Commit Graph

266 Commits

Author SHA1 Message Date
Vladimir Davydov
33c3fc71c8 mm: introduce idle page tracking
Knowing the portion of memory that is not used by a certain application or
memory cgroup (idle memory) can be useful for partitioning the system
efficiently, e.g.  by setting memory cgroup limits appropriately.
Currently, the only means to estimate the amount of idle memory provided
by the kernel is /proc/PID/{clear_refs,smaps}: the user can clear the
access bit for all pages mapped to a particular process by writing 1 to
clear_refs, wait for some time, and then count smaps:Referenced.  However,
this method has two serious shortcomings:

 - it does not count unmapped file pages
 - it affects the reclaimer logic

To overcome these drawbacks, this patch introduces two new page flags,
Idle and Young, and a new sysfs file, /sys/kernel/mm/page_idle/bitmap.
A page's Idle flag can only be set from userspace by setting bit in
/sys/kernel/mm/page_idle/bitmap at the offset corresponding to the page,
and it is cleared whenever the page is accessed either through page tables
(it is cleared in page_referenced() in this case) or using the read(2)
system call (mark_page_accessed()). Thus by setting the Idle flag for
pages of a particular workload, which can be found e.g.  by reading
/proc/PID/pagemap, waiting for some time to let the workload access its
working set, and then reading the bitmap file, one can estimate the amount
of pages that are not used by the workload.

The Young page flag is used to avoid interference with the memory
reclaimer.  A page's Young flag is set whenever the Access bit of a page
table entry pointing to the page is cleared by writing to the bitmap file.
If page_referenced() is called on a Young page, it will add 1 to its
return value, therefore concealing the fact that the Access bit was
cleared.

Note, since there is no room for extra page flags on 32 bit, this feature
uses extended page flags when compiled on 32 bit.

[akpm@linux-foundation.org: fix build]
[akpm@linux-foundation.org: kpageidle requires an MMU]
[akpm@linux-foundation.org: decouple from page-flags rework]
Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Reviewed-by: Andres Lagar-Cavilla <andreslc@google.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Raghavendra K T <raghavendra.kt@linux.vnet.ibm.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Greg Thelen <gthelen@google.com>
Cc: Michel Lespinasse <walken@google.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Pavel Emelyanov <xemul@parallels.com>
Cc: Cyrill Gorcunov <gorcunov@openvz.org>
Cc: Jonathan Corbet <corbet@lwn.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-09-10 13:29:01 -07:00
Petr Mladek
bde43c6c9f mm/khugepaged: allow interruption of allocation sleep again
Commit 1dfb059b94 ("thp: reduce khugepaged freezing latency") fixed
khugepaged to do not block a system suspend.  But the result is that it
could not get interrupted before the given timeout because the condition
for the wait event is "false".

This patch puts back the original approach but it uses
freezable_schedule_timeout_interruptible() instead of
schedule_timeout_interruptible().  It does the right thing.  I am pretty
sure that the freezable variant was not used in the original fix only
because it was not available at that time.

The regression has been there for ages.  It was not critical.  It just
did the allocation throttling a little bit more aggressively.

I found this problem when converting the kthread to kthread worker API
and trying to understand the code.

This bug is thought to have minimal userspace-visible impact.  Somebody
could set a high alloc_sleep value by mistake, and then try to fix it
back, but khugepaged would keep sleeping until the high value expires.

Signed-off-by: Petr Mladek <pmladek@suse.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Ebru Akagunduz <ebru.akagunduz@gmail.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Jiri Kosina <jkosina@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-09-08 15:35:28 -07:00
Vlastimil Babka
96db800f5d mm: rename alloc_pages_exact_node() to __alloc_pages_node()
alloc_pages_exact_node() was introduced in commit 6484eb3e2a ("page
allocator: do not check NUMA node ID when the caller knows the node is
valid") as an optimized variant of alloc_pages_node(), that doesn't
fallback to current node for nid == NUMA_NO_NODE.  Unfortunately the
name of the function can easily suggest that the allocation is
restricted to the given node and fails otherwise.  In truth, the node is
only preferred, unless __GFP_THISNODE is passed among the gfp flags.

The misleading name has lead to mistakes in the past, see for example
commits 5265047ac3 ("mm, thp: really limit transparent hugepage
allocation to local node") and b360edb43f ("mm, mempolicy:
migrate_to_node should only migrate to node").

Another issue with the name is that there's a family of
alloc_pages_exact*() functions where 'exact' means exact size (instead
of page order), which leads to more confusion.

To prevent further mistakes, this patch effectively renames
alloc_pages_exact_node() to __alloc_pages_node() to better convey that
it's an optimized variant of alloc_pages_node() not intended for general
usage.  Both functions get described in comments.

It has been also considered to really provide a convenience function for
allocations restricted to a node, but the major opinion seems to be that
__GFP_THISNODE already provides that functionality and we shouldn't
duplicate the API needlessly.  The number of users would be small
anyway.

Existing callers of alloc_pages_exact_node() are simply converted to
call __alloc_pages_node(), with the exception of sba_alloc_coherent()
which open-codes the check for NUMA_NO_NODE, so it is converted to use
alloc_pages_node() instead.  This means it no longer performs some
VM_BUG_ON checks, and since the current check for nid in
alloc_pages_node() uses a 'nid < 0' comparison (which includes
NUMA_NO_NODE), it may hide wrong values which would be previously
exposed.

Both differences will be rectified by the next patch.

To sum up, this patch makes no functional changes, except temporarily
hiding potentially buggy callers.  Restricting the checks in
alloc_pages_node() is left for the next patch which can in turn expose
more existing buggy callers.

Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Robin Holt <robinmholt@gmail.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Christoph Lameter <cl@linux.com>
Acked-by: Michael Ellerman <mpe@ellerman.id.au>
Cc: Mel Gorman <mgorman@suse.de>
Cc: David Rientjes <rientjes@google.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Gleb Natapov <gleb@kernel.org>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Cliff Whickman <cpw@sgi.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-09-08 15:35:28 -07:00
Nicholas Krause
2c0b80d463 mm: make set_recommended_min_free_kbytes() return void
This makes set_recommended_min_free_kbytes() have a return type of void as
it cannot fail.

Signed-off-by: Nicholas Krause <xerofoify@gmail.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-09-08 15:35:28 -07:00
Kirill A. Shutemov
d295e3415a dax: don't use set_huge_zero_page()
This is another place where DAX assumed that pgtable_t was a pointer.
Open code the important parts of set_huge_zero_page() in DAX and make
set_huge_zero_page() static again.

Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Matthew Wilcox <willy@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-09-08 15:35:28 -07:00
Kirill A. Shutemov
da14676900 thp: fix zap_huge_pmd() for DAX
The original DAX code assumed that pgtable_t was a pointer, which isn't
true on all architectures.  Restructure the code to not rely on that
assumption.

[willy@linux.intel.com: further fixes integrated into this patch]
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Matthew Wilcox <willy@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-09-08 15:35:28 -07:00
Kirill A. Shutemov
5b701b846a thp: decrement refcount on huge zero page if it is split
The DAX code neglected to put the refcount on the huge zero page.
Also we must notify on splits.

Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Matthew Wilcox <willy@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-09-08 15:35:28 -07:00
Matthew Wilcox
ae18d6dcf5 thp: change insert_pfn's return type to void
It would make more sense to have all the return values from
vmf_insert_pfn_pmd() encoded in one place instead of having to follow
the convention into insert_pfn().  Suggested by Jeff Moyer.

Signed-off-by: Matthew Wilcox <willy@linux.intel.com>
Cc: Jeff Moyer <jmoyer@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-09-08 15:35:28 -07:00
Matthew Wilcox
5cad465d7f mm: add vmf_insert_pfn_pmd()
Similar to vm_insert_pfn(), but for PMDs rather than PTEs.  The 'vmf_'
prefix instead of 'vm_' prefix is intended to indicate that it returns a
VMF_ value rather than an errno (which would only have to be converted
into a VMF_ value anyway).

