But the kernel decided to call it "origin" instead. Fix most of the
sites.
Acked-by: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
There is no reason to pass the nr_pages_dirtied argument, because
nr_pages_dirtied value from the caller is unused in
balance_dirty_pages_ratelimited_nr().
Signed-off-by: Namjae Jeon <linkinjeon@gmail.com>
Signed-off-by: Vivek Trivedi <vtrivedi018@gmail.com>
Cc: Wu Fengguang <fengguang.wu@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Modify dqget to take struct kqid instead of a type and an identifier
pair.
Modify the callers of dqget in ocfs2 and dquot to take generate
a struct kqid so they can continue to call dqget. The conversion
to create struct kqid should all be the final conversions that
are needed in those code paths.
Cc: Jan Kara <jack@suse.cz>
Cc: Mark Fasheh <mfasheh@suse.com>
Cc: Joel Becker <jlbec@evilplan.org>
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
Protect ocfs2_page_mkwrite() and ocfs2_file_aio_write() using the new freeze
protection. We also protect several ioctl entry points which were missing the
protection. Finally, we add freeze protection to the journaling mechanism so
that iput() of unlinked inode cannot modify a frozen filesystem.
CC: Mark Fasheh <mfasheh@suse.com>
CC: Joel Becker <jlbec@evilplan.org>
CC: ocfs2-devel@oss.oracle.com
Acked-by: Joel Becker <jlbec@evilplan.org>
Signed-off-by: Jan Kara <jack@suse.cz>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
As ocfs2_fallocate() will invoke __ocfs2_change_file_space() with a NULL
as the first parameter (file), it may trigger a NULL pointer dereferrence
due to a missing check.
Addresses http://bugs.launchpad.net/bugs/1006012
Signed-off-by: Luis Henriques <luis.henriques@canonical.com>
Reported-by: Bret Towe <magnade@gmail.com>
Tested-by: Bret Towe <magnade@gmail.com>
Cc: Sunil Mushran <sunil.mushran@oracle.com>
Acked-by: Joel Becker <jlbec@evilplan.org>
Acked-by: Mark Fasheh <mfasheh@suse.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The unaligned io flag is set in the kiocb when an unaligned
dio is issued, it should be cleared even when the dio fails,
or it may affect the following io which are using the same
kiocb.
Signed-off-by: Junxiao Bi <junxiao.bi@oracle.com>
Cc: stable@vger.kernel.org
Signed-off-by: Joel Becker <jlbec@evilplan.org>
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jikos/trivial: (53 commits)
Kconfig: acpi: Fix typo in comment.
misc latin1 to utf8 conversions
devres: Fix a typo in devm_kfree comment
btrfs: free-space-cache.c: remove extra semicolon.
fat: Spelling s/obsolate/obsolete/g
SCSI, pmcraid: Fix spelling error in a pmcraid_err() call
tools/power turbostat: update fields in manpage
mac80211: drop spelling fix
types.h: fix comment spelling for 'architectures'
typo fixes: aera -> area, exntension -> extension
devices.txt: Fix typo of 'VMware'.
sis900: Fix enum typo 'sis900_rx_bufer_status'
decompress_bunzip2: remove invalid vi modeline
treewide: Fix comment and string typo 'bufer'
hyper-v: Update MAINTAINERS
treewide: Fix typos in various parts of the kernel, and fix some comments.
clockevents: drop unknown Kconfig symbol GENERIC_CLOCKEVENTS_MIGR
gpio: Kconfig: drop unknown symbol 'CS5535_GPIO'
leds: Kconfig: Fix typo 'D2NET_V2'
sound: Kconfig: drop unknown symbol ARCH_CLPS7500
...
Fix up trivial conflicts in arch/powerpc/platforms/40x/Kconfig (some new
kconfig additions, close to removed commented-out old ones)
The below patch fixes some typos in various parts of the kernel, as well as fixes some comments.
Please let me know if I missed anything, and I will try to get it changed and resent.
Signed-off-by: Justin P. Mattock <justinmattock@gmail.com>
Acked-by: Randy Dunlap <rdunlap@xenotime.net>
Signed-off-by: Jiri Kosina <jkosina@suse.cz>
* 'upstream-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jlbec/ocfs2: (31 commits)
ocfs2: avoid unaligned access to dqc_bitmap
ocfs2: Use filemap_write_and_wait() instead of write_inode_now()
ocfs2: honor O_(D)SYNC flag in fallocate
ocfs2: Add a missing journal credit in ocfs2_link_credits() -v2
ocfs2: send correct UUID to cleancache initialization
ocfs2: Commit transactions in error cases -v2
ocfs2: make direntry invalid when deleting it
fs/ocfs2/dlm/dlmlock.c: free kmem_cache_zalloc'd data using kmem_cache_free
ocfs2: Avoid livelock in ocfs2_readpage()
ocfs2: serialize unaligned aio
ocfs2: Implement llseek()
ocfs2: Fix ocfs2_page_mkwrite()
ocfs2: Add comment about orphan scanning
ocfs2: Clean up messages in the fs
ocfs2/cluster: Cluster up now includes network connections too
ocfs2/cluster: Add new function o2net_fill_node_map()
ocfs2/cluster: Fix output in file elapsed_time_in_ms
ocfs2/dlm: dlmlock_remote() needs to account for remastery
ocfs2/dlm: Take inflight reference count for remotely mastered resources too
ocfs2/dlm: Cleanup dlm_wait_for_node_death() and dlm_wait_for_node_recovery()
...
We need to sync the transaction which updates i_size if the file is marked
as needing sync semantics.
Signed-off-by: Mark Fasheh <mfasheh@suse.de>
Signed-off-by: Joel Becker <jlbec@evilplan.org>
Fix a corruption that can happen when we have (two or more) outstanding
aio's to an overlapping unaligned region. Ext4
(e9e3bcecf4) and xfs recently had to fix
similar issues.
In our case what happens is that we can have an outstanding aio on a region
and if a write comes in with some bytes overlapping the original aio we may
decide to read that region into a page before continuing (typically because
of buffered-io fallback). Since we have no ordering guarantees with the
aio, we can read stale or bad data into the page and then write it back out.
If the i/o is page and block aligned, then we avoid this issue as there
won't be any need to read data from disk.
I took the same approach as Eric in the ext4 patch and introduced some
serialization of unaligned async direct i/o. I don't expect this to have an
effect on the most common cases of AIO. Unaligned aio will be slower
though, but that's far more acceptable than data corruption.
Signed-off-by: Mark Fasheh <mfasheh@suse.com>
Signed-off-by: Joel Becker <jlbec@evilplan.org>
ocfs2 implements its own llseek() to provide the SEEK_HOLE/SEEK_DATA
functionality.
SEEK_HOLE sets the file pointer to the start of either a hole or an unwritten
(preallocated) extent, that is greater than or equal to the supplied offset.
SEEK_DATA sets the file pointer to the start of an allocated extent (not
unwritten) that is greater than or equal to the supplied offset.
If the supplied offset is on a desired region, then the file pointer is set
to it. Offsets greater than or equal to the file size return -ENXIO.
Unwritten (preallocated) extents are considered holes because the file system
treats reads to such regions in the same way as it does to holes.
Signed-off-by: Sunil Mushran <sunil.mushran@oracle.com>
Replace the ->check_acl method with a ->get_acl method that simply reads an
ACL from disk after having a cache miss. This means we can replace the ACL
checking boilerplate code with a single implementation in namei.c.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Btrfs needs to be able to control how filemap_write_and_wait_range() is called
in fsync to make it less of a painful operation, so push down taking i_mutex and
the calling of filemap_write_and_wait() down into the ->fsync() handlers. Some
file systems can drop taking the i_mutex altogether it seems, like ext3 and
ocfs2. For correctness sake I just pushed everything down in all cases to make
sure that we keep the current behavior the same for everybody, and then each
individual fs maintainer can make up their mind about what to do from there.
Thanks,
Acked-by: Jan Kara <jack@suse.cz>
Signed-off-by: Josef Bacik <josef@redhat.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Maintain i_dio_count for all filesystems, not just those using DIO_LOCKING.
This these filesystems to also protect truncate against direct I/O requests
by using common code. Right now the only non-DIO_LOCKING filesystem that
appears to do so is XFS, which uses an opencoded variant of the i_dio_count
scheme.
