mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-12-28 11:18:45 +07:00
918da95176
36 Commits
Author | SHA1 | Message | Date | |
---|---|---|---|---|
Greg Kroah-Hartman
|
b24413180f |
License cleanup: add SPDX GPL-2.0 license identifier to files with no license
Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> |
||
Huang Ying
|
cbc65df240 |
mm, swap: add swap readahead hit statistics
Patch series "mm, swap: VMA based swap readahead", v4. The swap readahead is an important mechanism to reduce the swap in latency. Although pure sequential memory access pattern isn't very popular for anonymous memory, the space locality is still considered valid. In the original swap readahead implementation, the consecutive blocks in swap device are readahead based on the global space locality estimation. But the consecutive blocks in swap device just reflect the order of page reclaiming, don't necessarily reflect the access pattern in virtual memory space. And the different tasks in the system may have different access patterns, which makes the global space locality estimation incorrect. In this patchset, when page fault occurs, the virtual pages near the fault address will be readahead instead of the swap slots near the fault swap slot in swap device. This avoid to readahead the unrelated swap slots. At the same time, the swap readahead is changed to work on per-VMA from globally. So that the different access patterns of the different VMAs could be distinguished, and the different readahead policy could be applied accordingly. The original core readahead detection and scaling algorithm is reused, because it is an effect algorithm to detect the space locality. In addition to the swap readahead changes, some new sysfs interface is added to show the efficiency of the readahead algorithm and some other swap statistics. This new implementation will incur more small random read, on SSD, the improved correctness of estimation and readahead target should beat the potential increased overhead, this is also illustrated in the test results below. But on HDD, the overhead may beat the benefit, so the original implementation will be used by default. The test and result is as follow, Common test condition ===================== Test Machine: Xeon E5 v3 (2 sockets, 72 threads, 32G RAM) Swap device: NVMe disk Micro-benchmark with combined access pattern ============================================ vm-scalability, sequential swap test case, 4 processes to eat 50G virtual memory space, repeat the sequential memory writing until 300 seconds. The first round writing will trigger swap out, the following rounds will trigger sequential swap in and out. At the same time, run vm-scalability random swap test case in background, 8 processes to eat 30G virtual memory space, repeat the random memory write until 300 seconds. This will trigger random swap-in in the background. This is a combined workload with sequential and random memory accessing at the same time. The result (for sequential workload) is as follow, Base Optimized ---- --------- throughput 345413 KB/s 414029 KB/s (+19.9%) latency.average 97.14 us 61.06 us (-37.1%) latency.50th 2 us 1 us latency.60th 2 us 1 us latency.70th 98 us 2 us latency.80th 160 us 2 us latency.90th 260 us 217 us latency.95th 346 us 369 us latency.99th 1.34 ms 1.09 ms ra_hit% 52.69% 99.98% The original swap readahead algorithm is confused by the background random access workload, so readahead hit rate is lower. The VMA-base readahead algorithm works much better. Linpack ======= The test memory size is bigger than RAM to trigger swapping. Base Optimized ---- --------- elapsed_time 393.49 s 329.88 s (-16.2%) ra_hit% 86.21% 98.82% The score of base and optimized kernel hasn't visible changes. But the elapsed time reduced and readahead hit rate improved, so the optimized kernel runs better for startup and tear down stages. And the absolute value of readahead hit rate is high, shows that the space locality is still valid in some practical workloads. This patch (of 5): The statistics for total readahead pages and total readahead hits are recorded and exported via the following sysfs interface. /sys/kernel/mm/swap/ra_hits /sys/kernel/mm/swap/ra_total With them, the efficiency of the swap readahead could be measured, so that the swap readahead algorithm and parameters could be tuned accordingly. [akpm@linux-foundation.org: don't display swap stats if CONFIG_SWAP=n] Link: http://lkml.kernel.org/r/20170807054038.1843-2-ying.huang@intel.com Signed-off-by: "Huang, Ying" <ying.huang@intel.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Rik van Riel <riel@redhat.com> Cc: Shaohua Li <shli@kernel.org> Cc: Hugh Dickins <hughd@google.com> Cc: Fengguang Wu <fengguang.wu@intel.com> Cc: Tim Chen <tim.c.chen@intel.com> Cc: Dave Hansen <dave.hansen@intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Huang Ying
|
fe490cc0fe |
mm, THP, swap: add THP swapping out fallback counting
When swapping out THP (Transparent Huge Page), instead of swapping out the THP as a whole, sometimes we have to fallback to split the THP into normal pages before swapping, because no free swap clusters are available, or cgroup limit is exceeded, etc. To count the number of the fallback, a new VM event THP_SWPOUT_FALLBACK is added, and counted when we fallback to split the THP. Link: http://lkml.kernel.org/r/20170724051840.2309-13-ying.huang@intel.com Signed-off-by: "Huang, Ying" <ying.huang@intel.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Hugh Dickins <hughd@google.com> Cc: Shaohua Li <shli@kernel.org> Cc: Rik van Riel <riel@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: "Kirill A . Shutemov" <kirill.shutemov@linux.intel.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: Ross Zwisler <ross.zwisler@intel.com> [for brd.c, zram_drv.c, pmem.c] Cc: Vishal L Verma <vishal.l.verma@intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Huang Ying
|
225311a464 |