Signed-off-by: Matthew Wilcox <willy@linux.intel.com>
Cc: Hillf Danton <dhillf@gmail.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Theodore Ts'o <tytso@mit.edu>
Cc: Jan Kara <jack@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-09-08 15:35:28 -07:00
Matthew Wilcox
fc43704437 mm: export various functions for the benefit of DAX
To use the huge zero page in DAX, we need these functions exported.

Signed-off-by: Matthew Wilcox <willy@linux.intel.com>
Cc: Hillf Danton <dhillf@gmail.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Theodore Ts'o <tytso@mit.edu>
Cc: Jan Kara <jack@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-09-08 15:35:28 -07:00
Matthew Wilcox
4897c7655d thp: prepare for DAX huge pages
Add a vma_is_dax() helper macro to test whether the VMA is DAX, and use it
in zap_huge_pmd() and __split_huge_page_pmd().

[akpm@linux-foundation.org: fix build]
Signed-off-by: Matthew Wilcox <willy@linux.intel.com>
Cc: Hillf Danton <dhillf@gmail.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Theodore Ts'o <tytso@mit.edu>
Cc: Jan Kara <jack@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-09-08 15:35:28 -07:00
Andrew Morton
7c41416459 dax: revert userfaultfd change
Undo the change which "userfaultfd: call handle_userfault() for
userfaultfd_missing() faults" made to set_huge_zero_page().  DAX will
need that return value.

Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Matthew Wilcox <willy@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-09-08 15:35:28 -07:00
Kirill A. Shutemov
e1b9996b85 thp: vma_adjust_trans_huge(): adjust file-backed VMA too
This series of patches adds support for using PMD page table entries to
map DAX files.  We expect NV-DIMMs to start showing up that are many
gigabytes in size and the memory consumption of 4kB PTEs will be
astronomical.

The patch series leverages much of the Transparant Huge Pages
infrastructure, going so far as to borrow one of Kirill's patches from
his THP page cache series.

This patch (of 10):

Since we're going to have huge pages in page cache, we need to call adjust
file-backed VMA, which potentially can contain huge pages.

For now we call it for all VMAs.

Probably later we will need to introduce a flag to indicate that the VMA
has huge pages.

Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Matthew Wilcox <matthew.r.wilcox@intel.com>
Acked-by: Hillf Danton <dhillf@gmail.com>
Cc: Theodore Ts'o <tytso@mit.edu>
Cc: Jan Kara <jack@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-09-08 15:35:28 -07:00
Andrea Arcangeli
230c92a879 userfaultfd: propagate the full address in THP faults
The THP faults were not propagating the original fault address.  The
latest version of the API with uffd.arg.pagefault.address is supposed to
propagate the full address through THP faults.

This was not a kernel crashing bug and it wouldn't risk to corrupt user
memory, but it would cause a SIGBUS failure because the wrong page was
being copied.

For various reasons this wasn't easily reproducible in the qemu workload,
but the strestest exposed the problem immediately.

Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Cc: Pavel Emelyanov <xemul@parallels.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-09-04 16:54:41 -07:00
Andrea Arcangeli
c1294d05de userfaultfd: prevent khugepaged to merge if userfaultfd is armed
If userfaultfd is armed on a certain vma we can't "fill" the holes with
zeroes or we'll break the userland on demand paging.  The holes if the
userfault is armed, are really missing information (not zeroes) that the
userland has to load from network or elsewhere.

The same issue happens for wrprotected ptes that we can't just convert
into a single writable pmd_trans_huge.

We could however in theory still merge across zeropages if only
VM_UFFD_MISSING is set (so if VM_UFFD_WP is not set)...  that could be
slightly improved but it'd be much more complex code for a tiny corner
case.

Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Acked-by: Pavel Emelyanov <xemul@parallels.com>
Cc: Sanidhya Kashyap <sanidhya.gatech@gmail.com>
Cc: zhang.zhanghailiang@huawei.com
Cc: "Kirill A. Shutemov" <kirill@shutemov.name>
Cc: Andres Lagar-Cavilla <andreslc@google.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Hugh Dickins <hughd@google.com>
Cc: Peter Feiner <pfeiner@google.com>
Cc: "Dr. David Alan Gilbert" <dgilbert@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: "Huangpeng (Peter)" <peter.huangpeng@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-09-04 16:54:41 -07:00
Andrea Arcangeli
6b251fc96c userfaultfd: call handle_userfault() for userfaultfd_missing() faults
This is where the page faults must be modified to call
handle_userfault() if userfaultfd_missing() is true (so if the
vma->vm_flags had VM_UFFD_MISSING set).

handle_userfault() then takes care of blocking the page fault and
delivering it to userland.

The fault flags must also be passed as parameter so the "read|write"
kind of fault can be passed to userland.

Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Acked-by: Pavel Emelyanov <xemul@parallels.com>
Cc: Sanidhya Kashyap <sanidhya.gatech@gmail.com>
Cc: zhang.zhanghailiang@huawei.com
Cc: "Kirill A. Shutemov" <kirill@shutemov.name>
Cc: Andres Lagar-Cavilla <andreslc@google.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Hugh Dickins <hughd@google.com>
Cc: Peter Feiner <pfeiner@google.com>
Cc: "Dr. David Alan Gilbert" <dgilbert@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: "Huangpeng (Peter)" <peter.huangpeng@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-09-04 16:54:41 -07:00
Naoya Horiguchi
f4c18e6f7b mm: check __PG_HWPOISON separately from PAGE_FLAGS_CHECK_AT_*
The race condition addressed in commit add05cecef ("mm: soft-offline:
don't free target page in successful page migration") was not closed
completely, because that can happen not only for soft-offline, but also
for hard-offline.  Consider that a slab page is about to be freed into
buddy pool, and then an uncorrected memory error hits the page just
after entering __free_one_page(), then VM_BUG_ON_PAGE(page->flags &
PAGE_FLAGS_CHECK_AT_PREP) is triggered, despite the fact that it's not
necessary because the data on the affected page is not consumed.

To solve it, this patch drops __PG_HWPOISON from page flag checks at
allocation/free time.  I think it's justified because __PG_HWPOISON
flags is defined to prevent the page from being reused, and setting it
outside the page's alloc-free cycle is a designed behavior (not a bug.)

For recent months, I was annoyed about BUG_ON when soft-offlined page
remains on lru cache list for a while, which is avoided by calling
put_page() instead of putback_lru_page() in page migration's success
path.  This means that this patch reverts a major change from commit
add05cecef about the new refcounting rule of soft-offlined pages, so
"reuse window" revives.  This will be closed by a subsequent patch.

Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: Dean Nelson <dnelson@redhat.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: "Kirill A. Shutemov" <kirill@shutemov.name>
Cc: Hugh Dickins <hughd@google.com>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-08-07 04:39:42 +03:00
Aneesh Kumar K.V
8809aa2d28 mm: clarify that the function operates on hugepage pte
We have confusing functions to clear pmd, pmd_clear_* and pmd_clear.  Add
_huge_ to pmdp_clear functions so that we are clear that they operate on
hugepage pte.

We don't bother about other functions like pmdp_set_wrprotect,
pmdp_clear_flush_young, because they operate on PTE bits and hence
indicate they are operating on hugepage ptes

Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-06-24 17:49:44 -07:00
Aneesh Kumar K.V
15a25b2ead mm/thp: split out pmd collapse flush into separate functions
Architectures like ppc64 [1] need to do special things while clearing pmd
before a collapse.  For them this operation is largely different from a
normal hugepage pte clear.  Hence add a separate function to clear pmd
before collapse.  After this patch pmdp_* functions operate only on
hugepage pte, and not on regular pmd_t values pointing to page table.

[1] ppc64 needs to invalidate all the normal page pte mappings we already
have inserted in the hardware hash page table.  But before doing that we
need to make sure there are no parallel hash page table insert going on.
So we need to do a kick_all_cpus_sync() before flushing the older hash
table entries.  By moving this to a separate function we capture these
details and mention how it is different from a hugepage pte clear.

This patch is a cleanup and only does code movement for clarity.  There
should not be any change in functionality.

Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-06-24 17:49:44 -07:00
Jiri Kosina
cd09241121 thp: cleanup how khugepaged enters freezer
khugepaged_do_scan() checks in every iteration whether freezing(current)
is true, and in such case breaks out of the loop, which causes
try_to_freeze() to be called immediately afterwards in
khugepaged_wait_work().

If nothing else, this causes unnecessary freezing(current) test, and also
makes the way khugepaged enters freezer a bit less obvious than necessary.

Let's just try to freeze directly, instead of splitting it into two
(directly adjacent) phases.

Signed-off-by: Jiri Kosina <jkosina@suse.cz>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-06-24 17:49:41 -07:00
Kirill A. Shutemov
79553da293 thp: cleanup khugepaged startup
Few trivial cleanups:

 - no need to call set_recommended_min_free_kbytes() from
   late_initcall() -- start_khugepaged() calls it;

 - no need to call set_recommended_min_free_kbytes() from
   start_khugepaged() if khugepaged is not started;

 - there isn't much point in running start_khugepaged() if we've just
   set transparent_hugepage_flags to zero;

 - start_khugepaged() is misnamed -- it also used to stop the thread;

Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-04-15 16:35:19 -07:00
Kirill A. Shutemov
ae7efa507d thp: do not adjust zone water marks if khugepaged is not started
set_recommended_min_free_kbytes() adjusts zone water marks to be suitable
for khugepaged. We avoid doing this if khugepaged is disabled, but don't
catch the case when khugepaged is failed to start.

Let's address this by checking khugepaged_thread instead of
khugepaged_enabled() in set_recommended_min_free_kbytes().
It's NULL if the kernel thread is stopped or failed to start.

Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-04-15 16:35:19 -07:00
Kirill A. Shutemov
65ebb64f4d thp: handle errors in hugepage_init() properly
We miss error-handling in few cases hugepage_init(). Let's fix that.

Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Acked-by: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-04-15 16:35:18 -07:00
Jason Low
4db0c3c298 mm: remove rest of ACCESS_ONCE() usages
We converted some of the usages of ACCESS_ONCE to READ_ONCE in the mm/
tree since it doesn't work reliably on non-scalar types.

This patch removes the rest of the usages of ACCESS_ONCE, and use the new
READ_ONCE API for the read accesses.  This makes things cleaner, instead
of using separate/multiple sets of APIs.

Signed-off-by: Jason Low <jason.low2@hp.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Acked-by: Davidlohr Bueso <dave@stgolabs.net>
Acked-by: Rik van Riel <riel@redhat.com>
Reviewed-by: Christian Borntraeger <borntraeger@de.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-04-15 16:35:18 -07:00
Michal Hocko
3b3636924d mm, memcg: sync allocation and memcg charge gfp flags for THP
memcg currently uses hardcoded GFP_TRANSHUGE gfp flags for all THP
charges.  THP allocations, however, might be using different flags
depending on /sys/kernel/mm/transparent_hugepage/{,khugepaged/}defrag and
the current allocation context.

The primary difference is that defrag configured to "madvise" value will
clear __GFP_WAIT flag from the core gfp mask to make the allocation
lighter for all mappings which are not backed by VM_HUGEPAGE vmas.  If
memcg charge path ignores this fact we will get light allocation but the a
potential memcg reclaim would kill the whole point of the configuration.

Fix the mismatch by providing the same gfp mask used for the allocation to
the charge functions.  This is quite easy for all paths except for
hugepaged kernel thread with !CONFIG_NUMA which is doing a pre-allocation
long before the allocated page is used in collapse_huge_page via
khugepaged_alloc_page.  To prevent from cluttering the whole code path
from khugepaged_do_scan we simply return the current flags as per
khugepaged_defrag() value which might have changed since the
preallocation.  If somebody changed the value of the knob we would charge
differently but this shouldn't happen often and it is definitely not
critical because it would only lead to a reduced success rate of one-off
THP promotion.

[akpm@linux-foundation.org: fix weird code layout while we're there]
[rientjes@google.com: clean up around alloc_hugepage_gfpmask()]
Signed-off-by: Michal Hocko <mhocko@suse.cz>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: David Rientjes <rientjes@google.com>
Signed-off-by: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-04-15 16:35:17 -07:00
David Rientjes
5265047ac3 mm, thp: really limit transparent hugepage allocation to local node
Commit 077fcf116c ("mm/thp: allocate transparent hugepages on local
node") restructured alloc_hugepage_vma() with the intent of only
allocating transparent hugepages locally when there was not an effective
interleave mempolicy.

alloc_pages_exact_node() does not limit the allocation to the single node,
however, but rather prefers it.  This is because __GFP_THISNODE is not set
which would cause the node-local nodemask to be passed.  Without it, only
a nodemask that prefers the local node is passed.

Fix this by passing __GFP_THISNODE and falling back to small pages when
the allocation fails.

Commit 9f1b868a13 ("mm: thp: khugepaged: add policy for finding target
node") suffers from a similar problem for khugepaged, which is also fixed.

Fixes: 077fcf116c ("mm/thp: allocate transparent hugepages on local node")
Fixes: 9f1b868a13 ("mm: thp: khugepaged: add policy for finding target node")
Signed-off-by: David Rientjes <rientjes@google.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Pravin Shelar <pshelar@nicira.com>
Cc: Jarno Rajahalme <jrajahalme@nicira.com>
Cc: Li Zefan <lizefan@huawei.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-04-14 16:49:03 -07:00
Ebru Akagunduz
ca0984caa8 mm: incorporate zero pages into transparent huge pages
This patch improves THP collapse rates, by allowing zero pages.

Currently THP can collapse 4kB pages into a THP when there are up to
khugepaged_max_ptes_none pte_none ptes in a 2MB range.  This patch counts
pte none and mapped zero pages with the same variable.

The patch was tested with a program that allocates 800MB of
memory, and performs interleaved reads and writes, in a pattern
that causes some 2MB areas to first see read accesses, resulting
in the zero pfn being mapped there.

To simulate memory fragmentation at allocation time, I modified
do_huge_pmd_anonymous_page to return VM_FAULT_FALLBACK for read faults.

Without the patch, only %50 of the program was collapsed into THP and the
percentage did not increase over time.

With this patch after 10 minutes of waiting khugepaged had collapsed %99
of the program's memory.

[aarcange@redhat.com: fix bogus BUG()]
Signed-off-by: Ebru Akagunduz <ebru.akagunduz@gmail.com>
Reviewed-by: Rik van Riel <riel@redhat.com>
Reviewed-by: Andrea Arcangeli <aarcange@redhat.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Hugh Dickins <hughd@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Sasha Levin <sasha.levin@oracle.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-04-14 16:49:01 -07:00
Kirill A. Shutemov
84d33df279 mm: rename FOLL_MLOCK to FOLL_POPULATE
After commit a1fde08c74 ("VM: skip the stack guard page lookup in
get_user_pages only for mlock") FOLL_MLOCK has lost its original
meaning: we don't necessarily mlock the page if the flags is set -- we
also take VM_LOCKED into consideration.

Since we use the same codepath for __mm_populate(), let's rename
FOLL_MLOCK to FOLL_POPULATE.

Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Michel Lespinasse <walken@google.com>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-04-14 16:48:59 -07:00
Mel Gorman
b7b04004ec mm: numa: mark huge PTEs young when clearing NUMA hinting faults
Base PTEs are marked young when the NUMA hinting information is cleared
but the same does not happen for huge pages which this patch addresses.

Note that migrated pages are not marked young as the base page migration
code does not assume that migrated pages have been referenced.  This
could be addressed but beyond the scope of this series which is aimed at
Dave Chinners shrink workload that is unlikely to be affected by this
issue.

