681d)
MSR: 8000000102029032 <SF,VEC,EE,ME,IR,DR,RI> CR: 24444884 XER: 00000000
CFAR: c0000000004a3b30 SOFTE: 1
GPR00: c0000000004a3b34 c0000000f600aaa0 c00000000108ac00 c0000000f5a808c0
GPR04: 0000000000000000 c0000000f600ae60 0000000000000000 0000000000000005
GPR08: 00000000000020a1 0000000000000001 c0000000f2b1f560 0000000000000030
GPR12: 0000000084842882 c00000000fdc0900 c0000000f600ae60 c0000000f070b800
GPR16: 0000000000000000 c0000000f3c8a000 0000000000000000 0000000000000049
GPR20: 0000000000000001 0000000000000001 c0000000f5aa01f8 0000000000000000
GPR24: 0f83e0f83e0f83e1 c0000000f5a808c0 c0000000f3c8d000 c000000000000000
GPR28: c0000000f600ae74 0000000000000001 c0000000f3c8d000 c0000000f5a808c0
NIP [c000000000520c88] .btrfs_tree_lock+0x48/0x2a0
LR [c0000000004a3b34] .btrfs_lock_root_node+0x44/0x80
Call Trace:
[c0000000f600aaa0] [c0000000f600ab80] 0xc0000000f600ab80 (unreliable)
[c0000000f600ab80] [c0000000004a3b34] .btrfs_lock_root_node+0x44/0x80
[c0000000f600ac00] [c0000000004a99dc] .btrfs_search_slot+0xa8c/0xc00
[c0000000f600ad40] [c0000000004ab878] .btrfs_insert_empty_items+0x98/0x120
[c0000000f600adf0] [c00000000050da44] .btrfs_finish_chunk_alloc+0x1d4/0x620
[c0000000f600af20] [c0000000004be854] .btrfs_create_pending_block_groups+0x1d4/0x2c0
[c0000000f600b020] [c0000000004bf188] .do_chunk_alloc+0x3c8/0x420
[c0000000f600b100] [c0000000004c27cc] .find_free_extent+0xbfc/0x1030
[c0000000f600b260] [c0000000004c2ce8] .btrfs_reserve_extent+0xe8/0x250
[c0000000f600b330] [c0000000004c2f90] .btrfs_alloc_tree_block+0x140/0x590
[c0000000f600b440] [c0000000004a47b4] .__btrfs_cow_block+0x124/0x780
[c0000000f600b530] [c0000000004a4fc0] .btrfs_cow_block+0xf0/0x250
[c0000000f600b5e0] [c0000000004a917c] .btrfs_search_slot+0x22c/0xc00
[c0000000f600b720] [c00000000050aa40] .btrfs_remove_chunk+0x1b0/0x9f0
[c0000000f600b850] [c0000000004c4e04] .btrfs_delete_unused_bgs+0x434/0x570
[c0000000f600b950] [c0000000004d3cb8] .close_ctree+0x2e8/0x3b0
[c0000000f600ba20] [c00000000049d178] .btrfs_put_super+0x18/0x30
[c0000000f600ba90] [c000000000243cd4] .generic_shutdown_super+0xa4/0x1a0
[c0000000f600bb10] [c0000000002441d8] .kill_anon_super+0x18/0x30
[c0000000f600bb90] [c00000000049c898] .btrfs_kill_super+0x18/0xc0
[c0000000f600bc10] [c0000000002444f8] .deactivate_locked_super+0x98/0xe0
[c0000000f600bc90] [c000000000269f94] .cleanup_mnt+0x54/0xa0
[c0000000f600bd10] [c0000000000bd744] .task_work_run+0xc4/0x100
[c0000000f600bdb0] [c000000000016334] .do_notify_resume+0x74/0x80
[c0000000f600be30] [c0000000000098b8] .ret_from_except_lite+0x64/0x68
Instruction dump:
fba1ffe8 fbc1fff0 fbe1fff8 7c791b78 f8010010 f821ff21 e94d0290 81030040
812a04e8 7d094a78 7d290034 5529d97e <0b090000> 3b400000 3be30050 3bc3004c
The above call trace is seen even on x86_64; albeit very rarely and that too
with nodesize set to 64k and with nospace_cache mount option being used.
The reason for the above call trace is,
btrfs_remove_chunk
check_system_chunk
Allocate chunk if required
For each physical stripe on underlying device,
btrfs_free_dev_extent
...
