Commit Graph

14 Commits

Author SHA1 Message Date
Greg Kroah-Hartman
b24413180f License cleanup: add SPDX GPL-2.0 license identifier to files with no license
Many source files in the tree are missing licensing information, which
makes it harder for compliance tools to determine the correct license.

By default all files without license information are under the default
license of the kernel, which is GPL version 2.

Update the files which contain no license information with the 'GPL-2.0'
SPDX license identifier.  The SPDX identifier is a legally binding
shorthand, which can be used instead of the full boiler plate text.

This patch is based on work done by Thomas Gleixner and Kate Stewart and
Philippe Ombredanne.

How this work was done:

Patches were generated and checked against linux-4.14-rc6 for a subset of
the use cases:
 - file had no licensing information it it.
 - file was a */uapi/* one with no licensing information in it,
 - file was a */uapi/* one with existing licensing information,

Further patches will be generated in subsequent months to fix up cases
where non-standard license headers were used, and references to license
had to be inferred by heuristics based on keywords.

The analysis to determine which SPDX License Identifier to be applied to
a file was done in a spreadsheet of side by side results from of the
output of two independent scanners (ScanCode & Windriver) producing SPDX
tag:value files created by Philippe Ombredanne.  Philippe prepared the
base worksheet, and did an initial spot review of a few 1000 files.

The 4.13 kernel was the starting point of the analysis with 60,537 files
assessed.  Kate Stewart did a file by file comparison of the scanner
results in the spreadsheet to determine which SPDX license identifier(s)
to be applied to the file. She confirmed any determination that was not
immediately clear with lawyers working with the Linux Foundation.

Criteria used to select files for SPDX license identifier tagging was:
 - Files considered eligible had to be source code files.
 - Make and config files were included as candidates if they contained >5
   lines of source
 - File already had some variant of a license header in it (even if <5
   lines).

All documentation files were explicitly excluded.

The following heuristics were used to determine which SPDX license
identifiers to apply.

 - when both scanners couldn't find any license traces, file was
   considered to have no license information in it, and the top level
   COPYING file license applied.

   For non */uapi/* files that summary was:

   SPDX license identifier                            # files
   ---------------------------------------------------|-------
   GPL-2.0                                              11139

   and resulted in the first patch in this series.

   If that file was a */uapi/* path one, it was "GPL-2.0 WITH
   Linux-syscall-note" otherwise it was "GPL-2.0".  Results of that was:

   SPDX license identifier                            # files
   ---------------------------------------------------|-------
   GPL-2.0 WITH Linux-syscall-note                        930

   and resulted in the second patch in this series.

 - if a file had some form of licensing information in it, and was one
   of the */uapi/* ones, it was denoted with the Linux-syscall-note if
   any GPL family license was found in the file or had no licensing in
   it (per prior point).  Results summary:

   SPDX license identifier                            # files
   ---------------------------------------------------|------
   GPL-2.0 WITH Linux-syscall-note                       270
   GPL-2.0+ WITH Linux-syscall-note                      169
   ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause)    21
   ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause)    17
   LGPL-2.1+ WITH Linux-syscall-note                      15
   GPL-1.0+ WITH Linux-syscall-note                       14
   ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause)    5
   LGPL-2.0+ WITH Linux-syscall-note                       4
   LGPL-2.1 WITH Linux-syscall-note                        3
   ((GPL-2.0 WITH Linux-syscall-note) OR MIT)              3
   ((GPL-2.0 WITH Linux-syscall-note) AND MIT)             1

   and that resulted in the third patch in this series.

 - when the two scanners agreed on the detected license(s), that became
   the concluded license(s).

 - when there was disagreement between the two scanners (one detected a
   license but the other didn't, or they both detected different
   licenses) a manual inspection of the file occurred.

 - In most cases a manual inspection of the information in the file
   resulted in a clear resolution of the license that should apply (and
   which scanner probably needed to revisit its heuristics).