mm: test code to write THP to swap device as a whole
To support delay splitting THP (Transparent Huge Page) after swapped out, we need to enhance swap writing code to support to write a THP as a whole. This will improve swap write IO performance. As Ming Lei <ming.lei@redhat.com> pointed out, this should be based on multipage bvec support, which hasn't been merged yet. So this patch is only for testing the functionality of the other patches in the series. And will be reimplemented after multipage bvec support is merged. Link: http://lkml.kernel.org/r/20170724051840.2309-7-ying.huang@intel.com Signed-off-by: "Huang, Ying" <ying.huang@intel.com> Cc: "Kirill A . Shutemov" <kirill.shutemov@linux.intel.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Hugh Dickins <hughd@google.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@kernel.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Rik van Riel <riel@redhat.com> Cc: Ross Zwisler <ross.zwisler@intel.com> [for brd.c, zram_drv.c, pmem.c] Cc: Shaohua Li <shli@kernel.org> Cc: Vishal L Verma <vishal.l.verma@intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Konstantin Khlebnikov
|
8e675f7af5 |
mm/oom_kill: count global and memory cgroup oom kills
Show count of oom killer invocations in /proc/vmstat and count of processes killed in memory cgroup in knob "memory.events" (in memory.oom_control for v1 cgroup). Also describe difference between "oom" and "oom_kill" in memory cgroup documentation. Currently oom in memory cgroup kills tasks iff shortage has happened inside page fault. These counters helps in monitoring oom kills - for now the only way is grepping for magic words in kernel log. [akpm@linux-foundation.org: fix for mem_cgroup_count_vm_event() rename] [akpm@linux-foundation.org: fix comment, per Konstantin] Link: http://lkml.kernel.org/r/149570810989.203600.9492483715840752937.stgit@buzz Signed-off-by: Konstantin Khlebnikov <khlebnikov@yandex-team.ru> Cc: Michal Hocko <mhocko@kernel.org> Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Cc: Roman Guschin <guroan@gmail.com> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Andy Lutomirski
|
5dd0b16cda |
mm/vmstat: Make NR_TLB_REMOTE_FLUSH_RECEIVED available even on UP
This fixes CONFIG_SMP=n, CONFIG_DEBUG_TLBFLUSH=y without introducing
further #ifdef soup. Caught by a Kbuild bot randconfig build.
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Fixes:
|
||
Shaohua Li
|
f7ad2a6cb9 |
mm: move MADV_FREE pages into LRU_INACTIVE_FILE list
madv()'s MADV_FREE indicate pages are 'lazyfree'. They are still anonymous pages, but they can be freed without pageout. To distinguish these from normal anonymous pages, we clear their SwapBacked flag. MADV_FREE pages could be freed without pageout, so they pretty much like used once file pages. For such pages, we'd like to reclaim them once there is memory pressure. Also it might be unfair reclaiming MADV_FREE pages always before used once file pages and we definitively want to reclaim the pages before other anonymous and file pages. To speed up MADV_FREE pages reclaim, we put the pages into LRU_INACTIVE_FILE list. The rationale is LRU_INACTIVE_FILE list is tiny nowadays and should be full of used once file pages. Reclaiming MADV_FREE pages will not have much interfere of anonymous and active file pages. And the inactive file pages and MADV_FREE pages will be reclaimed according to their age, so we don't reclaim too many MADV_FREE pages too. Putting the MADV_FREE pages into LRU_INACTIVE_FILE_LIST also means we can reclaim the pages without swap support. This idea is suggested by Johannes. This patch doesn't move MADV_FREE pages to LRU_INACTIVE_FILE list yet to avoid bisect failure, next patch will do it. The patch is based on Minchan's original patch. [akpm@linux-foundation.org: coding-style fixes] Link: http://lkml.kernel.org/r/2f87063c1e9354677b7618c647abde77b07561e5.1487965799.git.shli@fb.com Signed-off-by: Shaohua Li <shli@fb.com> Suggested-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Minchan Kim <minchan@kernel.org> Acked-by: Michal Hocko <mhocko@suse.com> Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com> Cc: Hugh Dickins <hughd@google.com> Cc: Rik van Riel <riel@redhat.com> Cc: Mel Gorman <mgorman@techsingularity.net> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Yisheng Xie
|
ce9311cf95 |
mm/vmstats: add thp_split_pud event for clarity
We added support for PUD-sized transparent hugepages, however we count the event "thp split pud" into thp_split_pmd event. To separate the event count of thp split pud from pmd, add a new event named thp_split_pud. Link: http://lkml.kernel.org/r/1488282380-5076-1-git-send-email-xieyisheng1@huawei.com Signed-off-by: Yisheng Xie <xieyisheng1@huawei.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Sebastian Siewior <bigeasy@linutronix.de> Cc: Hugh Dickins <hughd@google.com> Cc: Christoph Lameter <cl@linux.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Ebru Akagunduz <ebru.akagunduz@gmail.com> Cc: David Rientjes <rientjes@google.com> Cc: Hanjun Guo <guohanjun@huawei.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
David Rientjes
|
7f354a548d |
mm, compaction: add vmstats for kcompactd work
A "compact_daemon_wake" vmstat exists that represents the number of times kcompactd has woken up. This doesn't represent how much work it actually did, though. It's useful to understand how much compaction work is being done by kcompactd versus other methods such as direct compaction and explicitly triggered per-node (or system) compaction. This adds two new vmstats: "compact_daemon_migrate_scanned" and "compact_daemon_free_scanned" to represent the number of pages kcompactd has scanned as part of its migration scanner and freeing scanner, respectively. These values are still accounted for in the general "compact_migrate_scanned" and "compact_free_scanned" for compatibility. It could be argued that explicitly triggered compaction could also be tracked separately, and that could be added if others find it useful. Link: http://lkml.kernel.org/r/alpine.DEB.2.10.1612071749390.69852@chino.kir.corp.google.com Signed-off-by: David Rientjes <rientjes@google.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Michal Hocko <mhocko@kernel.org> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Mel Gorman