Signed-off-by: Mel Gorman <mgorman@suse.de>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Aneesh Kumar <aneesh.kumar@linux.vnet.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-03-25 16:20:31 -07:00
Mel Gorman
074c238177 mm: numa: slow PTE scan rate if migration failures occur
Dave Chinner reported the following on https://lkml.org/lkml/2015/3/1/226

  Across the board the 4.0-rc1 numbers are much slower, and the degradation
  is far worse when using the large memory footprint configs. Perf points
  straight at the cause - this is from 4.0-rc1 on the "-o bhash=101073" config:

   -   56.07%    56.07%  [kernel]            [k] default_send_IPI_mask_sequence_phys
      - default_send_IPI_mask_sequence_phys
         - 99.99% physflat_send_IPI_mask
            - 99.37% native_send_call_func_ipi
                 smp_call_function_many
               - native_flush_tlb_others
                  - 99.85% flush_tlb_page
                       ptep_clear_flush
                       try_to_unmap_one
                       rmap_walk
                       try_to_unmap
                       migrate_pages
                       migrate_misplaced_page
                     - handle_mm_fault
                        - 99.73% __do_page_fault
                             trace_do_page_fault
                             do_async_page_fault
                           + async_page_fault
              0.63% native_send_call_func_single_ipi
                 generic_exec_single
                 smp_call_function_single

This is showing excessive migration activity even though excessive
migrations are meant to get throttled.  Normally, the scan rate is tuned
on a per-task basis depending on the locality of faults.  However, if
migrations fail for any reason then the PTE scanner may scan faster if
the faults continue to be remote.  This means there is higher system CPU
overhead and fault trapping at exactly the time we know that migrations
cannot happen.  This patch tracks when migration failures occur and
slows the PTE scanner.

Signed-off-by: Mel Gorman <mgorman@suse.de>
Reported-by: Dave Chinner <david@fromorbit.com>
Tested-by: Dave Chinner <david@fromorbit.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Aneesh Kumar <aneesh.kumar@linux.vnet.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-03-25 16:20:31 -07:00
Mel Gorman
b191f9b106 mm: numa: preserve PTE write permissions across a NUMA hinting fault
Protecting a PTE to trap a NUMA hinting fault clears the writable bit
and further faults are needed after trapping a NUMA hinting fault to set
the writable bit again.  This patch preserves the writable bit when
trapping NUMA hinting faults.  The impact is obvious from the number of
minor faults trapped during the basis balancing benchmark and the system
CPU usage;

  autonumabench
                                             4.0.0-rc4             4.0.0-rc4
                                              baseline              preserve
  Time System-NUMA01                  107.13 (  0.00%)      103.13 (  3.73%)
  Time System-NUMA01_THEADLOCAL       131.87 (  0.00%)       83.30 ( 36.83%)
  Time System-NUMA02                    8.95 (  0.00%)       10.72 (-19.78%)
  Time System-NUMA02_SMT                4.57 (  0.00%)        3.99 ( 12.69%)
  Time Elapsed-NUMA01                 515.78 (  0.00%)      517.26 ( -0.29%)
  Time Elapsed-NUMA01_THEADLOCAL      384.10 (  0.00%)      384.31 ( -0.05%)
  Time Elapsed-NUMA02                  48.86 (  0.00%)       48.78 (  0.16%)
  Time Elapsed-NUMA02_SMT              47.98 (  0.00%)       48.12 ( -0.29%)

               4.0.0-rc4   4.0.0-rc4
                baseline    preserve
  User          44383.95    43971.89
  System          252.61      201.24
  Elapsed         998.68     1000.94

  Minor Faults   2597249     1981230
  Major Faults       365         364

There is a similar drop in system CPU usage using Dave Chinner's xfsrepair
workload

                                      4.0.0-rc4             4.0.0-rc4
                                       baseline              preserve
  Amean    real-xfsrepair      454.14 (  0.00%)      442.36 (  2.60%)
  Amean    syst-xfsrepair      277.20 (  0.00%)      204.68 ( 26.16%)

The patch looks hacky but the alternatives looked worse.  The tidest was
to rewalk the page tables after a hinting fault but it was more complex
than this approach and the performance was worse.  It's not generally
safe to just mark the page writable during the fault if it's a write
fault as it may have been read-only for COW so that approach was
discarded.

Signed-off-by: Mel Gorman <mgorman@suse.de>
Reported-by: Dave Chinner <david@fromorbit.com>
Tested-by: Dave Chinner <david@fromorbit.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Aneesh Kumar <aneesh.kumar@linux.vnet.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-03-25 16:20:31 -07:00
Mel Gorman
bea66fbd11 mm: numa: group related processes based on VMA flags instead of page table flags
These are three follow-on patches based on the xfsrepair workload Dave
Chinner reported was problematic in 4.0-rc1 due to changes in page table
management -- https://lkml.org/lkml/2015/3/1/226.

Much of the problem was reduced by commit 53da3bc2ba ("mm: fix up numa
read-only thread grouping logic") and commit ba68bc0115 ("mm: thp:
Return the correct value for change_huge_pmd").  It was known that the
performance in 3.19 was still better even if is far less safe.  This
series aims to restore the performance without compromising on safety.

For the test of this mail, I'm comparing 3.19 against 4.0-rc4 and the
three patches applied on top

  autonumabench
                                                3.19.0             4.0.0-rc4             4.0.0-rc4             4.0.0-rc4             4.0.0-rc4
                                               vanilla               vanilla          vmwrite-v5r8         preserve-v5r8         slowscan-v5r8
  Time System-NUMA01                  124.00 (  0.00%)      161.86 (-30.53%)      107.13 ( 13.60%)      103.13 ( 16.83%)      145.01 (-16.94%)
  Time System-NUMA01_THEADLOCAL       115.54 (  0.00%)      107.64 (  6.84%)      131.87 (-14.13%)       83.30 ( 27.90%)       92.35 ( 20.07%)
  Time System-NUMA02                    9.35 (  0.00%)       10.44 (-11.66%)        8.95 (  4.28%)       10.72 (-14.65%)        8.16 ( 12.73%)
  Time System-NUMA02_SMT                3.87 (  0.00%)        4.63 (-19.64%)        4.57 (-18.09%)        3.99 ( -3.10%)        3.36 ( 13.18%)
  Time Elapsed-NUMA01                 570.06 (  0.00%)      567.82 (  0.39%)      515.78 (  9.52%)      517.26 (  9.26%)      543.80 (  4.61%)
  Time Elapsed-NUMA01_THEADLOCAL      393.69 (  0.00%)      384.83 (  2.25%)      384.10 (  2.44%)      384.31 (  2.38%)      380.73 (  3.29%)
  Time Elapsed-NUMA02                  49.09 (  0.00%)       49.33 ( -0.49%)       48.86 (  0.47%)       48.78 (  0.63%)       50.94 ( -3.77%)
  Time Elapsed-NUMA02_SMT              47.51 (  0.00%)       47.15 (  0.76%)       47.98 ( -0.99%)       48.12 ( -1.28%)       49.56 ( -4.31%)

                3.19.0   4.0.0-rc4   4.0.0-rc4   4.0.0-rc4   4.0.0-rc4
               vanilla     vanillavmwrite-v5r8preserve-v5r8slowscan-v5r8
  User        46334.60    46391.94    44383.95    43971.89    44372.12
  System        252.84      284.66      252.61      201.24      249.00
  Elapsed      1062.14     1050.96      998.68     1000.94     1026.78

Overall the system CPU usage is comparable and the test is naturally a
bit variable.  The slowing of the scanner hurts numa01 but on this
machine it is an adverse workload and patches that dramatically help it
often hurt absolutely everything else.

Due to patch 2, the fault activity is interesting

                                  3.19.0   4.0.0-rc4   4.0.0-rc4   4.0.0-rc4   4.0.0-rc4
                                 vanilla     vanillavmwrite-v5r8preserve-v5r8slowscan-v5r8
  Minor Faults                   2097811     2656646     2597249     1981230     1636841
  Major Faults                       362         450         365         364         365

Note the impact preserving the write bit across protection updates and
fault reduces faults.