 - When it was not immediately clear, the license identifier was
   confirmed with lawyers working with the Linux Foundation.

 - If there was any question as to the appropriate license identifier,
   the file was flagged for further research and to be revisited later
   in time.

In total, over 70 hours of logged manual review was done on the
spreadsheet to determine the SPDX license identifiers to apply to the
source files by Kate, Philippe, Thomas and, in some cases, confirmation
by lawyers working with the Linux Foundation.

Kate also obtained a third independent scan of the 4.13 code base from
FOSSology, and compared selected files where the other two scanners
disagreed against that SPDX file, to see if there was new insights.  The
Windriver scanner is based on an older version of FOSSology in part, so
they are related.

Thomas did random spot checks in about 500 files from the spreadsheets
for the uapi headers and agreed with SPDX license identifier in the
files he inspected. For the non-uapi files Thomas did random spot checks
in about 15000 files.

In initial set of patches against 4.14-rc6, 3 files were found to have
copy/paste license identifier errors, and have been fixed to reflect the
correct identifier.

Additionally Philippe spent 10 hours this week doing a detailed manual
inspection and review of the 12,461 patched files from the initial patch
version early this week with:
 - a full scancode scan run, collecting the matched texts, detected
   license ids and scores
 - reviewing anything where there was a license detected (about 500+
   files) to ensure that the applied SPDX license was correct
 - reviewing anything where there was no detection but the patch license
   was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied
   SPDX license was correct

This produced a worksheet with 20 files needing minor correction.  This
worksheet was then exported into 3 different .csv files for the
different types of files to be modified.

These .csv files were then reviewed by Greg.  Thomas wrote a script to
parse the csv files and add the proper SPDX tag to the file, in the
format that the file expected.  This script was further refined by Greg
based on the output to detect more types of files automatically and to
distinguish between header and source .c files (which need different
comment types.)  Finally Greg ran the script using the .csv files to
generate the patches.

Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-02 11:10:55 +01:00
Nicolas Iooss
9120cf4fd9 x86/platform/intel/quark: Add printf attribute to imr_self_test_result()
__printf() attributes help detecting issues in printf() format strings at
compile time.

Even though imr_selftest.c is only compiled with
CONFIG_DEBUG_IMR_SELFTEST=y, GCC complains about a missing format
attribute when compiling allmodconfig with -Wmissing-format-attribute.

Silence this warning by adding the attribute.

Signed-off-by: Nicolas Iooss <nicolas.iooss_linux@m4x.org>
Acked-by: Bryan O'Donoghue <pure.logic@nexus-software.ie>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20161219132144.4108-1-nicolas.iooss_linux@m4x.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-12-20 09:37:24 +01:00
Bryan O'Donoghue
c637fa5294 x86/platform/intel/quark: Drop IMR lock bit support
Isolated Memory Regions support a lock bit. The lock bit in an IMR prevents
modification of the IMR until the core goes through a warm or cold reset.
The lock bit feature is not useful in the context of the kernel API and is
not really necessary since modification of IMRs is possible only from
ring-zero anyway. This patch drops support for IMR locks bits, it
simplifies the kernel API and removes an unnecessary and needlessly complex
feature.

Suggested-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Bryan O'Donoghue <pure.logic@nexus-software.ie>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: andriy.shevchenko@linux.intel.com
Cc: boon.leong.ong@intel.com
Cc: paul.gortmaker@windriver.com
Link: http://lkml.kernel.org/r/1456190999-12685-3-git-send-email-pure.logic@nexus-software.ie
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-02-23 07:37:23 +01:00
Ingo Molnar
fb86780bf7 Merge branch 'x86/urgent' into x86/platform, to queue up dependent patch
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-02-23 07:36:46 +01:00
Bryan O'Donoghue
dd71a17b11 x86/platform/intel/quark: Change the kernel's IMR lock bit to false
Currently when setting up an IMR around the kernel's .text section we lock
that IMR, preventing further modification. While superficially this appears
to be the right thing to do, in fact this doesn't account for a legitimate
change in the memory map such as when executing a new kernel via kexec.