|
7cc30fcfd2 |
mm: vmstat: account per-zone stalls and pages skipped during reclaim
The vmstat allocstall was fairly useful in the general sense but node-based LRUs change that. It's important to know if a stall was for an address-limited allocation request as this will require skipping pages from other zones. This patch adds pgstall_* counters to replace allocstall. The sum of the counters will equal the old allocstall so it can be trivially recalculated. A high number of address-limited allocation requests may result in a lot of useless LRU scanning for suitable pages. As address-limited allocations require pages to be skipped, it's important to know how much useless LRU scanning took place so this patch adds pgskip* counters. This yields the following model 1. The number of address-space limited stalls can be accounted for (pgstall) 2. The amount of useless work required to reclaim the data is accounted (pgskip) 3. The total number of scans is available from pgscan_kswapd and pgscan_direct so from that the ratio of useful to useless scans can be calculated. [mgorman@techsingularity.net: s/pgstall/allocstall/] Link: http://lkml.kernel.org/r/1468404004-5085-3-git-send-email-mgorman@techsingularity.netLink: http://lkml.kernel.org/r/1467970510-21195-33-git-send-email-mgorman@techsingularity.net Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Hillf Danton <hillf.zj@alibaba-inc.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Rik van Riel <riel@surriel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Mel Gorman
|
599d0c954f |
mm, vmscan: move LRU lists to node
This moves the LRU lists from the zone to the node and related data such as counters, tracing, congestion tracking and writeback tracking. Unfortunately, due to reclaim and compaction retry logic, it is necessary to account for the number of LRU pages on both zone and node logic. Most reclaim logic is based on the node counters but the retry logic uses the zone counters which do not distinguish inactive and active sizes. It would be possible to leave the LRU counters on a per-zone basis but it's a heavier calculation across multiple cache lines that is much more frequent than the retry checks. Other than the LRU counters, this is mostly a mechanical patch but note that it introduces a number of anomalies. For example, the scans are per-zone but using per-node counters. We also mark a node as congested when a zone is congested. This causes weird problems that are fixed later but is easier to review. In the event that there is excessive overhead on 32-bit systems due to the nodes being on LRU then there are two potential solutions 1. Long-term isolation of highmem pages when reclaim is lowmem When pages are skipped, they are immediately added back onto the LRU list. If lowmem reclaim persisted for long periods of time, the same highmem pages get continually scanned. The idea would be that lowmem keeps those pages on a separate list until a reclaim for highmem pages arrives that splices the highmem pages back onto the LRU. It potentially could be implemented similar to the UNEVICTABLE list. That would reduce the skip rate with the potential corner case is that highmem pages have to be scanned and reclaimed to free lowmem slab pages. 2. Linear scan lowmem pages if the initial LRU shrink fails This will break LRU ordering but may be preferable and faster during memory pressure than skipping LRU pages. Link: http://lkml.kernel.org/r/1467970510-21195-4-git-send-email-mgorman@techsingularity.net Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Hillf Danton <hillf.zj@alibaba-inc.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Rik van Riel <riel@surriel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Kirill A. Shutemov
|
95ecedcd6a |
thp, vmstats: add counters for huge file pages
THP_FILE_ALLOC: how many times huge page was allocated and put page cache. THP_FILE_MAPPED: how many times file huge page was mapped. Link: http://lkml.kernel.org/r/1466021202-61880-13-git-send-email-kirill.shutemov@linux.intel.com Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Kirill A. Shutemov
|
f9719a03de |
thp, vmstats: count deferred split events
Count how many times we put a THP in split queue. Currently, it happens on partial unmap of a THP. Rapidly growing value can indicate that an application behaves unfriendly wrt THP: often fault in huge page and then unmap part of it. This leads to unnecessary memory fragmentation and the application may require tuning. The event also can help with debugging kernel [mis-]behaviour. Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Vlastimil Babka
|
698b1b3064 |
mm, compaction: introduce kcompactd
Memory compaction can be currently performed in several contexts: - kswapd balancing a zone after a high-order allocation failure - direct compaction to satisfy a high-order allocation, including THP page fault attemps - khugepaged trying to collapse a hugepage - manually from /proc The purpose of compaction is two-fold. The obvious purpose is to satisfy a (pending or future) high-order allocation, and is easy to evaluate. The other purpose is to keep overal memory fragmentation low and help the anti-fragmentation mechanism. The success wrt the latter purpose is more The current situation wrt the purposes has a few drawbacks: - compaction is invoked only when a high-order page or hugepage is not available (or manually). This might be too late for the purposes of keeping memory fragmentation low. - direct compaction increases latency of allocations. Again, it would be better if compaction was performed asynchronously to keep fragmentation low, before the allocation