Behaviour doesn't change for filesystems never calling inode_dio_wait.
For ext4 behaviour changes when using the dioread_nonlock option, which
previously was missing any protection between truncate and direct I/O reads.
For ocfs2 that handcrafted i_dio_count manipulations are replaced with
the common code now enable.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Let filesystems handle waiting for direct I/O requests themselves instead
of doing it beforehand. This means filesystem-specific locks to prevent
new dio referenes from appearing can be held. This is important to allow
generalizing i_dio_count to non-DIO_LOCKING filesystems.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
i_alloc_sem is a rather special rw_semaphore. It's the last one that may
be released by a non-owner, and it's write side is always mirrored by
real exclusion. It's intended use it to wait for all pending direct I/O
requests to finish before starting a truncate.
Replace it with a hand-grown construct:
- exclusion for truncates is already guaranteed by i_mutex, so it can
simply fall way
- the reader side is replaced by an i_dio_count member in struct inode
that counts the number of pending direct I/O requests. Truncate can't
proceed as long as it's non-zero
- when i_dio_count reaches non-zero we wake up a pending truncate using
wake_up_bit on a new bit in i_flags
- new references to i_dio_count can't appear while we are waiting for
it to read zero because the direct I/O count always needs i_mutex
(or an equivalent like XFS's i_iolock) for starting a new operation.
This scheme is much simpler, and saves the space of a spinlock_t and a
struct list_head in struct inode (typically 160 bits on a non-debug 64-bit
system).
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
its value depends only on inode and does not change; we might as
well store it in ->i_op->check_acl and be done with that.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Oops, local-mounted of 'ocfs2_fops_no_plocks' is just missing the support
of unwritten_extents/punching-hole due to no func pointer was given correctly
to '.follocate' field.
Signed-off-by: Tristan Ye <tristan.ye@oracle.com>
In the case of removing a partial extent record which covers a hole, current
punching-hole logic will try to remove more than the length of whole extent
record, which leads to the failure of following assert(fs/ocfs2/alloc.c):
5507 BUG_ON(cpos < le32_to_cpu(rec->e_cpos) || trunc_range > rec_range);
This patch tries to skip existing hole at the last attempt of removing a partial
extent record, what's more, it also adds some necessary comments for better
understanding of punching-hole codes.
Signed-off-by: Tristan Ye <tristan.ye@oracle.com>
Signed-off-by: Joel Becker <jlbec@evilplan.org>
mlog_exit is used to record the exit status of a function.
But because it is added in so many functions, if we enable it,
the system logs get filled up quickly and cause too much I/O.
So actually no one can open it for a production system or even
for a test.
This patch just try to remove it or change it. So:
1. if all the error paths already use mlog_errno, it is just removed.
Otherwise, it will be replaced by mlog_errno.
2. if it is used to print some return value, it is replaced with
mlog(0,...).
mlog_exit_ptr is changed to mlog(0.
All those mlog(0,...) will be replaced with trace events later.
Signed-off-by: Tao Ma <boyu.mt@taobao.com>
ENTRY is used to record the entry of a function.
But because it is added in so many functions, if we enable it,
the system logs get filled up quickly and cause too much I/O.
So actually no one can open it for a production system or even
for a test.
So for mlog_entry_void, we just remove it.
for mlog_entry(...), we replace it with mlog(0,...), and they
will be replace by trace event later.
Signed-off-by: Tao Ma <boyu.mt@taobao.com>
Currently all filesystems except XFS implement fallocate asynchronously,
while XFS forced a commit. Both of these are suboptimal - in case of O_SYNC
I/O we really want our allocation on disk, especially for the !KEEP_SIZE
case where we actually grow the file with user-visible zeroes. On the
other hand always commiting the transaction is a bad idea for fast-path
uses of fallocate like for example in recent Samba versions. Given
that block allocation is a data plane operation anyway change it from
an inode operation to a file operation so that we have the file structure
available that lets us check for O_SYNC.
This also includes moving the code around for a few of the filesystems,
and remove the already unnedded S_ISDIR checks given that we only wire
up fallocate for regular files.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Instead of various home grown checks that might need updates for new
flags just check for any bit outside the mask of the features supported
by the filesystem. This makes the check future proof for any newly
added flag.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
This patch just makes ocfs2 use its UNRESERVP ioctl when we get the hole punch
flag in fallocate. I didn't test it, but it seems simple enough. Thanks,
Acked-by: Jan Kara <jack@suse.cz>
Acked-by: Joel Becker <joel.becker@oracle.com>
Signed-off-by: Josef Bacik <josef@redhat.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Due to newly-introduced 'coherency=full' O_DIRECT writes also takes the EX
rw_lock like buffered writes did(rw_level == 1), it turns out messing the
usage of 'level' in ocfs2_dio_end_io() up, which caused i_alloc_sem being
failed to get up_read'd correctly.
This patch tries to teach ocfs2_dio_end_io to understand well on all locking
stuffs by explicitly introducing a new bit for i_alloc_sem in iocb's private
data, just like what we did for rw_lock.
Signed-off-by: Tristan Ye <tristan.ye@oracle.com>
Signed-off-by: Joel Becker <joel.becker@oracle.com>
__block_write_begin and block_prepare_write are identical except for slightly
different calling conventions. Convert all callers to the __block_write_begin
calling conventions and drop block_prepare_write.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Commit dd3932eddf ("block: remove BLKDEV_IFL_WAIT") had removed the
flag argument to blkdev_issue_flush(), but the ocfs2 merge brought in a
new one. It didn't cause a merge conflict, so the merges silently
worked out fine, but the result didn't actually compile.
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently, the default behavior of O_DIRECT writes was allowing
concurrent writing among nodes to the same file, with no cluster
coherency guaranteed (no EX lock held). This can leave stale data in
the cache for buffered reads on other nodes.
The new mount option introduce a chance to choose two different
behaviors for O_DIRECT writes:
* coherency=full, as the default value, will disallow
concurrent O_DIRECT writes by taking
EX locks.
* coherency=buffered, allow concurrent O_DIRECT writes
without EX lock among nodes, which
gains high performance at risk of
getting stale data on other nodes.
Signed-off-by: Tristan Ye <tristan.ye@oracle.com>
Signed-off-by: Joel Becker <joel.becker@oracle.com>
When CONFIG_OCFS2_DEBUG_MASKLOG is undefined, we don't use the dentry
variable in ocfs2_sync_file(). Let's just move all access to the dentry
inside the logging call.
Signed-off-by: Joel Becker <joel.becker@oracle.com>
ocfs2_sync_inode() is used only from ocfs2_sync_file(). But all data has
already been written before calling ocfs2_sync_file() and ocfs2 doesn't use
inode's private_list for tracking metadata buffers thus sync_mapping_buffers()
is superfluous as well.
Signed-off-by: Jan Kara <jack@suse.cz>
Acked-by: Mark Fasheh <mfasheh@suse.com>
Signed-off-by: Joel Becker <joel.becker@oracle.com>
In ocfs2, actually we don't allow any direct write pass i_size,
see the function ocfs2_prepare_inode_for_write. So we don't
need the bogus simple_setsize.
Signed-off-by: Tao Ma <tao.ma@oracle.com>
Signed-off-by: Joel Becker <joel.becker@oracle.com>
The patch is to fix the regression bug brought from commit 6b933c8...( 'ocfs2:
Avoid direct write if we fall back to buffered I/O'):
http://oss.oracle.com/bugzilla/show_bug.cgi?id=1285
The commit 6b933c8e6f changed __generic_file_aio_write
to generic_file_buffered_write, which didn't call filemap_{write,wait}_range to flush
the pagecaches when we were falling O_DIRECT writes back to buffered ones. it did hurt
the O_DIRECT semantics somehow in extented odirect writes.
This patch tries to guarantee O_DIRECT writes of 'fall back to buffered' to be correctly
flushed.
Signed-off-by: Tristan Ye <tristan.ye@oracle.com>
Signed-off-by: Tao Ma <tao.ma@oracle.com>
We cannot call grab_cache_page() when holding filesystem locks or with
a transaction started as grab_cache_page() calls page allocation with
GFP_KERNEL flag and thus page reclaim can recurse back into the filesystem
causing deadlocks or various assertion failures. We have to use
find_or_create_page() instead and pass it GFP_NOFS as we do with other
allocations.