Take lock on Device tree's root node
btrfs_cow_block("dev tree's root node");
btrfs_reserve_extent
find_free_extent
index = BTRFS_RAID_DUP;
have_caching_bg = false;
When in LOOP_CACHING_NOWAIT state, Assume we find a block group
which is being cached; Hence have_caching_bg is set to true
When repeating the search for the next RAID index, we set
have_caching_bg to false.
Hence right after completing the LOOP_CACHING_NOWAIT state, we incorrectly
skip LOOP_CACHING_WAIT state and move to LOOP_ALLOC_CHUNK state where we
allocate a chunk and try to add entries corresponding to the chunk's physical
stripe into the device tree. When doing so the task deadlocks itself waiting
for the blocking lock on the root node of the device tree.
This commit fixes the issue by introducing a new local variable to help
indicate as to whether a block group of any RAID type is being cached.
Signed-off-by: Chandan Rajendra <chandan@linux.vnet.ibm.com>
Reviewed-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
Between btrfs_allocerved_file_extent() and
btrfs_add_delayed_qgroup_reserve(), there is a window that delayed_refs
are run and delayed ref head maybe freed before
btrfs_add_delayed_qgroup_reserve().
This will cause btrfs_dad_delayed_qgroup_reserve() to return -ENOENT,
and cause transaction to be aborted.
This patch will record qgroup reserve space info into delayed_ref_head
at btrfs_add_delayed_ref(), to eliminate the race window.
Reported-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
In the kernel 4.2 merge window we had a big changes to the implementation
of delayed references and qgroups which made the no_quota field of delayed
references not used anymore. More specifically the no_quota field is not
used anymore as of:
commit 0ed4792af0 ("btrfs: qgroup: Switch to new extent-oriented qgroup mechanism.")
Leaving the no_quota field actually prevents delayed references from
getting merged, which in turn cause the following BUG_ON(), at
fs/btrfs/extent-tree.c, to be hit when qgroups are enabled:
static int run_delayed_tree_ref(...)
{
(...)
BUG_ON(node->ref_mod != 1);
(...)
}
This happens on a scenario like the following:
1) Ref1 bytenr X, action = BTRFS_ADD_DELAYED_REF, no_quota = 1, added.
2) Ref2 bytenr X, action = BTRFS_DROP_DELAYED_REF, no_quota = 0, added.
It's not merged with Ref1 because Ref1->no_quota != Ref2->no_quota.
3) Ref3 bytenr X, action = BTRFS_ADD_DELAYED_REF, no_quota = 1, added.
It's not merged with the reference at the tail of the list of refs
for bytenr X because the reference at the tail, Ref2 is incompatible
due to Ref2->no_quota != Ref3->no_quota.
4) Ref4 bytenr X, action = BTRFS_DROP_DELAYED_REF, no_quota = 0, added.
It's not merged with the reference at the tail of the list of refs
for bytenr X because the reference at the tail, Ref3 is incompatible
due to Ref3->no_quota != Ref4->no_quota.
5) We run delayed references, trigger merging of delayed references,
through __btrfs_run_delayed_refs() -> btrfs_merge_delayed_refs().
6) Ref1 and Ref3 are merged as Ref1->no_quota = Ref3->no_quota and
all other conditions are satisfied too. So Ref1 gets a ref_mod
value of 2.
7) Ref2 and Ref4 are merged as Ref2->no_quota = Ref4->no_quota and
all other conditions are satisfied too. So Ref2 gets a ref_mod
value of 2.
8) Ref1 and Ref2 aren't merged, because they have different values
for their no_quota field.
9) Delayed reference Ref1 is picked for running (select_delayed_ref()
always prefers references with an action == BTRFS_ADD_DELAYED_REF).
So run_delayed_tree_ref() is called for Ref1 which triggers the
BUG_ON because Ref1->red_mod != 1 (equals 2).
So fix this by removing the no_quota field, as it's not used anymore as
of commit 0ed4792af0 ("btrfs: qgroup: Switch to new extent-oriented
qgroup mechanism.").
The use of no_quota was also buggy in at least two places:
1) At delayed-refs.c:btrfs_add_delayed_tree_ref() - we were setting
no_quota to 0 instead of 1 when the following condition was true:
is_fstree(ref_root) || !fs_info->quota_enabled
2) At extent-tree.c:__btrfs_inc_extent_ref() - we were attempting to
reset a node's no_quota when the condition "!is_fstree(root_objectid)
|| !root->fs_info->quota_enabled" was true but we did it only in
an unused local stack variable, that is, we never reset the no_quota
value in the node itself.
This fixes the remainder of problems several people have been having when
running delayed references, mostly while a balance is running in parallel,
on a 4.2+ kernel.