itself comes. - (a special case of the previous) the cost of compaction during THP page faults can easily offset the benefits of THP. - kswapd compaction appears to be complex, fragile and not working in some scenarios. It could also end up compacting for a high-order allocation request when it should be reclaiming memory for a later order-0 request. To improve the situation, we should be able to benefit from an equivalent of kswapd, but for compaction - i.e. a background thread which responds to fragmentation and the need for high-order allocations (including hugepages) somewhat proactively. One possibility is to extend the responsibilities of kswapd, which could however complicate its design too much. It should be better to let kswapd handle reclaim, as order-0 allocations are often more critical than high-order ones. Another possibility is to extend khugepaged, but this kthread is a single instance and tied to THP configs. This patch goes with the option of a new set of per-node kthreads called kcompactd, and lays the foundations, without introducing any new tunables. The lifecycle mimics kswapd kthreads, including the memory hotplug hooks. For compaction, kcompactd uses the standard compaction_suitable() and ompact_finished() criteria and the deferred compaction functionality. Unlike direct compaction, it uses only sync compaction, as there's no allocation latency to minimize. This patch doesn't yet add a call to wakeup_kcompactd. The kswapd compact/reclaim loop for high-order pages will be replaced by waking up kcompactd in the next patch with the description of what's wrong with the old approach. Waking up of the kcompactd threads is also tied to kswapd activity and follows these rules: - we don't want to affect any fastpaths, so wake up kcompactd only from the slowpath, as it's done for kswapd - if kswapd is doing reclaim, it's more important than compaction, so don't invoke kcompactd until kswapd goes to sleep - the target order used for kswapd is passed to kcompactd Future possible future uses for kcompactd include the ability to wake up kcompactd on demand in special situations, such as when hugepages are not available (currently not done due to __GFP_NO_KSWAPD) or when a fragmentation event (i.e. __rmqueue_fallback()) occurs. It's also possible to perform periodic compaction with kcompactd. [arnd@arndb.de: fix build errors with kcompactd] [paul.gortmaker@windriver.com: don't use modular references for non modular code] Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Rik van Riel <riel@redhat.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: David Rientjes <rientjes@google.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Arnd Bergmann <arnd@arndb.de> Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com> Cc: Hugh Dickins <hughd@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Minchan Kim
|
854e9ed09d |
mm: support madvise(MADV_FREE)
Linux doesn't have an ability to free pages lazy while other OS already have been supported that named by madvise(MADV_FREE). The gain is clear that kernel can discard freed pages rather than swapping out or OOM if memory pressure happens. Without memory pressure, freed pages would be reused by userspace without another additional overhead(ex, page fault + allocation + zeroing). Jason Evans said: : Facebook has been using MAP_UNINITIALIZED : (https://lkml.org/lkml/2012/1/18/308) in some of its applications for : several years, but there are operational costs to maintaining this : out-of-tree in our kernel and in jemalloc, and we are anxious to retire it : in favor of MADV_FREE. When we first enabled MAP_UNINITIALIZED it : increased throughput for much of our workload by ~5%, and although the : benefit has decreased using newer hardware and kernels, there is still : enough benefit that we cannot reasonably retire it without a replacement. : : Aside from Facebook operations, there are numerous broadly used : applications that would benefit from MADV_FREE. The ones that immediately : come to mind are redis, varnish, and MariaDB. I don't have much insight : into Android internals and development process, but I would hope to see : MADV_FREE support eventually end up there as well to benefit applications : linked with the integrated jemalloc. : : jemalloc will use MADV_FREE once it becomes available in the Linux kernel. : In fact, jemalloc already uses MADV_FREE or equivalent everywhere it's : available: *BSD, OS X, Windows, and Solaris -- every platform except Linux : (and AIX, but I'm not sure it even compiles on AIX). The lack of : MADV_FREE on Linux forced me down a long series of increasingly : sophisticated heuristics for madvise() volume reduction, and even so this : remains a common performance issue for people using jemalloc on Linux. : Please integrate MADV_FREE; many people will benefit substantially. How it works: When madvise syscall is called, VM clears dirty bit of ptes of the range. If memory pressure happens, VM checks dirty bit of page table and if it found still "clean", it means it's a "lazyfree pages" so VM could discard the page instead of swapping out. Once there was store operation for the page before VM peek a page to reclaim, dirty bit is set so VM can swap out the page instead of discarding. One thing we should notice is that basically, MADV_FREE relies on dirty bit in page table entry to decide whether VM allows to discard the page or not. IOW, if page table entry includes marked dirty bit, VM shouldn't discard the page. However, as a example, if swap-in by read fault happens, page table entry doesn't have dirty bit so MADV_FREE could discard the page wrongly. For avoiding the problem, MADV_FREE did more checks with PageDirty and PageSwapCache. It worked out because swapped-in page lives on swap cache and since it is evicted from the swap cache, the page has PG_dirty flag. So both page flags check effectively prevent wrong discarding by MADV_FREE. However, a problem in above logic