In such a scenario a second kernel can have a different size and location
to it's predecessor and can view some of the memory occupied by it's
predecessor as legitimately usable DMA RAM. If this RAM were then
subsequently allocated to DMA agents within the system it could conceivably
trigger an IMR violation.

This patch fixes the this potential situation by keeping the kernel's .text
section IMR lock bit false by default.

Suggested-by: Ingo Molnar <mingo@kernel.org>
Reported-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Signed-off-by: Bryan O'Donoghue <pure.logic@nexus-software.ie>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: boon.leong.ong@intel.com
Cc: paul.gortmaker@windriver.com
Link: http://lkml.kernel.org/r/1456190999-12685-2-git-send-email-pure.logic@nexus-software.ie
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-02-23 07:35:53 +01:00
Paul Gortmaker
32ed42ad6c x86/platform: Make platform/intel-quark/imr_selftest.c explicitly non-modular
The Kconfig currently controlling compilation of this code is:

  arch/x86/Kconfig.debug:config DEBUG_IMR_SELFTEST
  arch/x86/Kconfig.debug:    bool "Isolated Memory Region self test"

...meaning that it currently is not being built as a module by anyone.

Lets remove the modular code that is essentially orphaned, so that
when reading the driver there is no doubt it is builtin-only.

Since module_init translates to device_initcall in the non-modular
case, the init ordering remains unchanged with this commit.

Also note that MODULE_DEVICE_TABLE is a no-op for non-modular code.

We also delete the MODULE_LICENSE tag etc. since all that information
was (or is now) contained at the top of the file in the comments.

Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
Reviewed-by: Bryan O'Donoghue <pure.logic@nexus-software.ie>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1455491396-30977-3-git-send-email-paul.gortmaker@windriver.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-02-16 09:11:08 +01:00
Paul Gortmaker
7f5301b7e6 x86/platform: Make platform/intel-quark/imr.c explicitly non-modular
The Kconfig currently controlling compilation of this code is:

  drivers/platform/x86/Kconfig:config INTEL_IMR
  drivers/platform/x86/Kconfig:   bool "Intel Isolated Memory Region support"

...meaning that it currently is not being built as a module by anyone.

Lets remove the modular code that is essentially orphaned, so that
when reading the driver there is no doubt it is builtin-only.

Since module_init translates to device_initcall in the non-modular
case, the init ordering remains unchanged with this commit.

Also note that MODULE_DEVICE_TABLE is a no-op for non-modular code.

We also delete the MODULE_LICENSE tag etc. since all that information
was (or is now) contained at the top of the file in the comments.

Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
Reviewed-by: Bryan O'Donoghue <pure.logic@nexus-software.ie>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1455491396-30977-2-git-send-email-paul.gortmaker@windriver.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-02-16 09:11:08 +01:00
Linus Torvalds
d517be5fcf Merge branch 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 fixes from Thomas Gleixner:
 "A bit on the largish side due to a series of fixes for a regression in
  the x86 vector management which was introduced in 4.3.  This work was
  started in December already, but it took some time to fix all corner
  cases and a couple of older bugs in that area which were detected
  while at it

  Aside of that a few platform updates for intel-mid, quark and UV and
  two fixes for in the mm code:
   - Use proper types for pgprot values to avoid truncation
   - Prevent a size truncation in the pageattr code when setting page
     attributes for large mappings"