Acked-by: Mark Fasheh <mfasheh@suse.com>
Signed-off-by: Jan Kara <jack@suse.cz>
Signed-off-by: Tao Ma <tao.ma@oracle.com>
When 'barrier' mount option is specified, we have to issue a cache flush
during fdatasync(2). We have to do this even if inode doesn't have
I_DIRTY_DATASYNC set because we still have to get written *data* to disk so
that they are not lost in case of crash.
Acked-by: Tao Ma <tao.ma@oracle.com>
Signed-off-by: Jan Kara <jack@suse.cz>
Singed-off-by: Tao Ma <tao.ma@oracle.com>
struct file * has file_ra_state to store the readahead state
and data. So pass this to ocfs2_prepare_inode_for_write. so
that it can be used in ocfs2_refcount_cow.
Signed-off-by: Tao Ma <tao.ma@oracle.com>
Make sure we check the truncate constraints early on in ->setattr by adding
those checks to inode_change_ok. Also clean up and document inode_change_ok
to make this obvious.
As a fallout we don't have to call inode_newsize_ok from simple_setsize and
simplify it down to a truncate_setsize which doesn't return an error. This
simplifies a lot of setattr implementations and means we use truncate_setsize
almost everywhere. Get rid of fat_setsize now that it's trivial and mark
ext2_setsize static to make the calling convention obvious.
Keep the inode_newsize_ok in vmtruncate for now as all callers need an
audit for its removal anyway.
Note: setattr code in ecryptfs doesn't call inode_change_ok at all and
needs a deeper audit, but that is left for later.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Replace inode_setattr with opencoded variants of it in all callers. This
moves the remaining call to vmtruncate into the filesystem methods where it
can be replaced with the proper truncate sequence.
In a few cases it was obvious that we would never end up calling vmtruncate
so it was left out in the opencoded variant:
spufs: explicitly checks for ATTR_SIZE earlier
btrfs,hugetlbfs,logfs,dlmfs: explicitly clears ATTR_SIZE earlier
ufs: contains an opencoded simple_seattr + truncate that sets the filesize just above
In addition to that ncpfs called inode_setattr with handcrafted iattrs,
which allowed to trim down the opencoded variant.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
ocfs2_write_zero_page() has a loop that won't ever be skipped, but gcc
doesn't know that. Set ret=0 just to make gcc happy.
Signed-off-by: Joel Becker <joel.becker@oracle.com>
ocfs2's allocation unit is the cluster. This can be larger than a block
or even a memory page. This means that a file may have many blocks in
its last extent that are beyond the block containing i_size. There also
may be more unwritten extents after that.
When ocfs2 grows a file, it zeros the entire cluster in order to ensure
future i_size growth will see cleared blocks. Unfortunately,
block_write_full_page() drops the pages past i_size. This means that
ocfs2 is actually leaking garbage data into the tail end of that last
cluster. This is a bug.
We adjust ocfs2_write_begin_nolock() and ocfs2_extend_file() to detect
when a write or truncate is past i_size. They will use
ocfs2_zero_extend() to ensure the data is properly zeroed.
Older versions of ocfs2_zero_extend() simply zeroed every block between
i_size and the zeroing position. This presumes three things:
1) There is allocation for all of these blocks.
2) The extents are not unwritten.
3) The extents are not refcounted.
(1) and (2) hold true for non-sparse filesystems, which used to be the
only users of ocfs2_zero_extend(). (3) is another bug.
Since we're now using ocfs2_zero_extend() for sparse filesystems as
well, we teach ocfs2_zero_extend() to check every extent between
i_size and the zeroing position. If the extent is unwritten, it is
ignored. If it is refcounted, it is CoWed. Then it is zeroed.
Signed-off-by: Joel Becker <joel.becker@oracle.com>
Cc: stable@kernel.org
ocfs2_zero_extend() does its zeroing block by block, but it calls a
function named ocfs2_write_zero_page(). Let's have
ocfs2_write_zero_page() handle the page level. From
ocfs2_zero_extend()'s perspective, it is now page-at-a-time.
Signed-off-by: Joel Becker <joel.becker@oracle.com>
Cc: stable@kernel.org
Lots of filesystems calls vmtruncate despite not implementing the old
->truncate method. Switch them to use simple_setsize and add some
comments about the truncate code where it seems fitting.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Nick Piggin <npiggin@suse.de>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
dquot_transfer() acquires own references to dquots via dqget(). Thus it waits
for dq_lock which creates a lock inversion because dq_lock ranks above
transaction start but transaction is already started in ocfs2_setattr(). Fix
the problem by passing own references directly to __dquot_transfer.
Acked-by: Joel Becker <Joel.Becker@oracle.com>
Signed-off-by: Jan Kara <jack@suse.cz>
Quota must being initialized if size or uid/git changes requested.
But initialization performed in two different places:
in case of i_size file system is responsible for dquot init
, but in case of uid/gid init will be called internally in
dquot_transfer().
This ambiguity makes code harder to understand.
Let's move this logic to one common helper function.
Signed-off-by: Dmitry Monakhov <dmonakhov@openvz.org>
Signed-off-by: Jan Kara <jack@suse.cz>
* 'upstream-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jlbec/ocfs2: (47 commits)
ocfs2: Silence a gcc warning.
ocfs2: Don't retry xattr set in case value extension fails.
ocfs2:dlm: avoid dlm->ast_lock lockres->spinlock dependency break
ocfs2: Reset xattr value size after xa_cleanup_value_truncate().
fs/ocfs2/dlm: Use kstrdup
fs/ocfs2/dlm: Drop memory allocation cast
Ocfs2: Optimize punching-hole code.
Ocfs2: Make ocfs2_find_cpos_for_left_leaf() public.
Ocfs2: Fix hole punching to correctly do CoW during cluster zeroing.
Ocfs2: Optimize ocfs2 truncate to use ocfs2_remove_btree_range() instead.
ocfs2: Block signals for mkdir/link/symlink/O_CREAT.
ocfs2: Wrap signal blocking in void functions.
ocfs2/dlm: Increase o2dlm lockres hash size
ocfs2: Make ocfs2_extend_trans() really extend.
ocfs2/trivial: Code cleanup for allocation reservation.
ocfs2: make ocfs2_adjust_resv_from_alloc simple.
ocfs2: Make nointr a default mount option
ocfs2/dlm: Make o2dlm domain join/leave messages KERN_NOTICE
o2net: log socket state changes
ocfs2: print node # when tcp fails
...
This patch simplifies the logic of handling existing holes and
skipping extent blocks and removes some confusing comments.
The patch survived the fill_verify_holes testcase in ocfs2-test.
It also passed my manual sanity check and stress tests with enormous
extent records.
Currently punching a hole on a file with 3+ extent tree depth was
really a performance disaster. It can even take several hours,
though we may not hit this in real life with such a huge extent
number.
One simple way to improve the performance is quite straightforward.
From the logic of truncate, we can punch the hole from hole_end to
hole_start, which reduces the overhead of btree operations in a
significant way, such as tree rotation and moving.
Following is the testing result when punching hole from 0 to file end
in bytes, on a 1G file, 1G file consists of 256k extent records, each record
cover 4k data(just one cluster, clustersize is 4k):
===========================================================================
* Original punching-hole mechanism:
===========================================================================
I waited 1 hour for its completion, unfortunately it's still ongoing.
===========================================================================
* Patched punching-hode mechanism:
===========================================================================
real 0m2.518s
user 0m0.000s
sys 0m2.445s
That means we've gained up to 1000 times improvement on performance in this
case, whee! It's fairly cool. and it looks like that performance gain will
be raising when extent records grow.
The patch was based on my former 2 patches, which were about truncating
codes optimization and fixup to handle CoW on punching hole.
Signed-off-by: Tristan Ye <tristan.ye@oracle.com>
Acked-by: Mark Fasheh <mfasheh@suse.com>
Signed-off-by: Joel Becker <joel.becker@oracle.com>
Based on the previous patch of optimizing truncate, the bugfix for
refcount trees when punching holes can be fairly easy
and straightforward since most of work we should take into account for
refcounting have been completed already in ocfs2_remove_btree_range().
This patch performs CoW for refcounted extents when a hole being punched
whose start or end offset were in the middle of a cluster, which means
partial zeroing of the cluster will be performed soon.