is that swapped-in page has PG_dirty still after they are removed from swap cache so VM cannot consider the page as freeable any more even if madvise_free is called in future. Look at below example for detail. ptr = malloc(); memset(ptr); .. .. .. heavy memory pressure so all of pages are swapped out .. .. var = *ptr; -> a page swapped-in and could be removed from swapcache. Then, page table doesn't mark dirty bit and page descriptor includes PG_dirty .. .. madvise_free(ptr); -> It doesn't clear PG_dirty of the page. .. .. .. .. heavy memory pressure again. .. In this time, VM cannot discard the page because the page .. has *PG_dirty* To solve the problem, this patch clears PG_dirty if only the page is owned exclusively by current process when madvise is called because PG_dirty represents ptes's dirtiness in several processes so we could clear it only if we own it exclusively. Firstly, heavy users would be general allocators(ex, jemalloc, tcmalloc and hope glibc supports it) and jemalloc/tcmalloc already have supported the feature for other OS(ex, FreeBSD) barrios@blaptop:~/benchmark/ebizzy$ lscpu Architecture: x86_64 CPU op-mode(s): 32-bit, 64-bit Byte Order: Little Endian CPU(s): 12 On-line CPU(s) list: 0-11 Thread(s) per core: 1 Core(s) per socket: 1 Socket(s): 12 NUMA node(s): 1 Vendor ID: GenuineIntel CPU family: 6 Model: 2 Stepping: 3 CPU MHz: 3200.185 BogoMIPS: 6400.53 Virtualization: VT-x Hypervisor vendor: KVM Virtualization type: full L1d cache: 32K L1i cache: 32K L2 cache: 4096K NUMA node0 CPU(s): 0-11 ebizzy benchmark(./ebizzy -S 10 -n 512) Higher avg is better. vanilla-jemalloc MADV_free-jemalloc 1 thread records: 10 records: 10 avg: 2961.90 avg: 12069.70 std: 71.96(2.43%) std: 186.68(1.55%) max: 3070.00 max: 12385.00 min: 2796.00 min: 11746.00 2 thread records: 10 records: 10 avg: 5020.00 avg: 17827.00 std: 264.87(5.28%) std: 358.52(2.01%) max: 5244.00 max: 18760.00 min: 4251.00 min: 17382.00 4 thread records: 10 records: 10 avg: 8988.80 avg: 27930.80 std: 1175.33(13.08%) std: 3317.33(11.88%) max: 9508.00 max: 30879.00 min: 5477.00 min: 21024.00 8 thread records: 10 records: 10 avg: 13036.50 avg: 33739.40 std: 170.67(1.31%) std: 5146.22(15.25%) max: 13371.00 max: 40572.00 min: 12785.00 min: 24088.00 16 thread records: 10 records: 10 avg: 11092.40 avg: 31424.20 std: 710.60(6.41%) std: 3763.89(11.98%) max: 12446.00 max: 36635.00 min: 9949.00 min: 25669.00 32 thread records: 10 records: 10 avg: 11067.00 avg: 34495.80 std: 971.06(8.77%) std: 2721.36(7.89%) max: 12010.00 max: 38598.00 min: 9002.00 min: 30636.00 In summary, MADV_FREE is about much faster than MADV_DONTNEED. This patch (of 12): Add core MADV_FREE implementation. [akpm@linux-foundation.org: small cleanups] Signed-off-by: Minchan Kim <minchan@kernel.org> Acked-by: Michal Hocko <mhocko@suse.com> Acked-by: Hugh Dickins <hughd@google.com> Cc: Mika Penttil <mika.penttila@nextfour.com> Cc: Michael Kerrisk <mtk.manpages@gmail.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Rik van Riel <riel@redhat.com> Cc: Mel Gorman <mgorman@suse.de> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Jason Evans <je@fb.com> Cc: Daniel Micay <danielmicay@gmail.com> Cc: "Kirill A. Shutemov" <kirill@shutemov.name> Cc: Shaohua Li <shli@kernel.org> Cc: <yalin.wang2010@gmail.com> Cc: Andy Lutomirski <luto@amacapital.net> Cc: "James E.J. Bottomley" <jejb@parisc-linux.org> Cc: "Kirill A. Shutemov" <kirill@shutemov.name> Cc: "Shaohua Li" <shli@kernel.org> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Chen Gang <gang.chen.5i5j@gmail.com> Cc: Chris Zankel <chris@zankel.net> Cc: Darrick J. Wong <darrick.wong@oracle.com> Cc: David S. Miller <davem@davemloft.net> Cc: Helge Deller <deller@gmx.de> Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru> Cc: Matt Turner <mattst88@gmail.com> Cc: Max Filippov <jcmvbkbc@gmail.com> Cc: Ralf Baechle <ralf@linux-mips.org> Cc: Richard Henderson <rth@twiddle.net> Cc: Roland Dreier <roland@kernel.org> Cc: Russell King <rmk@arm.linux.org.uk> Cc: Shaohua Li <shli@kernel.org> Cc: Will Deacon <will.deacon@arm.com> Cc: Wu Fengguang <fengguang.wu@intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Kirill A. Shutemov
|
122afea962 |
mm, vmstats: new THP splitting event
The patch replaces THP_SPLIT with tree events: THP_SPLIT_PAGE, THP_SPLIT_PAGE_FAILED and THP_SPLIT_PMD. It reflects the fact that we are going to be able split PMD without the compound page and that split_huge_page() can fail. Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Acked-by: Christoph Lameter <cl@linux.com> Tested-by: Sasha Levin <sasha.levin@oracle.com> Tested-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Acked-by: Jerome Marchand <jmarchan@redhat.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Rik van Riel <riel@redhat.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Steve Capper <steve.capper@linaro.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
yalin wang
|
f7ae3a95ea |
include/linux/vm_event_item.h: change HIGHMEM_ZONE macro definition
Change HIGHMEM_ZONE to be the same as the DMA_ZONE macro. Signed-off-by: yalin wang <yalin.wang2010@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Davidlohr Bueso
|
f5f302e212 |
mm,vmacache: count number of system-wide flushes
These flushes deal with sequence number overflows, such as for long lived threads. These are rare, but interesting from a debugging PoV. As such, display the number of flushes when vmacache debugging is enabled. Signed-off-by: Davidlohr Bueso <dbueso@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Konstantin Khlebnikov
|
09316c09dd |
mm/balloon_compaction: add vmstat counters and kpageflags bit