Very special thanks to Stéphane Lesimple for helping debugging this issue
and testing this fix on his multi terabyte filesystem (which took more
than one day to balance alone, plus fsck, etc).
Also, this fixes deadlock issue when using the clone ioctl with qgroups
enabled, as reported by Elias Probst in the mailing list. The deadlock
happens because after calling btrfs_insert_empty_item we have our path
holding a write lock on a leaf of the fs/subvol tree and then before
releasing the path we called check_ref() which did backref walking, when
qgroups are enabled, and tried to read lock the same leaf. The trace for
this case is the following:
INFO: task systemd-nspawn:6095 blocked for more than 120 seconds.
(...)
Call Trace:
[<ffffffff86999201>] schedule+0x74/0x83
[<ffffffff863ef64c>] btrfs_tree_read_lock+0xc0/0xea
[<ffffffff86137ed7>] ? wait_woken+0x74/0x74
[<ffffffff8639f0a7>] btrfs_search_old_slot+0x51a/0x810
[<ffffffff863a129b>] btrfs_next_old_leaf+0xdf/0x3ce
[<ffffffff86413a00>] ? ulist_add_merge+0x1b/0x127
[<ffffffff86411688>] __resolve_indirect_refs+0x62a/0x667
[<ffffffff863ef546>] ? btrfs_clear_lock_blocking_rw+0x78/0xbe
[<ffffffff864122d3>] find_parent_nodes+0xaf3/0xfc6
[<ffffffff86412838>] __btrfs_find_all_roots+0x92/0xf0
[<ffffffff864128f2>] btrfs_find_all_roots+0x45/0x65
[<ffffffff8639a75b>] ? btrfs_get_tree_mod_seq+0x2b/0x88
[<ffffffff863e852e>] check_ref+0x64/0xc4
[<ffffffff863e9e01>] btrfs_clone+0x66e/0xb5d
[<ffffffff863ea77f>] btrfs_ioctl_clone+0x48f/0x5bb
[<ffffffff86048a68>] ? native_sched_clock+0x28/0x77
[<ffffffff863ed9b0>] btrfs_ioctl+0xabc/0x25cb
(...)
The problem goes away by eleminating check_ref(), which no longer is
needed as its purpose was to get a value for the no_quota field of
a delayed reference (this patch removes the no_quota field as mentioned
earlier).
Reported-by: Stéphane Lesimple <stephane_btrfs@lesimple.fr>
Tested-by: Stéphane Lesimple <stephane_btrfs@lesimple.fr>
Reported-by: Elias Probst <mail@eliasprobst.eu>
Reported-by: Peter Becker <floyd.net@gmail.com>
Reported-by: Malte Schröder <malte@tnxip.de>
Reported-by: Derek Dongray <derek@valedon.co.uk>
Reported-by: Erkki Seppala <flux-btrfs@inside.org>
Cc: stable@vger.kernel.org # 4.2+
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
In the kernel 4.2 merge window we had a refactoring/rework of the delayed
references implementation in order to fix certain problems with qgroups.
However that rework introduced one more regression that leads to the
following trace when running delayed references for metadata:
[35908.064664] kernel BUG at fs/btrfs/extent-tree.c:1832!
[35908.065201] invalid opcode: 0000 [#1] PREEMPT SMP DEBUG_PAGEALLOC
[35908.065201] Modules linked in: dm_flakey dm_mod btrfs crc32c_generic xor raid6_pq nfsd auth_rpcgss oid_registry nfs_acl nfs lockd grace fscache sunrpc loop fuse parport_pc psmouse i2
[35908.065201] CPU: 14 PID: 15014 Comm: kworker/u32:9 Tainted: G W 4.3.0-rc5-btrfs-next-17+ #1
[35908.065201] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.8.1-0-g4adadbd-20150316_085822-nilsson.home.kraxel.org 04/01/2014
[35908.065201] Workqueue: btrfs-extent-refs btrfs_extent_refs_helper [btrfs]
[35908.065201] task: ffff880114b7d780 ti: ffff88010c4c8000 task.ti: ffff88010c4c8000
[35908.065201] RIP: 0010:[<ffffffffa04928b5>] [<ffffffffa04928b5>] insert_inline_extent_backref+0x52/0xb1 [btrfs]
[35908.065201] RSP: 0018:ffff88010c4cbb08 EFLAGS: 00010293
[35908.065201] RAX: 0000000000000000 RBX: ffff88008a661000 RCX: 0000000000000000
[35908.065201] RDX: ffffffffa04dd58f RSI: 0000000000000001 RDI: 0000000000000000
[35908.065201] RBP: ffff88010c4cbb40 R08: 0000000000001000 R09: ffff88010c4cb9f8
[35908.065201] R10: 0000000000000000 R11: 000000000000002c R12: 0000000000000000
[35908.065201] R13: ffff88020a74c578 R14: 0000000000000000 R15: 0000000000000000
[35908.065201] FS: 0000000000000000(0000) GS:ffff88023edc0000(0000) knlGS:0000000000000000
[35908.065201] CS: 0010 DS: 0000 ES: 0000 CR0: 000000008005003b
[35908.065201] CR2: 00000000015e8708 CR3: 0000000102185000 CR4: 00000000000006e0
[35908.065201] Stack:
[35908.065201] ffff88010c4cbb18 0000000000000f37 ffff88020a74c578 ffff88015a408000
[35908.065201] ffff880154a44000 0000000000000000 0000000000000005 ffff88010c4cbbd8
[35908.065201] ffffffffa0492b9a 0000000000000005 0000000000000000 0000000000000000
[35908.065201] Call Trace:
[35908.065201] [<ffffffffa0492b9a>] __btrfs_inc_extent_ref+0x8b/0x208 [btrfs]
[35908.065201] [<ffffffffa0497117>] ? __btrfs_run_delayed_refs+0x4d4/0xd33 [btrfs]
[35908.065201] [<ffffffffa049773d>] __btrfs_run_delayed_refs+0xafa/0xd33 [btrfs]
[35908.065201] [<ffffffffa04a976a>] ? join_transaction.isra.10+0x25/0x41f [btrfs]
[35908.065201] [<ffffffffa04a97ed>] ? join_transaction.isra.10+0xa8/0x41f [btrfs]
[35908.065201] [<ffffffffa049914d>] btrfs_run_delayed_refs+0x75/0x1dd [btrfs]
[35908.065201] [<ffffffffa04992f1>] delayed_ref_async_start+0x3c/0x7b [btrfs]
[35908.065201] [<ffffffffa04d4b4f>] normal_work_helper+0x14c/0x32a [btrfs]
[35908.065201] [<ffffffffa04d4e93>] btrfs_extent_refs_helper+0x12/0x14 [btrfs]
[35908.065201] [<ffffffff81063b23>] process_one_work+0x24a/0x4ac
[35908.065201] [<ffffffff81064285>] worker_thread+0x206/0x2c2
[35908.065201] [<ffffffff8106407f>] ? rescuer_thread+0x2cb/0x2cb
[35908.065201] [<ffffffff8106407f>] ? rescuer_thread+0x2cb/0x2cb
[35908.065201] [<ffffffff8106904d>] kthread+0xef/0xf7
[35908.065201] [<ffffffff81068f5e>] ? kthread_parkme+0x24/0x24
[35908.065201] [<ffffffff8147d10f>] ret_from_fork+0x3f/0x70
[35908.065201] [<ffffffff81068f5e>] ? kthread_parkme+0x24/0x24
[35908.065201] Code: 6a 01 41 56 41 54 ff 75 10 41 51 4d 89 c1 49 89 c8 48 8d 4d d0 e8 f6 f1 ff ff 48 83 c4 28 85 c0 75 2c 49 81 fc ff 00 00 00 77 02 <0f> 0b 4c 8b 45 30 8b 4d 28 45 31
[35908.065201] RIP [<ffffffffa04928b5>] insert_inline_extent_backref+0x52/0xb1 [btrfs]
[35908.065201] RSP <ffff88010c4cbb08>
[35908.310885] ---[ end trace fe4299baf0666457 ]---
This happens because the new delayed references code no longer merges
delayed references that have different sequence values. The following
steps are an example sequence leading to this issue:
1) Transaction N starts, fs_info->tree_mod_seq has value 0;
2) Extent buffer (btree node) A is allocated, delayed reference Ref1 for
bytenr A is created, with a value of 1 and a seq value of 0;
3) fs_info->tree_mod_seq is incremented to 1;
4) Extent buffer A is deleted through btrfs_del_items(), which calls
btrfs_del_leaf(), which in turn calls btrfs_free_tree_block(). The
later returns the metadata extent associated to extent buffer A to
the free space cache (the range is not pinned), because the extent
buffer was created in the current transaction (N) and writeback never
happened for the extent buffer (flag BTRFS_HEADER_FLAG_WRITTEN not set
in the extent buffer).
This creates the delayed reference Ref2 for bytenr A, with a value
of -1 and a seq value of 1;
5) Delayed reference Ref2 is not merged with Ref1 when we create it,
because they have different sequence numbers (decided at
add_delayed_ref_tail_merge());
6) fs_info->tree_mod_seq is incremented to 2;
7) Some task attempts to allocate a new extent buffer (done at
extent-tree.c:find_free_extent()), but due to heavy fragmentation
and running low on metadata space the clustered allocation fails
and we fall back to unclustered allocation, which finds the
extent at offset A, so a new extent buffer at offset A is allocated.
This creates delayed reference Ref3 for bytenr A, with a value of 1
and a seq value of 2;
8) Ref3 is not merged neither with Ref2 nor Ref1, again because they
all have different seq values;
9) We start running the delayed references (__btrfs_run_delayed_refs());
10) The delayed Ref1 is the first one being applied, which ends up
creating an inline extent backref in the extent tree;
10) Next the delayed reference Ref3 is selected for execution, and not
Ref2, because select_delayed_ref() always gives a preference for
positive references (that have an action of BTRFS_ADD_DELAYED_REF);
11) When running Ref3 we encounter alreay the inline extent backref
in the extent tree at insert_inline_extent_backref(), which makes
us hit the following BUG_ON:
BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
This is always true because owner corresponds to the level of the
extent buffer/btree node in the btree.
For the scenario described above we hit the BUG_ON because we never merge
references that have different seq values.
We used to do the merging before the 4.2 kernel, more specifically, before
the commmits:
c6fc245499 ("btrfs: delayed-ref: Use list to replace the ref_root in ref_head.")
c43d160fcd ("btrfs: delayed-ref: Cleanup the unneeded functions.")
This issue became more exposed after the following change that was added
to 4.2 as well:
cffc3374e5 ("Btrfs: fix order by which delayed references are run")
Which in turn fixed another regression by the two commits previously
mentioned.
So fix this by bringing back the delayed reference merge code, with the
proper adaptations so that it operates against the new data structure
(linked list vs old red black tree implementation).
This issue was hit running fstest btrfs/063 in a loop. Several people have
reported this issue in the mailing list when running on kernels 4.2+.
Very special thanks to Stéphane Lesimple for helping debugging this issue
and testing this fix on his multi terabyte filesystem (which took more
than one day to balance alone, plus fsck, etc).
Fixes: c6fc245499 ("btrfs: delayed-ref: Use list to replace the ref_root in ref_head.")
Reported-by: Peter Becker <floyd.net@gmail.com>
Reported-by: Stéphane Lesimple <stephane_btrfs@lesimple.fr>
Tested-by: Stéphane Lesimple <stephane_btrfs@lesimple.fr>
Reported-by: Malte Schröder <malte@tnxip.de>
Reported-by: Derek Dongray <derek@valedon.co.uk>
Reported-by: Erkki Seppala <flux-btrfs@inside.org>
Cc: stable@vger.kernel.org # 4.2+
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: Liu Bo <bo.li.liu@oracle.com>
If we are extremely fragmented then we won't be able to create a free_cluster.
So if this happens set last_ptr->fragmented so that all future allcations will
give up trying to create a cluster. When we unpin extents we will unset
->fragmented if we free up a sufficient amount of space in a block group.
Thanks,
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
We try really really hard to make allocations, but sometimes it is just not
going to happen, especially when free space is extremely fragmented. So add a
few short cuts through the looping states. For example if we couldn't allocate
a chunk, just go straight to the NO_EMPTY_SIZE loop. If there are no uncached
block groups and we've done a full search, go straight to the ALLOC_CHUNK stage.
And finally if we already have empty_size and empty_cluster set to 0 go ahead
and return -ENOSPC. Thanks,
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
If we hit ENOSPC when setting up a space cache don't bother setting up any of
the other space cache's in this transaction, it'll just induce unnecessary
latency. Thanks,
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
When we are heavily fragmented we can induce a lot of latency trying to make an
allocation happen that is simply not going to happen. Thankfully we keep track
of our max_extent_size when going through the allocator, so if we get to the
point where we are exiting find_free_extent with ENOSPC then set our
space_info->max_extent_size so we can keep future allocations from having to pay
this cost. We reset the max_extent_size whenever we release pinned bytes back
into this space info so we can redo all the work. Thanks,
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
The space cache needs to have contiguous allocations, and the allocator tries to
make allocations by reducing the amount of bytes requested and re-searching.
But this just makes us waste time when we are very fragmented, so if we can't
find our space just exit, don't bother trying to search again. Thanks,
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>