  NUMA alloc hit                 1229008     1217015     1191660     1178322     1199681
  NUMA alloc miss                      0           0           0           0           0
  NUMA interleave hit                  0           0           0           0           0
  NUMA alloc local               1228514     1216317     1190871     1177448     1199021
  NUMA base PTE updates        245706197   240041607   238195516   244704842   115012800
  NUMA huge PMD updates           479530      468448      464868      477573      224487
  NUMA page range updates      491225557   479886983   476207932   489222218   229950144
  NUMA hint faults                659753      656503      641678      656926      294842
  NUMA hint local faults          381604      373963      360478      337585      186249
  NUMA hint local percent             57          56          56          51          63
  NUMA pages migrated            5412140     6374899     6266530     5277468     5755096
  AutoNUMA cost                    5121%       5083%       4994%       5097%       2388%

Here the impact of slowing the PTE scanner on migratrion failures is
obvious as "NUMA base PTE updates" and "NUMA huge PMD updates" are
massively reduced even though the headline performance is very similar.

As xfsrepair was the reported workload here is the impact of the series
on it.

  xfsrepair
                                         3.19.0             4.0.0-rc4             4.0.0-rc4             4.0.0-rc4             4.0.0-rc4
                                        vanilla               vanilla          vmwrite-v5r8         preserve-v5r8         slowscan-v5r8
  Min      real-fsmark        1183.29 (  0.00%)     1165.73 (  1.48%)     1152.78 (  2.58%)     1153.64 (  2.51%)     1177.62 (  0.48%)
  Min      syst-fsmark        4107.85 (  0.00%)     4027.75 (  1.95%)     3986.74 (  2.95%)     3979.16 (  3.13%)     4048.76 (  1.44%)
  Min      real-xfsrepair      441.51 (  0.00%)      463.96 ( -5.08%)      449.50 ( -1.81%)      440.08 (  0.32%)      439.87 (  0.37%)
  Min      syst-xfsrepair      195.76 (  0.00%)      278.47 (-42.25%)      262.34 (-34.01%)      203.70 ( -4.06%)      143.64 ( 26.62%)
  Amean    real-fsmark        1188.30 (  0.00%)     1177.34 (  0.92%)     1157.97 (  2.55%)     1158.21 (  2.53%)     1182.22 (  0.51%)
  Amean    syst-fsmark        4111.37 (  0.00%)     4055.70 (  1.35%)     3987.19 (  3.02%)     3998.72 (  2.74%)     4061.69 (  1.21%)
  Amean    real-xfsrepair      450.88 (  0.00%)      468.32 ( -3.87%)      454.14 ( -0.72%)      442.36 (  1.89%)      440.59 (  2.28%)
  Amean    syst-xfsrepair      199.66 (  0.00%)      290.60 (-45.55%)      277.20 (-38.84%)      204.68 ( -2.51%)      150.55 ( 24.60%)
  Stddev   real-fsmark           4.12 (  0.00%)       10.82 (-162.29%)       4.14 ( -0.28%)        5.98 (-45.05%)        4.60 (-11.53%)
  Stddev   syst-fsmark           2.63 (  0.00%)       20.32 (-671.82%)       0.37 ( 85.89%)       16.47 (-525.59%)      15.05 (-471.79%)
  Stddev   real-xfsrepair        6.87 (  0.00%)        4.55 ( 33.75%)        3.46 ( 49.58%)        1.78 ( 74.12%)        0.52 ( 92.50%)
  Stddev   syst-xfsrepair        3.02 (  0.00%)       10.30 (-241.37%)      13.17 (-336.37%)       0.71 ( 76.63%)        5.00 (-65.61%)
  CoeffVar real-fsmark           0.35 (  0.00%)        0.92 (-164.73%)       0.36 ( -2.91%)        0.52 (-48.82%)        0.39 (-12.10%)
  CoeffVar syst-fsmark           0.06 (  0.00%)        0.50 (-682.41%)       0.01 ( 85.45%)        0.41 (-543.22%)       0.37 (-478.78%)
  CoeffVar real-xfsrepair        1.52 (  0.00%)        0.97 ( 36.21%)        0.76 ( 49.94%)        0.40 ( 73.62%)        0.12 ( 92.33%)
  CoeffVar syst-xfsrepair        1.51 (  0.00%)        3.54 (-134.54%)       4.75 (-214.31%)       0.34 ( 77.20%)        3.32 (-119.63%)
  Max      real-fsmark        1193.39 (  0.00%)     1191.77 (  0.14%)     1162.90 (  2.55%)     1166.66 (  2.24%)     1188.50 (  0.41%)
  Max      syst-fsmark        4114.18 (  0.00%)     4075.45 (  0.94%)     3987.65 (  3.08%)     4019.45 (  2.30%)     4082.80 (  0.76%)
  Max      real-xfsrepair      457.80 (  0.00%)      474.60 ( -3.67%)      457.82 ( -0.00%)      444.42 (  2.92%)      441.03 (  3.66%)
  Max      syst-xfsrepair      203.11 (  0.00%)      303.65 (-49.50%)      294.35 (-44.92%)      205.33 ( -1.09%)      155.28 ( 23.55%)

The really relevant lines as syst-xfsrepair which is the system CPU
usage when running xfsrepair.  Note that on my machine the overhead was
45% higher on 4.0-rc4 which may be part of what Dave is seeing.  Once we
preserve the write bit across faults, it's only 2.51% higher on average.
With the full series applied, system CPU usage is 24.6% lower on
average.

Again, the impact of preserving the write bit on minor faults is obvious
and the impact of slowing scanning after migration failures is obvious
on the PTE updates.  Note also that the number of pages migrated is much
reduced even though the headline performance is comparable.

                                  3.19.0   4.0.0-rc4   4.0.0-rc4   4.0.0-rc4   4.0.0-rc4
                                 vanilla     vanillavmwrite-v5r8preserve-v5r8slowscan-v5r8
  Minor Faults                 153466827   254507978   249163829   153501373   105737890
  Major Faults                       610         702         690         649         724
  NUMA base PTE updates        217735049   210756527   217729596   216937111   144344993
  NUMA huge PMD updates           129294       85044      106921      127246       79887
  NUMA pages migrated           21938995    29705270    28594162    22687324    16258075

                        3.19.0   4.0.0-rc4   4.0.0-rc4   4.0.0-rc4   4.0.0-rc4
                       vanilla     vanillavmwrite-v5r8preserve-v5r8slowscan-v5r8
  Mean sdb-avgqusz       13.47        2.54        2.55        2.47        2.49
  Mean sdb-avgrqsz      202.32      140.22      139.50      139.02      138.12
  Mean sdb-await         25.92        5.09        5.33        5.02        5.22
  Mean sdb-r_await        4.71        0.19        0.83        0.51        0.11
  Mean sdb-w_await      104.13        5.21        5.38        5.05        5.32
  Mean sdb-svctm          0.59        0.13        0.14        0.13        0.14
  Mean sdb-rrqm           0.16        0.00        0.00        0.00        0.00
  Mean sdb-wrqm           3.59     1799.43     1826.84     1812.21     1785.67
  Max  sdb-avgqusz      111.06       12.13       14.05       11.66       15.60
  Max  sdb-avgrqsz      255.60      190.34      190.01      187.33      191.78
  Max  sdb-await        168.24       39.28       49.22       44.64       65.62
  Max  sdb-r_await      660.00       52.00      280.00       76.00       12.00
  Max  sdb-w_await     7804.00       39.28       49.22       44.64       65.62
  Max  sdb-svctm          4.00        2.82        2.86        1.98        2.84
  Max  sdb-rrqm           8.30        0.00        0.00        0.00        0.00
  Max  sdb-wrqm          34.20     5372.80     5278.60     5386.60     5546.15

FWIW, I also checked SPECjbb in different configurations but it's
similar observations -- minor faults lower, PTE update activity lower
and performance is roughly comparable against 3.19.

This patch (of 3):

Threads that share writable data within pages are grouped together as
related tasks.  This decision is based on whether the PTE is marked
dirty which is subject to timing races between the PTE scanner update
and when the application writes the page.  If the page is file-backed,
then background flushes and sync also affect placement.  This is
unpredictable behaviour which is impossible to reason about so this
patch makes grouping decisions based on the VMA flags.

Signed-off-by: Mel Gorman <mgorman@suse.de>
Reported-by: Dave Chinner <david@fromorbit.com>
Tested-by: Dave Chinner <david@fromorbit.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Aneesh Kumar <aneesh.kumar@linux.vnet.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-03-25 16:20:31 -07:00
Mel Gorman
ba68bc0115 mm: thp: Return the correct value for change_huge_pmd
The wrong value is being returned by change_huge_pmd since commit
10c1045f28 ("mm: numa: avoid unnecessary TLB flushes when setting
NUMA hinting entries") which allows a fallthrough that tries to adjust
non-existent PTEs. This patch corrects it.

Signed-off-by: Mel Gorman <mgorman@suse.de>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-03-12 14:07:41 -07:00
Linus Torvalds
53da3bc2ba mm: fix up numa read-only thread grouping logic
Dave Chinner reported that commit 4d94246699 ("mm: convert
p[te|md]_mknonnuma and remaining page table manipulations") slowed down
his xfsrepair test enormously.  In particular, it was using more system
time due to extra TLB flushing.

The ultimate reason turns out to be how the change to use the regular
page table accessor functions broke the NUMA grouping logic.  The old
special mknuma/mknonnuma code accessed the page table present bit and
the magic NUMA bit directly, while the new code just changes the page
protections using PROT_NONE and the regular vma protections.

That sounds equivalent, and from a fault standpoint it really is, but a
subtle side effect is that the *other* protection bits of the page table
entries also change.  And the code to decide how to group the NUMA
entries together used the writable bit to decide whether a particular
page was likely to be shared read-only or not.

And with the change to make the NUMA handling use the regular permission
setting functions, that writable bit was basically always cleared for
private mappings due to COW.  So even if the page actually ends up being
written to in the end, the NUMA balancing would act as if it was always
shared RO.

This code is a heuristic anyway, so the fix - at least for now - is to
instead check whether the page is dirty rather than writable.  The bit
doesn't change with protection changes.

NOTE! This also adds a FIXME comment to revisit this issue,

Not only should we probably re-visit the whole "is this a shared
read-only page" heuristic (we might want to take the vma permissions
into account and base this more on those than the per-page ones, and
also look at whether the particular access that triggers it is a write
or not), but the whole COW issue shows that we should think about the
NUMA fault handling some more.

For example, maybe we should do the early-COW thing that a regular fault
does.  Or maybe we should accept that while using the same bits as
PROTNONE was a good thing (and got rid of the specual NUMA bit), we
might still want to just preseve the other protection bits across NUMA
faulting.

Those are bigger questions, left for later.  This just fixes up the
heuristic so that it at least approximates working again.  More analysis
and work needed.

Reported-by: Dave Chinner <david@fromorbit.com>
Tested-by: Mel Gorman <mgorman@suse.de>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Aneesh Kumar <aneesh.kumar@linux.vnet.ibm.com>
Cc: Ingo Molnar <mingo@kernel.org>,
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-03-12 08:45:46 -07:00
Mel Gorman
10c1045f28 mm: numa: avoid unnecessary TLB flushes when setting NUMA hinting entries
If a PTE or PMD is already marked NUMA when scanning to mark entries for
NUMA hinting then it is not necessary to update the entry and incur a TLB
flush penalty.  Avoid the avoidhead where possible.

Signed-off-by: Mel Gorman <mgorman@suse.de>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Dave Jones <davej@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Kirill Shutemov <kirill.shutemov@linux.intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Sasha Levin <sasha.levin@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-02-12 18:54:08 -08:00
Mel Gorman
c0e7cad9f2 mm: numa: add paranoid check around pte_protnone_numa
pte_protnone_numa is only safe to use after VMA checks for PROT_NONE are
complete.  Treating a real PROT_NONE PTE as a NUMA hinting fault is going
to result in strangeness so add a check for it.  BUG_ON looks like
overkill but if this is hit then it's a serious bug that could result in
corruption so do not even try recovering.  It would have been more
comprehensive to check VMA flags in pte_protnone_numa but it would have
made the API ugly just for a debugging check.

Signed-off-by: Mel Gorman <mgorman@suse.de>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Dave Jones <davej@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Kirill Shutemov <kirill.shutemov@linux.intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Sasha Levin <sasha.levin@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-02-12 18:54:08 -08:00
Mel Gorman
e944fd67b6 mm: numa: do not trap faults on the huge zero page
Faults on the huge zero page are pointless and there is a BUG_ON to catch
them during fault time.  This patch reintroduces a check that avoids
marking the zero page PAGE_NONE.

Signed-off-by: Mel Gorman <mgorman@suse.de>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Dave Jones <davej@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Kirill Shutemov <kirill.shutemov@linux.intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Sasha Levin <sasha.levin@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-02-12 18:54:08 -08:00
Mel Gorman
4d94246699 mm: convert p[te|md]_mknonnuma and remaining page table manipulations
With PROT_NONE, the traditional page table manipulation functions are
sufficient.

[andre.przywara@arm.com: fix compiler warning in pmdp_invalidate()]
[akpm@linux-foundation.org: fix build with STRICT_MM_TYPECHECKS]
Signed-off-by: Mel Gorman <mgorman@suse.de>
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Acked-by: Aneesh Kumar <aneesh.kumar@linux.vnet.ibm.com>
Tested-by: Sasha Levin <sasha.levin@oracle.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Dave Jones <davej@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Kirill Shutemov <kirill.shutemov@linux.intel.com>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-02-12 18:54:08 -08:00
Mel Gorman
8a0516ed8b mm: convert p[te|md]_numa users to p[te|md]_protnone_numa
Convert existing users of pte_numa and friends to the new helper.  Note
that the kernel is broken after this patch is applied until the other page
table modifiers are also altered.  This patch layout is to make review
easier.

Signed-off-by: Mel Gorman <mgorman@suse.de>
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Acked-by: Aneesh Kumar <aneesh.kumar@linux.vnet.ibm.com>
Acked-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Tested-by: Sasha Levin <sasha.levin@oracle.com>
Cc: Dave Jones <davej@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Kirill Shutemov <kirill.shutemov@linux.intel.com>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Sasha Levin <sasha.levin@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-02-12 18:54:08 -08:00
Mel Gorman
5d83306213 mm: numa: do not dereference pmd outside of the lock during NUMA hinting fault
Automatic NUMA balancing depends on being able to protect PTEs to trap a
fault and gather reference locality information.  Very broadly speaking
it would mark PTEs as not present and use another bit to distinguish
between NUMA hinting faults and other types of faults.  It was
universally loved by everybody and caused no problems whatsoever.  That
last sentence might be a lie.

This series is very heavily based on patches from Linus and Aneesh to
replace the existing PTE/PMD NUMA helper functions with normal change
protections.  I did alter and add parts of it but I consider them
relatively minor contributions.  At their suggestion, acked-bys are in
there but I've no problem converting them to Signed-off-by if requested.

AFAIK, this has received no testing on ppc64 and I'm depending on Aneesh
for that.  I tested trinity under kvm-tool and passed and ran a few
other basic tests.  At the time of writing, only the short-lived tests
have completed but testing of V2 indicated that long-term testing had no
surprises.  In most cases I'm leaving out detail as it's not that
interesting.

specjbb single JVM: There was negligible performance difference in the
	benchmark itself for short runs. However, system activity is
	higher and interrupts are much higher over time -- possibly TLB
	flushes. Migrations are also higher. Overall, this is more overhead
	but considering the problems faced with the old approach I think
	we just have to suck it up and find another way of reducing the
	overhead.

specjbb multi JVM: Negligible performance difference to the actual benchmark
	but like the single JVM case, the system overhead is noticeably
	higher.  Again, interrupts are a major factor.

autonumabench: This was all over the place and about all that can be
	reasonably concluded is that it's different but not necessarily
	better or worse.