Always mark pages with PageBalloon even if balloon compaction is disabled and expose this mark in /proc/kpageflags as KPF_BALLOON. Also this patch adds three counters into /proc/vmstat: "balloon_inflate", "balloon_deflate" and "balloon_migrate". They accumulate balloon activity. Current size of balloon is (balloon_inflate - balloon_deflate) pages. All generic balloon code now gathered under option CONFIG_MEMORY_BALLOON. It should be selected by ballooning driver which wants use this feature. Currently virtio-balloon is the only user. Signed-off-by: Konstantin Khlebnikov <k.khlebnikov@samsung.com> Cc: Rafael Aquini <aquini@redhat.com> Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Davidlohr Bueso
|
4f115147ff |
mm,vmacache: add debug data
Introduce a CONFIG_DEBUG_VM_VMACACHE option to enable counting the cache hit rate -- exported in /proc/vmstat. Any updates to the caching scheme needs this kind of data, thus it can save some work re-implementing the counting all the time. Signed-off-by: Davidlohr Bueso <davidlohr@hp.com> Cc: Aswin Chandramouleeswaran <aswin@hp.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Dave Hansen
|
5509a5d27b |
drop_caches: add some documentation and info message
There is plenty of anecdotal evidence and a load of blog posts suggesting that using "drop_caches" periodically keeps your system running in "tip top shape". Perhaps adding some kernel documentation will increase the amount of accurate data on its use. If we are not shrinking caches effectively, then we have real bugs. Using drop_caches will simply mask the bugs and make them harder to find, but certainly does not fix them, nor is it an appropriate "workaround" to limit the size of the caches. On the contrary, there have been bug reports on issues that turned out to be misguided use of cache dropping. Dropping caches is a very drastic and disruptive operation that is good for debugging and running tests, but if it creates bug reports from production use, kernel developers should be aware of its use. Add a bit more documentation about it, a syslog message to track down abusers, and vmstat drop counters to help analyze problem reports. [akpm@linux-foundation.org: checkpatch fixes] [hannes@cmpxchg.org: add runtime suppression control] Signed-off-by: Dave Hansen <dave@linux.vnet.ibm.com> Signed-off-by: Michal Hocko <mhocko@suse.cz> Acked-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Mel Gorman
|
ec65993443 |
mm, x86: Account for TLB flushes only when debugging
Bisection between 3.11 and 3.12 fingered commit
|
||
Mel Gorman
|
72403b4a0f |
mm: numa: return the number of base pages altered by protection changes
Commit
|
||
Dave Hansen
|
6df46865ff |
mm: vmstats: track TLB flush stats on UP too
The previous patch doing vmstats for TLB flushes ("mm: vmstats: tlb flush counters") effectively missed UP since arch/x86/mm/tlb.c is only compiled for SMP. UP systems do not do remote TLB flushes, so compile those counters out on UP. arch/x86/kernel/cpu/mtrr/generic.c calls __flush_tlb() directly. This is probably an optimization since both the mtrr code and __flush_tlb() write cr4. It would probably be safe to make that a flush_tlb_all() (and then get these statistics), but the mtrr code is ancient and I'm hesitant to touch it other than to just stick in the counters. [akpm@linux-foundation.org: tweak comments] Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Ingo Molnar <mingo@elte.hu> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Dave Hansen
|
9824cf9753 |
mm: vmstats: tlb flush counters
I was investigating some TLB flush scaling issues and realized that we do not have any good methods for figuring out how many TLB flushes we are doing. It would be nice to be able to do these in generic code, but the arch-independent calls don't explicitly specify whether we actually need to do remote flushes or not. In the end, we really need to know if we actually _did_ global vs. local invalidations, so that leaves us with few options other than to muck with the counters from arch-specific code. Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Ingo Molnar <mingo@elte.hu> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Zlatko Calusic
|
258401a60c |
mm: don't wait on congested zones in balance_pgdat()
From: Zlatko Calusic <zlatko.calusic@iskon.hr>
Commit
|
||
Linus Torvalds
|
3d59eebc5e |
Automatic NUMA Balancing V11
-----BEGIN PGP SIGNATURE----- Version: GnuPG v2.0.18 (GNU/Linux) iQIcBAABAgAGBQJQx0kQAAoJEHzG/DNEskfi4fQP/R5PRovayroZALBMLnVJDaLD Ttr9p40VNXbiJ+MfRgatJjSSJZ4Jl+fC3NEqBhcwVZhckZZb9R2s0WtrSQo5+ZbB vdRfiuKoCaKM4cSZ08C12uTvsF6xjhjd27CTUlMkyOcDoKxMEFKelv0hocSxe4Wo xqlv3eF+VsY7kE1BNbgBP06SX4tDpIHRxXfqJPMHaSKQmre+cU0xG2GcEu3QGbHT DEDTI788YSaWLmBfMC+kWoaQl1+bV/FYvavIAS8/o4K9IKvgR42VzrXmaFaqrbgb 72ksa6xfAi57yTmZHqyGmts06qYeBbPpKI+yIhCMInxA9CY3lPbvHppRf0RQOyzj YOi4hovGEMJKE+BCILukhJcZ9jCTtS3zut6v1rdvR88f4y7uhR9RfmRfsxuW7PNj 3Rmh191+n0lVWDmhOs2psXuCLJr3LEiA0dFffN1z8REUTtTAZMsj8Rz+SvBNAZDR hsJhERVeXB6X5uQ5rkLDzbn1Zic60LjVw7LIp6SF2OYf/YKaF8vhyWOA8dyCEu8W CGo7AoG0BO8tIIr8+LvFe8CweypysZImx4AjCfIs4u9pu/v11zmBvO9NO5yfuObF BreEERYgTes/UITxn1qdIW4/q+Nr0iKO3CTqsmu6L1GfCz3/XzPGs3U26fUhllqi Ka0JKgnWvsa6ez6FSzKI =ivQa -----END PGP SIGNATURE----- Merge tag 'balancenuma-v11' of git://git.kernel.org/pub/scm/linux/kernel/git/mel/linux-balancenuma Pull Automatic NUMA Balancing bare-bones from Mel Gorman: "There are three implementations for NUMA balancing, this tree (balancenuma), numacore which has been developed in tip/master and autonuma which is in aa.git. In almost all respects balancenuma is the dumbest of the three because its main impact is on the VM side with no attempt to be smart about scheduling. In the interest of getting the ball rolling, it would be desirable to see this much merged for 3.8 with the view to building scheduler smarts on top and adapting the VM where required for 3.9. The most recent set of comparisons available from different people are mel: https://lkml.org/lkml/2012/12/9/108 mingo: https://lkml.org/lkml/2012/12/7/331 tglx: https://lkml.org/lkml/2012/12/10/437 srikar: https://lkml.org/lkml/2012/12/10/397 The results are a mixed bag. In my own tests, balancenuma does reasonably well. It's dumb as rocks and does not regress against mainline. On the other hand, Ingo's tests