The patch has been tested fixing the following bug:
http://oss.oracle.com/bugzilla/show_bug.cgi?id=1216
Signed-off-by: Tristan Ye <tristan.ye@oracle.com>
Acked-by: Mark Fasheh <mfasheh@suse.com>
Signed-off-by: Joel Becker <joel.becker@oracle.com>
Truncate is just a special case of punching holes(from new i_size to
end), we therefore could take advantage of the existing
ocfs2_remove_btree_range() to reduce the comlexity and redundancy in
alloc.c. The goal here is to make truncate more generic and
straightforward.
Several functions only used by ocfs2_commit_truncate() will smiply be
removed.
ocfs2_remove_btree_range() was originally used by the hole punching
code, which didn't take refcount trees into account (definitely a bug).
We therefore need to change that func a bit to handle refcount trees.
It must take the refcount lock, calculate and reserve blocks for
refcount tree changes, and decrease refcounts at the end. We replace
ocfs2_lock_allocators() here by adding a new func
ocfs2_reserve_blocks_for_rec_trunc() which accepts some extra blocks to
reserve. This will not hurt any other code using
ocfs2_remove_btree_range() (such as dir truncate and hole punching).
I merged the following steps into one patch since they may be
logically doing one thing, though I know it looks a little bit fat
to review.
1). Remove redundant code used by ocfs2_commit_truncate(), since we're
moving to ocfs2_remove_btree_range anyway.
2). Add a new func ocfs2_reserve_blocks_for_rec_trunc() for purpose of
accepting some extra blocks to reserve.
3). Change ocfs2_prepare_refcount_change_for_del() a bit to fit our
needs. It's safe to do this since it's only being called by
truncate.
4). Change ocfs2_remove_btree_range() a bit to take refcount case into
account.
5). Finally, we change ocfs2_commit_truncate() to call
ocfs2_remove_btree_range() in a proper way.
The patch has been tested normally for sanity check, stress tests
with heavier workload will be expected.
Based on this patch, fixing the punching holes bug will be fairly easy.
Signed-off-by: Tristan Ye <tristan.ye@oracle.com>
Acked-by: Mark Fasheh <mfasheh@suse.com>
Signed-off-by: Joel Becker <joel.becker@oracle.com>
jbd[2]_journal_dirty_metadata() only returns 0. It's been returning 0
since before the kernel moved to git. There is no point in checking
this error.
ocfs2_journal_dirty() has been faithfully returning the status since the
beginning. All over ocfs2, we have blocks of code checking this can't
fail status. In the past few years, we've tried to avoid adding these
checks, because they are pointless. But anyone who looks at our code
assumes they are needed.
Finally, ocfs2_journal_dirty() is made a void function. All error
checking is removed from other files. We'll BUG_ON() the status of
jbd2_journal_dirty_metadata() just in case they change it someday. They
won't.
Signed-off-by: Joel Becker <joel.becker@oracle.com>
when we fall back to buffered write from direct write, we call
__generic_file_aio_write() but that will end up doing direct write
even we are only prepared to do buffered write because the file
has the O_DIRECT flag set. This is a fix for
https://bugzilla.novell.com/show_bug.cgi?id=591039
revised with Joel's comments.
Signed-off-by: Li Dongyang <lidongyang@novell.com>
Acked-by: Mark Fasheh <mfasheh@suse.com>
Signed-off-by: Joel Becker <joel.becker@oracle.com>
In __ocfs2_extend_allocation, we will restart our file extension
if ((!status) && restart_func). But there is a bug that the
status is still left as -EGAIN. This is really an old bug,
but it is masked by the return value of ocfs2_journal_dirty.
So it show up when we make ocfs2_journal_dirty void.
Signed-off-by: Tao Ma <tao.ma@oracle.com>
Signed-off-by: Joel Becker <joel.becker@oracle.com>
This patch fixes another compiling warning in ocfs2_file_aio_write() like this,
fs/ocfs2/file.c: In function ‘ocfs2_file_aio_write’:
fs/ocfs2/file.c:2026: warning: suggest parentheses around ‘&&’ within ‘||’
As Joel suggested, '!ret' is unary, this version removes the wrap from '!ret'.
Signed-off-by: Coly Li <coly.li@suse.de>
Signed-off-by: Joel Becker <joel.becker@oracle.com>
* 'for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jack/linux-fs-2.6: (33 commits)
quota: stop using QUOTA_OK / NO_QUOTA
dquot: cleanup dquot initialize routine
dquot: move dquot initialization responsibility into the filesystem
dquot: cleanup dquot drop routine
dquot: move dquot drop responsibility into the filesystem
dquot: cleanup dquot transfer routine
dquot: move dquot transfer responsibility into the filesystem
dquot: cleanup inode allocation / freeing routines
dquot: cleanup space allocation / freeing routines
ext3: add writepage sanity checks
ext3: Truncate allocated blocks if direct IO write fails to update i_size
quota: Properly invalidate caches even for filesystems with blocksize < pagesize
quota: generalize quota transfer interface
quota: sb_quota state flags cleanup
jbd: Delay discarding buffers in journal_unmap_buffer
ext3: quota_write cross block boundary behaviour
quota: drop permission checks from xfs_fs_set_xstate/xfs_fs_set_xquota
quota: split out compat_sys_quotactl support from quota.c
quota: split out netlink notification support from quota.c
quota: remove invalid optimization from quota_sync_all
...
Fixed trivial conflicts in fs/namei.c and fs/ufs/inode.c
Get rid of the initialize dquot operation - it is now always called from
the filesystem and if a filesystem really needs it's own (which none
currently does) it can just call into it's own routine directly.
Rename the now static low-level dquot_initialize helper to __dquot_initialize
and vfs_dq_init to dquot_initialize to have a consistent namespace.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jan Kara <jack@suse.cz>
Currently various places in the VFS call vfs_dq_init directly. This means
we tie the quota code into the VFS. Get rid of that and make the
filesystem responsible for the initialization. For most metadata operations
this is a straight forward move into the methods, but for truncate and
open it's a bit more complicated.
For truncate we currently only call vfs_dq_init for the sys_truncate case
because open already takes care of it for ftruncate and open(O_TRUNC) - the
new code causes an additional vfs_dq_init for those which is harmless.
For open the initialization is moved from do_filp_open into the open method,
which means it happens slightly earlier now, and only for regular files.
The latter is fine because we don't need to initialize it for operations
on special files, and we already do it as part of the namespace operations
for directories.
Add a dquot_file_open helper that filesystems that support generic quotas
can use to fill in ->open.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jan Kara <jack@suse.cz>
Get rid of the transfer dquot operation - it is now always called from
the filesystem and if a filesystem really needs it's own (which none
currently does) it can just call into it's own routine directly.
Rename the now static low-level dquot_transfer helper to __dquot_transfer
and vfs_dq_transfer to dquot_transfer to have a consistent namespace,
and make the new dquot_transfer return a normal negative errno value
which all callers expect.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jan Kara <jack@suse.cz>
Get rid of the alloc_space, free_space, reserve_space, claim_space and
release_rsv dquot operations - they are always called from the filesystem
and if a filesystem really needs their own (which none currently does)
it can just call into it's own routine directly.
Move shared logic into the common __dquot_alloc_space,
dquot_claim_space_nodirty and __dquot_free_space low-level methods,
and rationalize the wrappers around it to move as much as possible
code into the common block for CONFIG_QUOTA vs not. Also rename
all these helpers to be named dquot_* instead of vfs_dq_*.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jan Kara <jack@suse.cz>
This patch makes ocfs2 send SIGXFSZ if new file size exceeds the rlimit.
Processes may get SIGXFSZ on one node (in the cluster) while others will
not on another if file size limits are different on the two nodes.
Signed-off-by: Wengang Wang <wen.gang.wang@oracle.com>
Signed-off-by: Joel Becker <joel.becker@oracle.com>
This patch fixes a compiling warning in ocfs2_file_aio_write().
Signed-off-by: Coly Li <coly.li@suse.de>
Signed-off-by: Joel Becker <joel.becker@oracle.com>
When ocfs2 has to do CoW for refcounted extents, we disable direct I/O
and go through the buffered I/O path. This makes the combined check
easier to read.