autonumabench
                                     3.18.0-rc5            3.18.0-rc5
                                 mmotm-20141119         protnone-v3r3
User    NUMA01               32380.24 (  0.00%)    21642.92 ( 33.16%)
User    NUMA01_THEADLOCAL    22481.02 (  0.00%)    22283.22 (  0.88%)
User    NUMA02                3137.00 (  0.00%)     3116.54 (  0.65%)
User    NUMA02_SMT            1614.03 (  0.00%)     1543.53 (  4.37%)
System  NUMA01                 322.97 (  0.00%)     1465.89 (-353.88%)
System  NUMA01_THEADLOCAL       91.87 (  0.00%)       49.32 ( 46.32%)
System  NUMA02                  37.83 (  0.00%)       14.61 ( 61.38%)
System  NUMA02_SMT               7.36 (  0.00%)        7.45 ( -1.22%)
Elapsed NUMA01                 716.63 (  0.00%)      599.29 ( 16.37%)
Elapsed NUMA01_THEADLOCAL      553.98 (  0.00%)      539.94 (  2.53%)
Elapsed NUMA02                  83.85 (  0.00%)       83.04 (  0.97%)
Elapsed NUMA02_SMT              86.57 (  0.00%)       79.15 (  8.57%)
CPU     NUMA01                4563.00 (  0.00%)     3855.00 ( 15.52%)
CPU     NUMA01_THEADLOCAL     4074.00 (  0.00%)     4136.00 ( -1.52%)
CPU     NUMA02                3785.00 (  0.00%)     3770.00 (  0.40%)
CPU     NUMA02_SMT            1872.00 (  0.00%)     1959.00 ( -4.65%)

System CPU usage of NUMA01 is worse but it's an adverse workload on this
machine so I'm reluctant to conclude that it's a problem that matters.  On
the other workloads that are sensible on this machine, system CPU usage is
great.  Overall time to complete the benchmark is comparable

          3.18.0-rc5  3.18.0-rc5
        mmotm-20141119protnone-v3r3
User        59612.50    48586.44
System        460.22     1537.45
Elapsed      1442.20     1304.29

NUMA alloc hit                 5075182     5743353
NUMA alloc miss                      0           0
NUMA interleave hit                  0           0
NUMA alloc local               5075174     5743339
NUMA base PTE updates        637061448   443106883
NUMA huge PMD updates          1243434      864747
NUMA page range updates     1273699656   885857347
NUMA hint faults               1658116     1214277
NUMA hint local faults          959487      754113
NUMA hint local percent             57          62
NUMA pages migrated            5467056    61676398

The NUMA pages migrated look terrible but when I looked at a graph of the
activity over time I see that the massive spike in migration activity was
during NUMA01.  This correlates with high system CPU usage and could be
simply down to bad luck but any modifications that affect that workload
would be related to scan rates and migrations, not the protection
mechanism.  For all other workloads, migration activity was comparable.

Overall, headline performance figures are comparable but the overhead is
higher, mostly in interrupts.  To some extent, higher overhead from this
approach was anticipated but not to this degree.  It's going to be
necessary to reduce this again with a separate series in the future.  It's
still worth going ahead with this series though as it's likely to avoid
constant headaches with Xen and is probably easier to maintain.

This patch (of 10):

A transhuge NUMA hinting fault may find the page is migrating and should
wait until migration completes.  The check is race-prone because the pmd
is deferenced outside of the page lock and while the race is tiny, it'll
be larger if the PMD is cleared while marking PMDs for hinting fault.
This patch closes the race.

Signed-off-by: Mel Gorman <mgorman@suse.de>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Dave Jones <davej@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Kirill Shutemov <kirill.shutemov@linux.intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Sasha Levin <sasha.levin@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-02-12 18:54:08 -08:00
Ebru Akagunduz
10359213d0 mm: incorporate read-only pages into transparent huge pages
This patch aims to improve THP collapse rates, by allowing THP collapse in
the presence of read-only ptes, like those left in place by do_swap_page
after a read fault.

Currently THP can collapse 4kB pages into a THP when there are up to
khugepaged_max_ptes_none pte_none ptes in a 2MB range.  This patch applies
the same limit for read-only ptes.

The patch was tested with a test program that allocates 800MB of memory,
writes to it, and then sleeps.  I force the system to swap out all but
190MB of the program by touching other memory.  Afterwards, the test
program does a mix of reads and writes to its memory, and the memory gets
swapped back in.

Without the patch, only the memory that did not get swapped out remained
in THPs, which corresponds to 24% of the memory of the program.  The
percentage did not increase over time.

With this patch, after 5 minutes of waiting khugepaged had collapsed 50%
of the program's memory back into THPs.

Test results:

With the patch:
After swapped out:
cat /proc/pid/smaps:
Anonymous:      100464 kB
AnonHugePages:  100352 kB
Swap:           699540 kB
Fraction:       99,88

cat /proc/meminfo:
AnonPages:      1754448 kB
AnonHugePages:  1716224 kB
Fraction:       97,82

After swapped in:
In a few seconds:
cat /proc/pid/smaps:
Anonymous:      800004 kB
AnonHugePages:  145408 kB
Swap:           0 kB
Fraction:       18,17

cat /proc/meminfo:
AnonPages:      2455016 kB
AnonHugePages:  1761280 kB
Fraction:       71,74

In 5 minutes:
cat /proc/pid/smaps
Anonymous:      800004 kB
AnonHugePages:  407552 kB
Swap:           0 kB
Fraction:       50,94

cat /proc/meminfo:
AnonPages:      2456872 kB
AnonHugePages:  2023424 kB
Fraction:       82,35

Without the patch:
After swapped out:
cat /proc/pid/smaps:
Anonymous:      190660 kB
AnonHugePages:  190464 kB
Swap:           609344 kB
Fraction:       99,89

cat /proc/meminfo:
AnonPages:      1740456 kB
AnonHugePages:  1667072 kB
Fraction:       95,78

After swapped in:
cat /proc/pid/smaps:
Anonymous:      800004 kB
AnonHugePages:  190464 kB
Swap:           0 kB
Fraction:       23,80

cat /proc/meminfo:
AnonPages:      2350032 kB
AnonHugePages:  1667072 kB
Fraction:       70,93

I waited 10 minutes the fractions did not change without the patch.

Signed-off-by: Ebru Akagunduz <ebru.akagunduz@gmail.com>
Reviewed-by: Rik van Riel <riel@redhat.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Zhang Yanfei <zhangyanfei@cn.fujitsu.com>
Acked-by: Andrea Arcangeli <aarcange@redhat.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Mel Gorman <mgorman@suse.de>
Cc: David Rientjes <rientjes@google.com>
Cc: Sasha Levin <sasha.levin@oracle.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-02-11 17:06:07 -08:00
Naoya Horiguchi
1e25a271c8 mincore: apply page table walker on do_mincore()
This patch makes do_mincore() use walk_page_vma(), which reduces many
lines of code by using common page table walk code.

[daeseok.youn@gmail.com: remove unneeded variable 'err']
Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Cyrill Gorcunov <gorcunov@openvz.org>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Pavel Emelyanov <xemul@parallels.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Daeseok Youn <daeseok.youn@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-02-11 17:06:06 -08:00
Aneesh Kumar K.V
077fcf116c mm/thp: allocate transparent hugepages on local node
This make sure that we try to allocate hugepages from local node if
allowed by mempolicy.  If we can't, we fallback to small page allocation
based on mempolicy.  This is based on the observation that allocating
pages on local node is more beneficial than allocating hugepages on remote
node.

With this patch applied we may find transparent huge page allocation
failures if the current node doesn't have enough freee hugepages.  Before
this patch such failures result in us retrying the allocation on other
nodes in the numa node mask.

[akpm@linux-foundation.org: fix comment, add CONFIG_TRANSPARENT_HUGEPAGE dependency]
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: David Rientjes <rientjes@google.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-02-11 17:06:04 -08:00
Wang, Yalin
56873f43ab mm:add KPF_ZERO_PAGE flag for /proc/kpageflags
Add KPF_ZERO_PAGE flag for zero_page, so that userspace processes can
detect zero_page in /proc/kpageflags, and then do memory analysis more
accurately.