shows that balancenuma is incapable of converging for this workloads driven by perf which is bad but is potentially explained by the lack of scheduler smarts. Thomas' results show balancenuma improves on mainline but falls far short of numacore or autonuma. Srikar's results indicate we all suffer on a large machine with imbalanced node sizes. My own testing showed that recent numacore results have improved dramatically, particularly in the last week but not universally. We've butted heads heavily on system CPU usage and high levels of migration even when it shows that overall performance is better. There are also cases where it regresses. Of interest is that for specjbb in some configurations it will regress for lower numbers of warehouses and show gains for higher numbers which is not reported by the tool by default and sometimes missed in treports. Recently I reported for numacore that the JVM was crashing with NullPointerExceptions but currently it's unclear what the source of this problem is. Initially I thought it was in how numacore batch handles PTEs but I'm no longer think this is the case. It's possible numacore is just able to trigger it due to higher rates of migration. These reports were quite late in the cycle so I/we would like to start with this tree as it contains much of the code we can agree on and has not changed significantly over the last 2-3 weeks." * tag 'balancenuma-v11' of git://git.kernel.org/pub/scm/linux/kernel/git/mel/linux-balancenuma: (50 commits) mm/rmap, migration: Make rmap_walk_anon() and try_to_unmap_anon() more scalable mm/rmap: Convert the struct anon_vma::mutex to an rwsem mm: migrate: Account a transhuge page properly when rate limiting mm: numa: Account for failed allocations and isolations as migration failures mm: numa: Add THP migration for the NUMA working set scanning fault case build fix mm: numa: Add THP migration for the NUMA working set scanning fault case. mm: sched: numa: Delay PTE scanning until a task is scheduled on a new node mm: sched: numa: Control enabling and disabling of NUMA balancing if !SCHED_DEBUG mm: sched: numa: Control enabling and disabling of NUMA balancing mm: sched: Adapt the scanning rate if a NUMA hinting fault does not migrate mm: numa: Use a two-stage filter to restrict pages being migrated for unlikely task<->node relationships mm: numa: migrate: Set last_nid on newly allocated page mm: numa: split_huge_page: Transfer last_nid on tail page mm: numa: Introduce last_nid to the page frame sched: numa: Slowly increase the scanning period as NUMA faults are handled mm: numa: Rate limit setting of pte_numa if node is saturated mm: numa: Rate limit the amount of memory that is migrated between nodes mm: numa: Structures for Migrate On Fault per NUMA migration rate limiting mm: numa: Migrate pages handled during a pmd_numa hinting fault mm: numa: Migrate on reference policy ... |
||
Kirill A. Shutemov
|
d8a8e1f0da |
thp, vmstat: implement HZP_ALLOC and HZP_ALLOC_FAILED events
hzp_alloc is incremented every time a huge zero page is successfully allocated. It includes allocations which where dropped due race with other allocation. Note, it doesn't count every map of the huge zero page, only its allocation. hzp_alloc_failed is incremented if kernel fails to allocate huge zero page and falls back to using small pages. Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Andi Kleen <ak@linux.intel.com> Cc: "H. Peter Anvin" <hpa@linux.intel.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Mel Gorman
|
03c5a6e163 |
mm: numa: Add pte updates, hinting and migration stats
It is tricky to quantify the basic cost of automatic NUMA placement in a meaningful manner. This patch adds some vmstats that can be used as part of a basic costing model. u = basic unit = sizeof(void *) Ca = cost of struct page access = sizeof(struct page) / u Cpte = Cost PTE access = Ca Cupdate = Cost PTE update = (2 * Cpte) + (2 * Wlock) where Cpte is incurred twice for a read and a write and Wlock is a constant representing the cost of taking or releasing a lock Cnumahint = Cost of a minor page fault = some high constant e.g. 1000 Cpagerw = Cost to read or write a full page = Ca + PAGE_SIZE/u Ci = Cost of page isolation = Ca + Wi where Wi is a constant that should reflect the approximate cost of the locking operation Cpagecopy = Cpagerw + (Cpagerw * Wnuma) + Ci + (Ci * Wnuma) where Wnuma is the approximate NUMA factor. 1 is local. 1.2 would imply that remote accesses are 20% more expensive Balancing cost = Cpte * numa_pte_updates + Cnumahint * numa_hint_faults + Ci * numa_pages_migrated + Cpagecopy * numa_pages_migrated Note that numa_pages_migrated is used as a measure of how many pages were isolated even though it would miss pages that failed to migrate. A vmstat counter could have been added for it but the isolation cost is pretty marginal in comparison to the overall cost so it seemed overkill. The ideal way to measure automatic placement benefit would be to count the number of remote accesses versus local accesses and do something like benefit = (remote_accesses_before - remove_access_after) * Wnuma but the information is not readily available. As a workload converges, the expection would be that the number of remote numa hints would reduce to 0. convergence = numa_hint_faults_local / numa_hint_faults where this is measured for the last N number of numa hints recorded. When the workload is fully converged the value is 1. This can measure if the placement policy is converging and how fast it is doing it. Signed-off-by: Mel Gorman <mgorman@suse.de> Acked-by: Rik van Riel <riel@redhat.com> |
||
Mel Gorman
|
397487db69 |
mm: compaction: Add scanned and isolated counters for compaction