* 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (21 commits)
  x86/mm/pat: Avoid truncation when converting cpa->numpages to address
  x86/mm: Fix types used in pgprot cacheability flags translations
  x86/platform/quark: Print boundaries correctly
  x86/platform/UV: Remove EFI memmap quirk for UV2+
  x86/platform/intel-mid: Join string and fix SoC name
  x86/platform/intel-mid: Enable 64-bit build
  x86/irq: Plug vector cleanup race
  x86/irq: Call irq_force_move_complete with irq descriptor
  x86/irq: Remove outgoing CPU from vector cleanup mask
  x86/irq: Remove the cpumask allocation from send_cleanup_vector()
  x86/irq: Clear move_in_progress before sending cleanup IPI
  x86/irq: Remove offline cpus from vector cleanup
  x86/irq: Get rid of code duplication
  x86/irq: Copy vectormask instead of an AND operation
  x86/irq: Check vector allocation early
  x86/irq: Reorganize the search in assign_irq_vector
  x86/irq: Reorganize the return path in assign_irq_vector
  x86/irq: Do not use apic_chip_data.old_domain as temporary buffer
  x86/irq: Validate that irq descriptor is still active
  x86/irq: Fix a race in x86_vector_free_irqs()
  ...
2016-01-31 16:17:19 -08:00
Andy Shevchenko
22c43f36b5 x86/platform/quark: Print boundaries correctly
When we print values, such as @size, we have to understand that
it's derived from [begin .. end] as:

	size = end - begin + 1

On the opposite the @end is derived from the rest as:

	end = begin + size - 1

Correct the IMR code to print values correctly.

Note that @__end_rodata actually points to the next address
after the aligned .rodata section.

Signed-off-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Ong, Boon Leong <boon.leong.ong@intel.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1453320821-64328-1-git-send-email-andriy.shevchenko@linux.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-01-21 08:40:26 +01:00
Andy Shevchenko
4077a387b7 x86/platform/iosf_mbi: Remove duplicate definitions
The read and write opcodes are global for all units on SoC and even across
Intel SoCs. Remove duplication of corresponding constants. At the same time
convert all current users.

No functional change.

Acked-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Boon Leong Ong <boon.leong.ong@intel.com>
Acked-by: Jacob Pan <jacob.jun.pan@linux.intel.com>
Signed-off-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2015-12-09 01:18:34 +01:00
Bryan O'Donoghue
a6fcb6d480 x86/intel/quark: Run IMR self-test on IMR capble hw only
Automated testing with LKP shows IMR self test code running and
printing error messages on QEMU hardware lacking IMR support.

Update IMR self-test code to run only when IMR hardware should
be present. Tested on Quark X1000 and QEMU.

Signed-off-by: Bryan O'Donoghue <pure.logic@nexus-software.ie>
Acked-by: Ong Boon Leong <boon.leong.ong@intel.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: andriy.shevchenko@intel.com
Cc: dvhart@linux.intel.com
Cc: huang.ying.caritas@gmail.com
Cc: ying.huang@intel.com
Link: http://lkml.kernel.org/r/1427800536-32339-1-git-send-email-pure.logic@nexus-software.ie
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-04-02 12:47:50 +02:00
Fengguang Wu
c11a25f443 x86/intel/quark: Fix simple_return.cocci warnings
arch/x86/platform/intel-quark/imr.c:129:1-4: WARNING: end returns can be simpified

 Simplify a trivial if-return sequence.  Possibly combine with a preceding function call.

Generated by: scripts/coccinelle/misc/simple_return.cocci

Signed-off-by: Fengguang Wu <fengguang.wu@intel.com>
Cc: Andy Shevchenko <andy.schevchenko@gmail.com>
Cc: Ong, Boon Leong <boon.leong.ong@intel.com>
Cc: Bryan O'Donoghue <pure.logic@nexus-software.ie>
Cc: Darren Hart <dvhart@linux.intel.com>
Cc: kbuild-all@01.org
Link: http://lkml.kernel.org/r/20150219081432.GA21996@waimea
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-02-19 10:00:55 +01:00
Fengguang Wu
32d39169d7 x86/intel/quark: Fix ptr_ret.cocci warnings
arch/x86/platform/intel-quark/imr.c:280:1-3: WARNING: PTR_ERR_OR_ZERO can be used

 Use PTR_ERR_OR_ZERO rather than if(IS_ERR(...)) + PTR_ERR

Generated by: scripts/coccinelle/api/ptr_ret.cocci

Signed-off-by: Fengguang Wu <fengguang.wu@intel.com>
Cc: Andy Shevchenko <andy.schevchenko@gmail.com>
Cc: Ong, Boon Leong <boon.leong.ong@intel.com>
Cc: Bryan O'Donoghue <pure.logic@nexus-software.ie>
Cc: Darren Hart <dvhart@linux.intel.com>
Cc: kbuild-all@01.org
Link: http://lkml.kernel.org/r/20150219081432.GA21983@waimea
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-02-19 10:00:54 +01:00
Bryan O'Donoghue
28a375df16 x86/intel/quark: Add Isolated Memory Regions for Quark X1000
Intel's Quark X1000 SoC contains a set of registers called
Isolated Memory Regions. IMRs are accessed over the IOSF mailbox
interface. IMRs are areas carved out of memory that define
read/write access rights to the various system agents within the
Quark system. For a given agent in the system it is possible to
specify if that agent may read or write an area of memory
defined by an IMR with a granularity of 1 KiB.

Quark_SecureBootPRM_330234_001.pdf section 4.5 details the
concept of IMRs quark-x1000-datasheet.pdf section 12.7.4 details
the implementation of IMRs in silicon.

eSRAM flush, CPU Snoop write-only, CPU SMM Mode, CPU non-SMM
mode, RMU and PCIe Virtual Channels (VC0 and VC1) can have
individual read/write access masks applied to them for a given
memory region in Quark X1000. This enables IMRs to treat each
memory transaction type listed above on an individual basis and
to filter appropriately based on the IMR access mask for the
memory region. Quark supports eight IMRs.

Since all of the DMA capable SoC components in the X1000 are
mapped to VC0 it is possible to define sections of memory as
invalid for DMA write operations originating from Ethernet, USB,
SD and any other DMA capable south-cluster component on VC0.
Similarly it is possible to mark kernel memory as non-SMM mode
read/write only or to mark BIOS runtime memory as SMM mode
accessible only depending on the particular memory footprint on
a given system.

On an IMR violation Quark SoC X1000 systems are configured to
reset the system, so ensuring that the IMR memory map is
consistent with the EFI provided memory map is critical to
ensure no IMR violations reset the system.

The API for accessing IMRs is based on MTRR code but doesn't
provide a /proc or /sys interface to manipulate IMRs. Defining
the size and extent of IMRs is exclusively the domain of
in-kernel code.

Quark firmware sets up a series of locked IMRs around pieces of
memory that firmware owns such as ACPI runtime data. During boot
a series of unlocked IMRs are placed around items in memory to
guarantee no DMA modification of those items can take place.
Grub also places an unlocked IMR around the kernel boot params
data structure and compressed kernel image. It is necessary for
the kernel to tear down all unlocked IMRs in order to ensure
that the kernel's view of memory passed via the EFI memory map
is consistent with the IMR memory map. Without tearing down all
unlocked IMRs on boot transitory IMRs such as those used to
protect the compressed kernel image will cause IMR violations and system reboots.

The IMR init code tears down all unlocked IMRs and sets a
protective IMR around the kernel .text and .rodata as one
contiguous block. This sanitizes the IMR memory map with respect
to the EFI memory map and protects the read-only portions of the
kernel from unwarranted DMA access.

Tested-by: Ong, Boon Leong <boon.leong.ong@intel.com>
Signed-off-by: Bryan O'Donoghue <pure.logic@nexus-software.ie>
Reviewed-by: Andy Shevchenko <andy.schevchenko@gmail.com>
Reviewed-by: Darren Hart <dvhart@linux.intel.com>
Reviewed-by: Ong, Boon Leong <boon.leong.ong@intel.com>
Cc: andy.shevchenko@gmail.com
Cc: dvhart@infradead.org
Link: http://lkml.kernel.org/r/1422635379-12476-2-git-send-email-pure.logic@nexus-software.ie
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-02-18 23:22:47 +01:00