Signed-off-by: Yalin Wang <yalin.wang@sonymobile.com>
Acked-by: Kirill A. Shutemov <kirill@shutemov.name>
Cc: Konstantin Khlebnikov <koct9i@gmail.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-02-11 17:06:00 -08:00
Linus Torvalds
988adfdffd Merge branch 'drm-next' of git://people.freedesktop.org/~airlied/linux
Pull drm updates from Dave Airlie:
 "Highlights:

   - AMD KFD driver merge

     This is the AMD HSA interface for exposing a lowlevel interface for
     GPGPU use.  They have an open source userspace built on top of this
     interface, and the code looks as good as it was going to get out of
     tree.

   - Initial atomic modesetting work

     The need for an atomic modesetting interface to allow userspace to
     try and send a complete set of modesetting state to the driver has
     arisen, and been suffering from neglect this past year.  No more,
     the start of the common code and changes for msm driver to use it
     are in this tree.  Ongoing work to get the userspace ioctl finished
     and the code clean will probably wait until next kernel.

   - DisplayID 1.3 and tiled monitor exposed to userspace.

     Tiled monitor property is now exposed for userspace to make use of.

   - Rockchip drm driver merged.

   - imx gpu driver moved out of staging

  Other stuff:

   - core:
        panel - MIPI DSI + new panels.
        expose suggested x/y properties for virtual GPUs

   - i915:
        Initial Skylake (SKL) support
        gen3/4 reset work
        start of dri1/ums removal
        infoframe tracking
        fixes for lots of things.

   - nouveau:
        tegra k1 voltage support
        GM204 modesetting support
        GT21x memory reclocking work

   - radeon:
        CI dpm fixes
        GPUVM improvements
        Initial DPM fan control

   - rcar-du:
        HDMI support added
        removed some support for old boards
        slave encoder driver for Analog Devices adv7511

   - exynos:
        Exynos4415 SoC support

   - msm:
        a4xx gpu support
        atomic helper conversion

   - tegra:
        iommu support
        universal plane support
        ganged-mode DSI support

   - sti:
        HDMI i2c improvements

   - vmwgfx:
        some late fixes.

   - qxl:
        use suggested x/y properties"

* 'drm-next' of git://people.freedesktop.org/~airlied/linux: (969 commits)
  drm: sti: fix module compilation issue
  drm/i915: save/restore GMBUS freq across suspend/resume on gen4
  drm: sti: correctly cleanup CRTC and planes
  drm: sti: add HQVDP plane
  drm: sti: add cursor plane
  drm: sti: enable auxiliary CRTC
  drm: sti: fix delay in VTG programming
  drm: sti: prepare sti_tvout to support auxiliary crtc
  drm: sti: use drm_crtc_vblank_{on/off} instead of drm_vblank_{on/off}
  drm: sti: fix hdmi avi infoframe
  drm: sti: remove event lock while disabling vblank
  drm: sti: simplify gdp code
  drm: sti: clear all mixer control
  drm: sti: remove gpio for HDMI hot plug detection
  drm: sti: allow to change hdmi ddc i2c adapter
  drm/doc: Document drm_add_modes_noedid() usage
  drm/i915: Remove '& 0xffff' from the mask given to WA_REG()
  drm/i915: Invert the mask and val arguments in wa_add() and WA_REG()
  drm: Zero out DRM object memory upon cleanup
  drm/i915/bdw: Fix the write setting up the WIZ hashing mode
  ...
2014-12-15 15:52:01 -08:00
Linus Torvalds
27afc5dbda Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/s390/linux
Pull s390 updates from Martin Schwidefsky:
 "The most notable change for this pull request is the ftrace rework
  from Heiko.  It brings a small performance improvement and the ground
  work to support a new gcc option to replace the mcount blocks with a
  single nop.

  Two new s390 specific system calls are added to emulate user space
  mmio for PCI, an artifact of the how PCI memory is accessed.

  Two patches for the memory management with changes to common code.
  For KVM mm_forbids_zeropage is added which disables the empty zero
  page for an mm that is used by a KVM process.  And an optimization,
  pmdp_get_and_clear_full is added analog to ptep_get_and_clear_full.

  Some micro optimization for the cmpxchg and the spinlock code.

  And as usual bug fixes and cleanups"

* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/s390/linux: (46 commits)
  s390/cputime: fix 31-bit compile
  s390/scm_block: make the number of reqs per HW req configurable
  s390/scm_block: handle multiple requests in one HW request
  s390/scm_block: allocate aidaw pages only when necessary
  s390/scm_block: use mempool to manage aidaw requests
  s390/eadm: change timeout value
  s390/mm: fix memory leak of ptlock in pmd_free_tlb
  s390: use local symbol names in entry[64].S
  s390/ptrace: always include vector registers in core files
  s390/simd: clear vector register pointer on fork/clone
  s390: translate cputime magic constants to macros
  s390/idle: convert open coded idle time seqcount
  s390/idle: add missing irq off lockdep annotation
  s390/debug: avoid function call for debug_sprintf_*
  s390/kprobes: fix instruction copy for out of line execution
  s390: remove diag 44 calls from cpu_relax()
  s390/dasd: retry partition detection
  s390/dasd: fix list corruption for sleep_on requests
  s390/dasd: fix infinite term I/O loop
  s390/dasd: remove unused code
  ...
2014-12-11 17:30:55 -08:00
Kirill A. Shutemov
e544a4e74e thp: do not mark zero-page pmd write-protected explicitly
Zero pages can be used only in anonymous mappings, which never have
writable vma->vm_page_prot: see protection_map in mm/mmap.c and __PX1X
definitions.

Let's drop redundant pmd_wrprotect() in set_huge_zero_page().

Signed-off-by: "Kirill A. Shutemov" <kirill@shutemov.name>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-12-10 17:41:08 -08:00
David Rientjes
6d50e60cd2 mm, thp: fix collapsing of hugepages on madvise
If an anonymous mapping is not allowed to fault thp memory and then
madvise(MADV_HUGEPAGE) is used after fault, khugepaged will never
collapse this memory into thp memory.

This occurs because the madvise(2) handler for thp, hugepage_madvise(),
clears VM_NOHUGEPAGE on the stack and it isn't stored in vma->vm_flags
until the final action of madvise_behavior().  This causes the
khugepaged_enter_vma_merge() to be a no-op in hugepage_madvise() when
the vma had previously had VM_NOHUGEPAGE set.

Fix this by passing the correct vma flags to the khugepaged mm slot
handler.  There's no chance khugepaged can run on this vma until after
madvise_behavior() returns since we hold mm->mmap_sem.

It would be possible to clear VM_NOHUGEPAGE directly from vma->vm_flags
in hugepage_advise(), but I didn't want to introduce special case
behavior into madvise_behavior().  I think it's best to just let it
always set vma->vm_flags itself.

Signed-off-by: David Rientjes <rientjes@google.com>
Reported-by: Suleiman Souhlal <suleiman@google.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-10-29 16:33:14 -07:00
Yu Zhao
5ddacbe92b mm: free compound page with correct order
Compound page should be freed by put_page() or free_pages() with correct
order.  Not doing so will cause tail pages leaked.

The compound order can be obtained by compound_order() or use
HPAGE_PMD_ORDER in our case.  Some people would argue the latter is
faster but I prefer the former which is more general.

This bug was observed not just on our servers (the worst case we saw is
11G leaked on a 48G machine) but also on our workstations running Ubuntu
based distro.

  $ cat /proc/vmstat  | grep thp_zero_page_alloc
  thp_zero_page_alloc 55
  thp_zero_page_alloc_failed 0

This means there is (thp_zero_page_alloc - 1) * (2M - 4K) memory leaked.

Fixes: 97ae17497e ("thp: implement refcounting for huge zero page")
Signed-off-by: Yu Zhao <yuzhao@google.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: David Rientjes <rientjes@google.com>
Cc: Bob Liu <lliubbo@gmail.com>
Cc: <stable@vger.kernel.org>	[3.8+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-10-29 16:33:14 -07:00
Martin Schwidefsky
fcbe08d66f s390/mm: pmdp_get_and_clear_full optimization
Analog to ptep_get_and_clear_full define a variant of the
pmpd_get_and_clear primitive which gets the full hint from the
mmu_gather struct. This allows s390 to avoid a costly instruction
when destroying an address space.

Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
2014-10-27 13:27:30 +01:00