Compaction already has tracepoints to count scanned and isolated pages but it requires that ftrace be enabled and if that information has to be written to disk then it can be disruptive. This patch adds vmstat counters for compaction called compact_migrate_scanned, compact_free_scanned and compact_isolated. With these counters, it is possible to define a basic cost model for compaction. This approximates of how much work compaction is doing and can be compared that with an oprofile showing TLB misses and see if the cost of compaction is being offset by THP for example. Minimally a compaction patch can be evaluated in terms of whether it increases or decreases cost. The basic cost model looks like this Fundamental unit u: a word sizeof(void *) Ca = cost of struct page access = sizeof(struct page) / u Cmc = Cost migrate page copy = (Ca + PAGE_SIZE/u) * 2 Cmf = Cost migrate failure = Ca * 2 Ci = Cost page isolation = (Ca + Wi) where Wi is a constant that should reflect the approximate cost of the locking operation. Csm = Cost migrate scanning = Ca Csf = Cost free scanning = Ca Overall cost = (Csm * compact_migrate_scanned) + (Csf * compact_free_scanned) + (Ci * compact_isolated) + (Cmc * pgmigrate_success) + (Cmf * pgmigrate_failed) Where the values are read from /proc/vmstat. This is very basic and ignores certain costs such as the allocation cost to do a migrate page copy but any improvement to the model would still use the same vmstat counters. Signed-off-by: Mel Gorman <mgorman@suse.de> Reviewed-by: Rik van Riel <riel@redhat.com> |
||
Mel Gorman
|
5647bc293a |
mm: compaction: Move migration fail/success stats to migrate.c
The compact_pages_moved and compact_pagemigrate_failed events are convenient for determining if compaction is active and to what degree migration is succeeding but it's at the wrong level. Other users of migration may also want to know if migration is working properly and this will be particularly true for any automated NUMA migration. This patch moves the counters down to migration with the new events called pgmigrate_success and pgmigrate_fail. The compact_blocks_moved counter is removed because while it was useful for debugging initially, it's worthless now as no meaningful conclusions can be drawn from its value. Signed-off-by: Mel Gorman <mgorman@suse.de> Reviewed-by: Rik van Riel <riel@redhat.com> |
||
Hugh Dickins
|
8befedfe67 |
mm: remove unevictable_pgs_mlockfreed
Simply remove UNEVICTABLE_MLOCKFREED and unevictable_pgs_mlockfreed line from /proc/vmstat: Johannes and Mel point out that it was very unlikely to have been used by any tool, and of course we can restore it easily enough if that turns out to be wrong. Signed-off-by: Hugh Dickins <hughd@google.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Rik van Riel <riel@redhat.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michel Lespinasse <walken@google.com> Cc: Ying Han <yinghan@google.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Hugh Dickins
|
a0c5e813f0 |
mm: remove free_page_mlock
We should not be seeing non-0 unevictable_pgs_mlockfreed any longer. So remove free_page_mlock() from the page freeing paths: __PG_MLOCKED is already in PAGE_FLAGS_CHECK_AT_FREE, so free_pages_check() will now be checking it, reporting "BUG: Bad page state" if it's ever found set. Comment UNEVICTABLE_MLOCKFREED and unevictable_pgs_mlockfreed always 0. Signed-off-by: Hugh Dickins <hughd@google.com> Acked-by: Mel Gorman <mel@csn.ul.ie> Cc: Rik van Riel <riel@redhat.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michel Lespinasse <walken@google.com> Cc: Ying Han <yinghan@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Mel Gorman
|
68243e76ee |
mm: account for the number of times direct reclaimers get throttled
Under significant pressure when writing back to network-backed storage, direct reclaimers may get throttled. This is expected to be a short-lived event and the processes get woken up again but processes do get stalled. This patch counts how many times such stalling occurs. It's up to the administrator whether to reduce these stalls by increasing min_free_kbytes. Signed-off-by: Mel Gorman <mgorman@suse.de> Cc: David Miller <davem@davemloft.net> Cc: Neil Brown <neilb@suse.de> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Mike Christie <michaelc@cs.wisc.edu> Cc: Eric B Munson <emunson@mgebm.net> Cc: Eric Dumazet <eric.dumazet@gmail.com> Cc: Sebastian Andrzej Siewior <sebastian@breakpoint.cc> Cc: Mel Gorman <mgorman@suse.de> Cc: Christoph Lameter <cl@linux.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Ying Han
|
904249aa68 |
mm: fix up the vmscan stat in vmstat
The "pgsteal" stat is confusing because it counts both direct reclaim as well as background reclaim. However, we have "kswapd_steal" which also counts background reclaim value. This patch fixes it and also makes it match the existng "pgscan_" stats. Test: pgsteal_kswapd_dma32 447623 pgsteal_kswapd_normal 42272677 pgsteal_kswapd_movable 0 pgsteal_direct_dma32 2801 pgsteal_direct_normal 44353270 pgsteal_direct_movable 0 Signed-off-by: Ying Han <yinghan@google.com> Reviewed-by: Rik van Riel <riel@redhat.com> Acked-by: Christoph Lameter <cl@linux.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Mel Gorman <mel@csn.ul.ie> Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Hillf Danton <dhillf@gmail.com> Cc: Hugh Dickins <hughd@google.com> Cc: Dan Magenheimer <dan.magenheimer@oracle.com> Reviewed-by: Minchan Kim <minchan@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Andrew Morton
|
f042e707ee |
mm: move enum vm_event_item into a standalone header file
enums are problematic because they cannot be forward-declared: akpm2:/home/akpm> cat t.c enum foo; static inline void bar(enum foo f) { } akpm2:/home/akpm> gcc -c t.c t.c:4: error: parameter 1 ('f') has incomplete type So move the enum's definition into a standalone header file which can be used wherever its definition is needed. Cc: Ying Han <yinghan@google.com> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Minchan Kim <minchan.kim@gmail.com> Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp> Cc: Balbir Singh <balbir@linux.vnet.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |