This patch series allows the watchdog to run by default only on the
housekeeping cores when nohz_full is in effect; this seems to be a good
compromise short of turning it off completely (since the nohz_full cores
can't tolerate a watchdog).
To provide customizability, we add /proc/sys/kernel/watchdog_cpumask so
that the set of cores running the watchdog can be tuned to different
values after bootup.
To implement this customizability, we add a new
smpboot_update_cpumask_percpu_thread() API to the smpboot_thread
subsystem that lets us park or unpark "unwanted" threads.
And now that threads can be parked for long periods of time, we tweak the
/proc/<pid>/stat and /proc/<pid>/status code so parked threads aren't
reported as running, which is otherwise confusing.
This patch (of 3):
This change allows some cores to be excluded from running the
smp_hotplug_thread tasks. The following commit to update
kernel/watchdog.c to use this functionality is the motivating example, and
more information on the motivation is provided there.
A new smp_hotplug_thread field is introduced, "cpumask", which is cpumask
field managed by the smpboot subsystem that indicates whether or not the
given smp_hotplug_thread should run on that core; the cpumask is checked
when deciding whether to unpark the thread.
To limit the cpumask to less than cpu_possible, you must call
smpboot_update_cpumask_percpu_thread() after registering.
Signed-off-by: Chris Metcalf <cmetcalf@ezchip.com>
Cc: Don Zickus <dzickus@redhat.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Ulrich Obergfell <uobergfe@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Function smpboot_thread_schedule() is neither used nor defined,
so kill it.
Signed-off-by: Jiang Liu <jiang.liu@linux.intel.com>
Signed-off-by: Jiri Kosina <jkosina@suse.cz>
commit 14e568e78 (stop_machine: Use smpboot threads) introduced the
following regression:
Before this commit the stopper enabled bit was set in the online
notifier.
CPU0 CPU1
cpu_up
cpu online
hotplug_notifier(ONLINE)
stopper(CPU1)->enabled = true;
...
stop_machine()
The conversion to smpboot threads moved the enablement to the wakeup
path of the parked thread. The majority of users seem to have the
following working order:
CPU0 CPU1
cpu_up
cpu online
unpark_threads()
wakeup(stopper[CPU1])
....
stopper thread runs
stopper(CPU1)->enabled = true;
stop_machine()
But Konrad and Sander have observed:
CPU0 CPU1
cpu_up
cpu online
unpark_threads()
wakeup(stopper[CPU1])
....
stop_machine()
stopper thread runs
stopper(CPU1)->enabled = true;
Now the stop machinery kicks CPU0 into the stop loop, where it gets
stuck forever because the queue code saw stopper(CPU1)->enabled ==
false, so CPU0 waits for CPU1 to enter stomp_machine, but the CPU1
stopper work got discarded due to enabled == false.
Add a pre_unpark function to the smpboot thread descriptor and call it
before waking the thread.
This fixes the problem at hand, but the stop_machine code should be
more robust. The stopper->enabled flag smells fishy at best.
Thanks to Konrad for going through a loop of debug patches and
providing the information to decode this issue.
Reported-and-tested-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Reported-and-tested-by: Sander Eikelenboom <linux@eikelenboom.it>
Cc: Srivatsa S. Bhat <srivatsa.bhat@linux.vnet.ibm.com>
Cc: Rusty Russell <rusty@rustcorp.com.au>
Link: http://lkml.kernel.org/r/alpine.LFD.2.02.1302261843240.22263@ionos
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
The stop machine threads are still killed when a cpu goes offline. The
reason is that the thread is used to bring the cpu down, so it can't
be parked along with the other per cpu threads.
Allow a per cpu thread to be excluded from automatic parking, so it
can park itself once it's done
Add a create callback function as well.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rusty Russell <rusty@rustcorp.com.au>
Cc: Paul McKenney <paulmck@linux.vnet.ibm.com>
Cc: Srivatsa S. Bhat <srivatsa.bhat@linux.vnet.ibm.com>
Cc: Arjan van de Veen <arjan@infradead.org>
Cc: Paul Turner <pjt@google.com>
Cc: Richard Weinberger <rw@linutronix.de>
Cc: Magnus Damm <magnus.damm@gmail.com>
Link: http://lkml.kernel.org/r/20130131120741.553993267@linutronix.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Provide a generic interface for setting up and tearing down percpu
threads.
On registration the threads for already online cpus are created and
started. On deregistration (modules) the threads are stoppped.
During hotplug operations the threads are created, started, parked and
unparked. The datastructure for registration provides a pointer to
percpu storage space and optional setup, cleanup, park, unpark
functions. These functions are called when the thread state changes.
Each implementation has to provide a function which is queried and
returns whether the thread should run and the thread function itself.
The core code handles all state transitions and avoids duplicated code
in the call sites.
[ paulmck: Preemption leak fix ]
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Reviewed-by: Srivatsa S. Bhat <srivatsa.bhat@linux.vnet.ibm.com>
Cc: Rusty Russell <rusty@rustcorp.com.au>
Reviewed-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Namhyung Kim <namhyung@kernel.org>
Link: http://lkml.kernel.org/r/20120716103948.352501068@linutronix.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>