Signed-off-by: Wengang Wang <wen.gang.wang@oracle.com>
Signed-off-by: Joel Becker <joel.becker@oracle.com>
In case of writing to a refcounted cluster with O_DIRECT,
we need to fall back to buffer write. And when it is finished,
we need to flush the page and the journal as we did for other
O_DIRECT writes.
This patch fix oss bug 1191.
http://oss.oracle.com/bugzilla/show_bug.cgi?id=1191
Signed-off-by: Tao Ma <tao.ma@oracle.com>
Tested-by: Tristan Ye <tristan.ye@oracle.com>
Signed-off-by: Joel Becker <joel.becker@oracle.com>
While Linux provided an O_SYNC flag basically since day 1, it took until
Linux 2.4.0-test12pre2 to actually get it implemented for filesystems,
since that day we had generic_osync_around with only minor changes and the
great "For now, when the user asks for O_SYNC, we'll actually give
O_DSYNC" comment. This patch intends to actually give us real O_SYNC
semantics in addition to the O_DSYNC semantics. After Jan's O_SYNC
patches which are required before this patch it's actually surprisingly
simple, we just need to figure out when to set the datasync flag to
vfs_fsync_range and when not.
This patch renames the existing O_SYNC flag to O_DSYNC while keeping it's
numerical value to keep binary compatibility, and adds a new real O_SYNC
flag. To guarantee backwards compatiblity it is defined as expanding to
both the O_DSYNC and the new additional binary flag (__O_SYNC) to make
sure we are backwards-compatible when compiled against the new headers.
This also means that all places that don't care about the differences can
just check O_DSYNC and get the right behaviour for O_SYNC, too - only
places that actuall care need to check __O_SYNC in addition. Drivers and
network filesystems have been updated in a fail safe way to always do the
full sync magic if O_DSYNC is set. The few places setting O_SYNC for
lower layers are kept that way for now to stay failsafe.
We enforce that O_DSYNC is set when __O_SYNC is set early in the open path
to make sure we always get these sane options.
Note that parisc really screwed up their headers as they already define a
O_DSYNC that has always been a no-op. We try to repair it by using it for
the new O_DSYNC and redefinining O_SYNC to send both the traditional
O_SYNC numerical value _and_ the O_DSYNC one.
Cc: Richard Henderson <rth@twiddle.net>
Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru>
Cc: Grant Grundler <grundler@parisc-linux.org>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Andreas Dilger <adilger@sun.com>
Acked-by: Trond Myklebust <Trond.Myklebust@netapp.com>
Acked-by: Kyle McMartin <kyle@mcmartin.ca>
Acked-by: Ulrich Drepper <drepper@redhat.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Jan Kara <jack@suse.cz>
The old reflink fails to handle inodes with inline data and will oops
if it encounters them. This patch copies inline data to the new inode.
Extended attributes may still be refcounted.
Signed-off-by: Tao Ma <tao.ma@oracle.com>
Signed-off-by: Joel Becker <joel.becker@oracle.com>
Tested-by: Tristan Ye <tristan.ye@oracle.com>
* 'upstream-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jlbec/ocfs2: (85 commits)
ocfs2: Use buffer IO if we are appending a file.
ocfs2: add spinlock protection when dealing with lockres->purge.
dlmglue.c: add missed mlog lines
ocfs2: __ocfs2_abort() should not enable panic for local mounts
ocfs2: Add ioctl for reflink.
ocfs2: Enable refcount tree support.
ocfs2: Implement ocfs2_reflink.
ocfs2: Add preserve to reflink.
ocfs2: Create reflinked file in orphan dir.
ocfs2: Use proper parameter for some inode operation.
ocfs2: Make transaction extend more efficient.
ocfs2: Don't merge in 1st refcount ops of reflink.
ocfs2: Modify removing xattr process for refcount.
ocfs2: Add reflink support for xattr.
ocfs2: Create an xattr indexed block if needed.
ocfs2: Call refcount tree remove process properly.
ocfs2: Attach xattr clusters to refcount tree.
ocfs2: Abstract ocfs2 xattr tree extend rec iteration process.
ocfs2: Abstract the creation of xattr block.
ocfs2: Remove inode from ocfs2_xattr_bucket_get_name_value.
...
Now with xattr refcount support, we need to check whether
we have xattr refcounted before we remove the refcount tree.
Now the mechanism is:
1) Check whether i_clusters == 0, if no, exit.
2) check whether we have i_xattr_loc in dinode. if yes, exit.
2) Check whether we have inline xattr stored outside, if yes, exit.
4) Remove the tree.
Signed-off-by: Tao Ma <tao.ma@oracle.com>
When we truncate a file to a specific size which resides in a reflinked
cluster, we need to CoW it since ocfs2_zero_range_for_truncate will
zero the space after the size(just another type of write).
So we add a "max_cpos" in ocfs2_refcount_cow so that it will stop when
it hit the max cluster offset.
Signed-off-by: Tao Ma <tao.ma@oracle.com>
When we use mmap, we CoW the refcountd clusters in
ocfs2_write_begin_nolock. While for normal file
io(including directio), we do CoW in
ocfs2_prepare_inode_for_write.
Signed-off-by: Tao Ma <tao.ma@oracle.com>
Update ocfs2 specific splicing code to use generic syncing helper. The sync now
does not happen under rw_lock because generic_write_sync() acquires i_mutex
which ranks above rw_lock. That should not matter because standard fsync path
does not hold it either.
Acked-by: Joel Becker <Joel.Becker@oracle.com>
Acked-by: Mark Fasheh <mfasheh@suse.com>
CC: ocfs2-devel@oss.oracle.com
Signed-off-by: Jan Kara <jack@suse.cz>
Use the new helper. We have to submit data pages ourselves in case of O_SYNC
write because __generic_file_aio_write does not do it for us. OCFS2 developpers
might think about moving the sync out of i_mutex which seems to be easily
possible but that's out of scope of this patch.
CC: ocfs2-devel@oss.oracle.com
Acked-by: Joel Becker <joel.becker@oracle.com>
Signed-off-by: Jan Kara <jack@suse.cz>
With this commit, extent tree operations are divorced from inodes and
rely on ocfs2_caching_info. Phew!
Signed-off-by: Joel Becker <joel.becker@oracle.com>
The next step in divorcing metadata I/O management from struct inode is
to pass struct ocfs2_caching_info to the journal functions. Thus the
journal locks a metadata cache with the cache io_lock function. It also
can compare ci_last_trans and ci_created_trans directly.
This is a large patch because of all the places we change
ocfs2_journal_access..(handle, inode, ...) to
ocfs2_journal_access..(handle, INODE_CACHE(inode), ...).
Signed-off-by: Joel Becker <joel.becker@oracle.com>
generic_write_checks() expects count to be initialized to the size of
the write. Writes to files open with O_DIRECT|O_LARGEFILE write 0 bytes
because count is uninitialized.
Signed-off-by: Goldwyn Rodrigues <rgoldwyn@suse.de>
Signed-off-by: Joel Becker <joel.becker@oracle.com>
in ocfs2_file_aio_write(), log_exit() could don't log the value
which is really returned. this patch fixes it.
Signed-off-by: Wengang Wang <wen.gang.wang@oracle.com>
Signed-off-by: Joel Becker <joel.becker@oracle.com>
We should call ocfs2_inode_lock_atime instead of ocfs2_inode_lock
in ocfs2_file_splice_read like we do in ocfs2_file_aio_read so
that we can update atime in splice read if necessary.
Signed-off-by: Tao Ma <tao.ma@oracle.com>
Signed-off-by: Joel Becker <joel.becker@oracle.com>
In ocfs2, fdatasync and fsync are identical.
I think fdatasync should skip committing transaction when
inode->i_state is set just I_DIRTY_SYNC and this indicates
only atime or/and mtime updates.
Following patch improves fdatasync throughput.
#sysbench --num-threads=16 --max-requests=300000 --test=fileio
--file-block-size=4K --file-total-size=16G --file-test-mode=rndwr
--file-fsync-mode=fdatasync run
Results:
-2.6.30-rc8
Test execution summary:
total time: 107.1445s
total number of events: 119559
total time taken by event execution: 116.1050
per-request statistics:
min: 0.0000s
avg: 0.0010s
max: 0.1220s
approx. 95 percentile: 0.0016s
Threads fairness:
events (avg/stddev): 7472.4375/303.60
execution time (avg/stddev): 7.2566/0.64
-2.6.30-rc8-patched
Test execution summary:
total time: 86.8529s
total number of events: 300016
total time taken by event execution: 24.3077
per-request statistics:
min: 0.0000s
avg: 0.0001s
max: 0.0336s
approx. 95 percentile: 0.0001s
Threads fairness:
events (avg/stddev): 18751.0000/718.75
execution time (avg/stddev): 1.5192/0.05
Signed-off-by: Hisashi Hifumi <hifumi.hisashi@oss.ntt.co.jp>
Acked-by: Mark Fasheh <mfasheh@suse.com>
Signed-off-by: Joel Becker <joel.becker@oracle.com>
We called vfs_dq_transfer() with global quota file lock held. This can lead
to deadlocks as if vfs_dq_transfer() has to allocate new quota structure,
it calls ocfs2_dquot_acquire() which tries to get quota file lock again and
this can block if another node requested the lock in the mean time.
Since we have to call vfs_dq_transfer() with transaction already started
and quota file lock ranks above the transaction start, we cannot just rely
on ocfs2_dquot_acquire() or ocfs2_dquot_release() on getting the lock
if they need it. We fix the problem by acquiring pointers to all quota
structures needed by vfs_dq_transfer() already before calling the function.
By this we are sure that all quota structures are properly allocated and
they can be freed only after we drop references to them. Thus we don't need
quota file lock anywhere inside vfs_dq_transfer().
Signed-off-by: Jan Kara <jack@suse.cz>
Signed-off-by: Joel Becker <joel.becker@oracle.com>
Rearrange locking of i_mutex on destination and call to
ocfs2_rw_lock() so locks are only held while buffers are copied with
the pipe_to_file() actor, and not while waiting for more data on the
pipe.
Signed-off-by: Miklos Szeredi <mszeredi@suse.cz>
Signed-off-by: Jens Axboe <jens.axboe@oracle.com>
There's a possible deadlock in generic_file_splice_write(),
splice_from_pipe() and ocfs2_file_splice_write():
- task A calls generic_file_splice_write()
- this calls inode_double_lock(), which locks i_mutex on both
pipe->inode and target inode
- ordering depends on inode pointers, can happen that pipe->inode is
locked first
- __splice_from_pipe() needs more data, calls pipe_wait()
- this releases lock on pipe->inode, goes to interruptible sleep
- task B calls generic_file_splice_write(), similarly to the first
- this locks pipe->inode, then tries to lock inode, but that is
already held by task A
- task A is interrupted, it tries to lock pipe->inode, but fails, as
it is already held by task B
- ABBA deadlock
Fix this by explicitly ordering locks: the outer lock must be on
target inode and the inner lock (which is later unlocked and relocked)
must be on pipe->inode. This is OK, pipe inodes and target inodes
form two nonoverlapping sets, generic_file_splice_write() and friends
are not called with a target which is a pipe.
Signed-off-by: Miklos Szeredi <mszeredi@suse.cz>
Acked-by: Mark Fasheh <mfasheh@suse.com>
Acked-by: Jens Axboe <jens.axboe@oracle.com>
Cc: stable@kernel.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The per-metadata-type ocfs2_journal_access_*() functions hook up jbd2
commit triggers and allow us to compute metadata ecc right before the
buffers are written out. This commit provides ecc for inodes, extent
blocks, group descriptors, and quota blocks. It is not safe to use
extened attributes and metaecc at the same time yet.
The ocfs2_extent_tree and ocfs2_path abstractions in alloc.c both hide
the type of block at their root. Before, it didn't matter, but now the
root block must use the appropriate ocfs2_journal_access_*() function.
To keep this abstract, the structures now have a pointer to the matching
journal_access function and a wrapper call to call it.
A few places use naked ocfs2_write_block() calls instead of adding the
blocks to the journal. We make sure to calculate their checksum and ecc
before the write.
Since we pass around the journal_access functions. Let's typedef them
in ocfs2.h.
Signed-off-by: Joel Becker <joel.becker@oracle.com>
Signed-off-by: Mark Fasheh <mfasheh@suse.com>
Add quota calls for allocation and freeing of inodes and space, also update
estimates on number of needed credits for a transaction. Move out inode
allocation from ocfs2_mknod_locked() because vfs_dq_init() must be called
outside of a transaction.
Signed-off-by: Jan Kara <jack@suse.cz>
Signed-off-by: Mark Fasheh <mfasheh@suse.com>
For each quota type each node has local quota file. In this file it stores
changes users have made to disk usage via this node. Once in a while this
information is synced to global file (and thus with other nodes) so that
limits enforcement at least aproximately works.
Global quota files contain all the information about usage and limits. It's
mostly handled by the generic VFS code (which implements a trie of structures
inside a quota file). We only have to provide functions to convert structures
from on-disk format to in-memory one. We also have to provide wrappers for
various quota functions starting transactions and acquiring necessary cluster
locks before the actual IO is really started.
Signed-off-by: Jan Kara <jack@suse.cz>
Signed-off-by: Mark Fasheh <mfasheh@suse.com>
The ocfs2 code currently reads inodes off disk with a simple
ocfs2_read_block() call. Each place that does this has a different set
of sanity checks it performs. Some check only the signature. A couple
validate the block number (the block read vs di->i_blkno). A couple
others check for VALID_FL. Only one place validates i_fs_generation. A
couple check nothing. Even when an error is found, they don't all do
the same thing.
We wrap inode reading into ocfs2_read_inode_block(). This will validate
all the above fields, going readonly if they are invalid (they never
should be). ocfs2_read_inode_block_full() is provided for the places
that want to pass read_block flags. Every caller is passing a struct
inode with a valid ip_blkno, so we don't need a separate blkno argument
either.
We will remove the validation checks from the rest of the code in a
later commit, as they are no longer necessary.
Signed-off-by: Joel Becker <joel.becker@oracle.com>
Signed-off-by: Mark Fasheh <mfasheh@suse.com>
This function is used to update acl xattrs during file mode changes.
Signed-off-by: Tiger Yang <tiger.yang@oracle.com>
Signed-off-by: Mark Fasheh <mfasheh@suse.com>
This function is used to enhance permission checking with POSIX ACLs.
Signed-off-by: Tiger Yang <tiger.yang@oracle.com>
Signed-off-by: Mark Fasheh <mfasheh@suse.com>
This patch genericizes the high level handling of extent removal.
ocfs2_remove_btree_range() is nearly identical to
__ocfs2_remove_inode_range(), except that extent tree operations have been
used where necessary. We update ocfs2_remove_inode_range() to use the
generic helper. Now extent tree based structures have an easy way to
truncate ranges.
Signed-off-by: Mark Fasheh <mfasheh@suse.com>
Acked-by: Joel Becker <joel.becker@oracle.com>
Signed-off-by: Dmitri Monakhov <dmonakhov@openvz.org>
Cc: Jeff Moyer <jmoyer@redhat.com>
Cc: Mark Fasheh <mark.fasheh@oracle.com>
Cc: Joel Becker <Joel.Becker@oracle.com>
Cc: Nick Piggin <nickpiggin@yahoo.com.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Mark Fasheh <mfasheh@suse.com>
On failure, ocfs2_start_trans() returns values like ERR_PTR(-ENOMEM).
Thus checks for !handle are wrong. Fix them to use IS_ERR().
Signed-off-by: Jan Kara <jack@suse.cz>
Signed-off-by: Joel Becker <joel.becker@oracle.com>
Signed-off-by: Mark Fasheh <mfasheh@suse.com>
Nothing uses prepare_write or commit_write. Remove them from the tree
completely.
[akpm@linux-foundation.org: schedule simple_prepare_write() for unexporting]
Signed-off-by: Nick Piggin <npiggin@suse.de>
Cc: Christoph Hellwig <hch@lst.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
More than 30 callers of ocfs2_read_block() pass exactly OCFS2_BH_CACHED.
Only six pass a different flag set. Rather than have every caller care,
let's make ocfs2_read_block() take no flags and always do a cached read.
The remaining six places can call ocfs2_read_blocks() directly.
Signed-off-by: Joel Becker <joel.becker@oracle.com>
Signed-off-by: Mark Fasheh <mfasheh@suse.com>
Now that synchronous readers are using ocfs2_read_blocks_sync(), all
callers of ocfs2_read_blocks() are passing an inode. Use it
unconditionally. Since it's there, we don't need to pass the
ocfs2_super either.
Signed-off-by: Joel Becker <joel.becker@oracle.com>
Signed-off-by: Mark Fasheh <mfasheh@suse.com>
ocfs2 wants JBD2 for many reasons, not the least of which is that JBD is
limiting our maximum filesystem size.
It's a pretty trivial change. Most functions are just renamed. The
only functional change is moving to Jan's inode-based ordered data mode.
It's better, too.
Because JBD2 reads and writes JBD journals, this is compatible with any
existing filesystem. It can even interact with JBD-based ocfs2 as long
as the journal is formated for JBD.
We provide a compatibility option so that paranoid people can still use
JBD for the time being. This will go away shortly.
[ Moved call of ocfs2_begin_ordered_truncate() from ocfs2_delete_inode() to
ocfs2_truncate_for_delete(). --Mark ]
Signed-off-by: Joel Becker <joel.becker@oracle.com>
Signed-off-by: Mark Fasheh <mfasheh@suse.com>
The original get/put_extent_tree() functions held a reference on
et_root_bh. However, every single caller already has a safe reference,
making the get/put cycle irrelevant.
We change ocfs2_get_*_extent_tree() to ocfs2_init_*_extent_tree(). It
no longer gets a reference on et_root_bh. ocfs2_put_extent_tree() is
removed. Callers now have a simpler init+use pattern.
Signed-off-by: Joel Becker <joel.becker@oracle.com>
Signed-off-by: Mark Fasheh <mfasheh@suse.com>
We now have three different kinds of extent trees in ocfs2: inode data
(dinode), extended attributes (xattr_tree), and extended attribute
values (xattr_value). There is a nice abstraction for them,
ocfs2_extent_tree, but it is hidden in alloc.c. All the calling
functions have to pick amongst a varied API and pass in type bits and
often extraneous pointers.
A better way is to make ocfs2_extent_tree a first-class object.
Everyone converts their object to an ocfs2_extent_tree() via the
ocfs2_get_*_extent_tree() calls, then uses the ocfs2_extent_tree for all
tree calls to alloc.c.
This simplifies a lot of callers, making for readability. It also
provides an easy way to add additional extent tree types, as they only
need to be defined in alloc.c with a ocfs2_get_<new>_extent_tree()
function.
Signed-off-by: Joel Becker <joel.becker@oracle.com>
Signed-off-by: Mark Fasheh <mfasheh@suse.com>
This patch implements storing extended attributes both in inode or a single
external block. We only store EA's in-inode when blocksize > 512 or that
inode block has free space for it. When an EA's value is larger than 80
bytes, we will store the value via b-tree outside inode or block.
Signed-off-by: Tiger Yang <tiger.yang@oracle.com>
Signed-off-by: Mark Fasheh <mfasheh@suse.com>
Add some thin wrappers around ocfs2_insert_extent() for each of the 3
different btree types, ocfs2_inode_insert_extent(),
ocfs2_xattr_value_insert_extent() and ocfs2_xattr_tree_insert_extent(). The
last is for the xattr index btree, which will be used in a followup patch.
All the old callers in file.c etc will call ocfs2_dinode_insert_extent(),
while the other two handle the xattr issue. And the init of extent tree are
handled by these functions.
When storing xattr value which is too large, we will allocate some clusters
for it and here ocfs2_extent_list and ocfs2_extent_rec will also be used. In
order to re-use the b-tree operation code, a new parameter named "private"
is added into ocfs2_extent_tree and it is used to indicate the root of
ocfs2_exent_list. The reason is that we can't deduce the root from the
buffer_head now. It may be in an inode, an ocfs2_xattr_block or even worse,
in any place in an ocfs2_xattr_bucket.
Signed-off-by: Tao Ma <tao.ma@oracle.com>
Signed-off-by: Mark Fasheh <mfasheh@suse.com>
Factor out the non-inode specifics of ocfs2_do_extend_allocation() into a more generic
function, ocfs2_do_cluster_allocation(). ocfs2_do_extend_allocation calls
ocfs2_do_cluster_allocation() now, but the latter can be used for other
btree types as well.
Signed-off-by: Tao Ma <tao.ma@oracle.com>
Signed-off-by: Mark Fasheh <mfasheh@suse.com>
In the old extent tree operation, we take the hypothesis that we
are using the ocfs2_extent_list in ocfs2_dinode as the tree root.
As xattr will also use ocfs2_extent_list to store large value
for a xattr entry, we refactor the tree operation so that xattr
can use it directly.
The refactoring includes 4 steps:
1. Abstract set/get of last_eb_blk and update_clusters since they may
be stored in different location for dinode and xattr.
2. Add a new structure named ocfs2_extent_tree to indicate the
extent tree the operation will work on.
3. Remove all the use of fe_bh and di, use root_bh and root_el in
extent tree instead. So now all the fe_bh is replaced with
et->root_bh, el with root_el accordingly.
4. Make ocfs2_lock_allocators generic. Now it is limited to be only used
in file extend allocation. But the whole function is useful when we want
to store large EAs.
Note: This patch doesn't touch ocfs2_commit_truncate() since it is not used
for anything other than truncate inode data btrees.
Signed-off-by: Tao Ma <tao.ma@oracle.com>
Signed-off-by: Mark Fasheh <mfasheh@suse.com>
ocfs2_extend_meta_needed(), ocfs2_calc_extend_credits() and
ocfs2_reserve_new_metadata() are all useful for extent tree operations. But
they are all limited to an inode btree because they use a struct
ocfs2_dinode parameter. Change their parameter to struct ocfs2_extent_list
(the part of an ocfs2_dinode they actually use) so that the xattr btree code
can use these functions.
Signed-off-by: Tao Ma <tao.ma@oracle.com>
Signed-off-by: Mark Fasheh <mfasheh@suse.com>
ocfs2_num_free_extents() is used to find the number of free extent records
in an inode btree. Hence, it takes an "ocfs2_dinode" parameter. We want to
use this for extended attribute trees in the future, so genericize the
interface the take a buffer head. A future patch will allow that buffer_head
to contain any structure rooting an ocfs2 btree.
Signed-off-by: Tao Ma <tao.ma@oracle.com>
Signed-off-by: Mark Fasheh <mfasheh@suse.com>
This is actually pretty easy since fs/dlm already handles the bulk of the
work. The Ocfs2 userspace cluster stack module already uses fs/dlm as the
underlying lock manager, so I only had to add the right calls.
Cluster-aware POSIX locks ("plocks") can be turned off by the same means at
UNIX locks - mount with 'noflocks', or create a local-only Ocfs2 volume.
Internally, the file system uses two sets of file_operations, depending on
whether cluster aware plocks is required. This turns out to be easier than
implementing local-only versions of ->lock.
Signed-off-by: Mark Fasheh <mfasheh@suse.com>
Plug ocfs2 into ->fiemap. Some portions of ocfs2_get_clusters() had to be
refactored so that the extent cache can be skipped in favor of going
directly to the on-disk records. This makes it easier for us to determine
which extent is the last one in the btree. Also, I'm not sure we want to be
caching fiemap lookups anyway as they're not directly related to data
read/write.
Signed-off-by: Mark Fasheh <mfasheh@suse.com>
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
Cc: ocfs2-devel@oss.oracle.com
Cc: linux-fsdevel@vger.kernel.org
The mutex is released on a successful return, so it would seem that it
should be released on an error return as well.
The semantic patch finds this problem is as follows:
(http://www.emn.fr/x-info/coccinelle/)
// <smpl>
@@
expression l;
@@
mutex_lock(l);
... when != mutex_unlock(l)
when any
when strict
(
if (...) { ... when != mutex_unlock(l)
+ mutex_unlock(l);
return ...;
}
|
mutex_unlock(l);
)
// </smpl>
Signed-off-by: Julia Lawall <julia@diku.dk>
Signed-off-by: Mark Fasheh <mfasheh@suse.com>
* kill nameidata * argument; map the 3 bits in ->flags anybody cares
about to new MAY_... ones and pass with the mask.
* kill redundant gfs2_iop_permission()
* sanitize ecryptfs_permission()
* fix remaining places where ->permission() instances might barf on new
MAY_... found in mask.
The obvious next target in that direction is permission(9)
folded fix for nfs_permission() breakage from Miklos Szeredi <mszeredi@suse.cz>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
This patch silences an EINVAL error message in ocfs2_file_aio_read()
that is always due to a user error.
Signed-off-by: Sunil Mushran <sunil.mushran@oracle.com>
Signed-off-by: Mark Fasheh <mfasheh@suse.com>
This patch adds the ability to change attributes of a symlink.
Fixes oss bugzilla#963
http://oss.oracle.com/bugzilla/show_bug.cgi?id=963
Signed-off-by: Sunil Mushran <sunil.mushran@oracle.com>
Signed-off-by: Mark Fasheh <mfasheh@suse.com>
As far as I can see there is nothing in ocfs2_ioctl that requires the BKL,
so use unlocked_ioctl
Signed-off-by: Andi Kleen <ak@suse.de>
Signed-off-by: Mark Fasheh <mfasheh@suse.com>
Explicitely convert loff_t to long long in printf. Just for sure...
Signed-off-by: Jan Kara <jack@suse.cz>
Signed-off-by: Mark Fasheh <mark.fasheh@oracle.com>
We should use generic_file_llseek() and not default_llseek() so that
s_maxbytes gets properly checked when seeking.
Signed-off-by: Jan Kara <jack@suse.cz>
Signed-off-by: Mark Fasheh <mark.fasheh@oracle.com>
Hook up ocfs2_flock(), using the new flock lock type in dlmglue.c. A new
mount option, "localflocks" is added so that users can revert to old
functionality as need be.
Signed-off-by: Mark Fasheh <mark.fasheh@oracle.com>
Call this the "inode_lock" now, since it covers both data and meta data.
This patch makes no functional changes.
Signed-off-by: Mark Fasheh <mark.fasheh@oracle.com>
The meta lock now covers both meta data and data, so this just removes the
now-redundant data lock.
Combining locks saves us a round of lock mastery per inode and one less lock
to ping between nodes during read/write.
We don't lose much - since meta locks were always held before a data lock
(and at the same level) ordered writeout mode (the default) ensured that
flushing for the meta data lock also pushed out data anyways.
Signed-off-by: Mark Fasheh <mark.fasheh@oracle.com>
ocfs2_truncate() and ocfs2_remove_inode_range() had reversed their "set
i_size" arguments to ocfs2_truncate_inline(). Fix things so that truncate
sets i_size, and punching a hole ignores it.
This exposed a problem where punching a hole in an inline-data file wasn't
updating the page cache, so fix that too.
Signed-off-by: Mark Fasheh <mark.fasheh@oracle.com>
We're missing a meta data commit for extending sync writes. In thoery, write
could return with the meta data required to read the data uncommitted to
disk. Fix that by detecting an allocating write and forcing a journal commit
in the sync case.
Signed-off-by: Mark Fasheh <mark.fasheh@oracle.com>
Plug ocfs2 into the ->write_begin and ->write_end aops.
A bunch of custom code is now gone - the iovec iteration stuff during write
and the ocfs2 splice write actor.
Signed-off-by: Mark Fasheh <mark.fasheh@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This fixes up write, truncate, mmap, and RESVSP/UNRESVP to understand inline
inode data.
For the most part, the changes to the core write code can be relied on to do
the heavy lifting. Any code calling ocfs2_write_begin (including shared
writeable mmap) can count on it doing the right thing with respect to
growing inline data to an extent tree.
Size reducing truncates, including UNRESVP can simply zero that portion of
the inode block being removed. Size increasing truncatesm, including RESVP
have to be a little bit smarter and grow the inode to an extent tree if
necessary.
Signed-off-by: Mark Fasheh <mark.fasheh@oracle.com>
Reviewed-by: Joel Becker <joel.becker@oracle.com>
By doing this, we can remove any higher level logic which has to have
knowledge of btree functionality - any callers of ocfs2_write_begin() can
now expect it to do anything necessary to prepare the inode for new data.
Signed-off-by: Mark Fasheh <mark.fasheh@oracle.com>
Reviewed-by: Joel Becker <joel.becker@oracle.com>
The ocfs2 write code loops through a page much like the block code, except
that ocfs2 allocation units can be any size, including larger than page
size. Typically it's equal to or larger than page size - most kernels run 4k
pages, the minimum ocfs2 allocation (cluster) size.
Some changes introduced during 2.6.23 changed the way writes to pages are
handled, and inadvertantly broke support for > 4k page size. Instead of just
writing one cluster at a time, we now handle the whole page in one pass.
This means that multiple (small) seperate allocations might happen in the
same pass. The allocation code howver typically optimizes by getting the
maximum which was reserved. This triggered a BUG_ON in the extend code where
it'd ask for a single bit (for one part of a > 4k page) and get back more
than it asked for.
Fix this by providing a variant of the high level allocation function which
allows the caller to specify a maximum. The traditional function remains and
just calls the new one with a maximum determined from the initial
reservation.
Signed-off-by: Mark Fasheh <mark.fasheh@oracle.com>
We were setting i_blocks too early - before truncating any allocation.
Correct things to set i_blocks after the allocation change.
Signed-off-by: Mark Fasheh <mark.fasheh@oracle.com>
We have to manually check the requested truncate size as the check in
vmtruncate() comes too late for Ocfs2.
Signed-off-by: Mark Fasheh <mark.fasheh@oracle.com>
ocfs2_align_clusters_to_page_index() needs to cast the clusters shift to
pgoff_t and ocfs2_file_buffered_write() needs loff_t when calculating
destination start for memcpy.
Signed-off-by: Mark Fasheh <mark.fasheh@oracle.com>
There's no need to recalculate things via ocfs2_max_file_offset() as we've
already done that to fill s_maxbytes, so use that instead. We can also
un-export ocfs2_max_file_offset() then.
Signed-off-by: Mark Fasheh <mark.fasheh@oracle.com>
ocfs2_update_inode_atime() calls ocfs2_mark_inode_dirty() to push changes
from the struct inode into the ocfs2 disk inode. The problem is,
ocfs2_mark_inode_dirty() might change other fields, depending on what
happened to the struct inode. Since we don't always have locking to
serialize changes to other fields (like i_size, etc), just fix things up to
only touch the atime field.
Signed-off-by: Mark Fasheh <mark.fasheh@oracle.com>
kunmap_atomic() takes the virtual address, not the mapped page as
argument.
Signed-off-by: Jens Axboe <jens.axboe@oracle.com>
Cc: Mark Fasheh <mark.fasheh@oracle.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Mark variables with uninitialized_var() if such a warning appears,
and analysis proves that the var is initialized properly on all paths
it is used.
Signed-off-by: Jeff Garzik <jeff@garzik.org>
We re-use the RESVSP/UNRESVSP ioctls from xfs which allow the user to
allocate and deallocate regions to a file without zeroing data or changing
i_size.
Though renamed, the structure passed in from user is identical to struct
xfs_flock64. The three fields that are actually used right now are l_whence,
l_start and l_len.
This should get ocfs2 immediate compatibility with userspace software using
the pre-existing xfs ioctls.
Signed-off-by: Mark Fasheh <mark.fasheh@oracle.com>
Provide an internal interface for the removal of arbitrary file regions.
ocfs2_remove_inode_range() takes a byte range within a file and will remove
existing extents within that range. Partial clusters will be zeroed so that
any read from within the region will return zeros.
Signed-off-by: Mark Fasheh <mark.fasheh@oracle.com>
The partial cluster zeroing code used during truncate usually assumes that
the rightmost byte in the range to be zeroed lies on a cluster boundary.
This makes sense for truncate, but punching holes might require zeroing on
non-aligned rightmost boundaries.
Signed-off-by: Mark Fasheh <mark.fasheh@oracle.com>
This can now be trivially supported with re-use of our existing extend code.
ocfs2_allocate_unwritten_extents() takes a start offset and a byte length
and iterates over the inode, adding extents (marked as unwritten) until len
is reached. Existing extents are skipped over.
Signed-off-by: Mark Fasheh <mark.fasheh@oracle.com>
Update the write code to detect when the user is asking to write to an
unwritten extent. Like writing to a hole, we must zero the region between
the write and the cluster boundaries. Most of the existing cluster zeroing
logic can be re-used with some additional checks for the unwritten flag on
extent records.
Signed-off-by: Mark Fasheh <mark.fasheh@oracle.com>