Commit Graph

170 Commits

Author SHA1 Message Date
Alexander Potapenko
55834c5909 mm: kasan: initial memory quarantine implementation
Quarantine isolates freed objects in a separate queue.  The objects are
returned to the allocator later, which helps to detect use-after-free
errors.

When the object is freed, its state changes from KASAN_STATE_ALLOC to
KASAN_STATE_QUARANTINE.  The object is poisoned and put into quarantine
instead of being returned to the allocator, therefore every subsequent
access to that object triggers a KASAN error, and the error handler is
able to say where the object has been allocated and deallocated.

When it's time for the object to leave quarantine, its state becomes
KASAN_STATE_FREE and it's returned to the allocator.  From now on the
allocator may reuse it for another allocation.  Before that happens,
it's still possible to detect a use-after free on that object (it
retains the allocation/deallocation stacks).

When the allocator reuses this object, the shadow is unpoisoned and old
allocation/deallocation stacks are wiped.  Therefore a use of this
object, even an incorrect one, won't trigger ASan warning.

Without the quarantine, it's not guaranteed that the objects aren't
reused immediately, that's why the probability of catching a
use-after-free is lower than with quarantine in place.

Quarantine isolates freed objects in a separate queue.  The objects are
returned to the allocator later, which helps to detect use-after-free
errors.

Freed objects are first added to per-cpu quarantine queues.  When a
cache is destroyed or memory shrinking is requested, the objects are
moved into the global quarantine queue.  Whenever a kmalloc call allows
memory reclaiming, the oldest objects are popped out of the global queue
until the total size of objects in quarantine is less than 3/4 of the
maximum quarantine size (which is a fraction of installed physical
memory).

As long as an object remains in the quarantine, KASAN is able to report
accesses to it, so the chance of reporting a use-after-free is
increased.  Once the object leaves quarantine, the allocator may reuse
it, in which case the object is unpoisoned and KASAN can't detect
incorrect accesses to it.

Right now quarantine support is only enabled in SLAB allocator.
Unification of KASAN features in SLAB and SLUB will be done later.

This patch is based on the "mm: kasan: quarantine" patch originally
prepared by Dmitry Chernenkov.  A number of improvements have been
suggested by Andrey Ryabinin.

[glider@google.com: v9]
  Link: http://lkml.kernel.org/r/1462987130-144092-1-git-send-email-glider@google.com
Signed-off-by: Alexander Potapenko <glider@google.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Andrey Konovalov <adech.fo@gmail.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Konstantin Serebryany <kcc@google.com>
Cc: Dmitry Chernenkov <dmitryc@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-20 17:58:30 -07:00
Alexander Potapenko
505f5dcb1c mm, kasan: add GFP flags to KASAN API
Add GFP flags to KASAN hooks for future patches to use.

This patch is based on the "mm: kasan: unified support for SLUB and SLAB
allocators" patch originally prepared by Dmitry Chernenkov.

Signed-off-by: Alexander Potapenko <glider@google.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Andrey Konovalov <adech.fo@gmail.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Konstantin Serebryany <kcc@google.com>
Cc: Dmitry Chernenkov <dmitryc@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-25 16:37:42 -07:00
Alexander Potapenko
7ed2f9e663 mm, kasan: SLAB support
Add KASAN hooks to SLAB allocator.

This patch is based on the "mm: kasan: unified support for SLUB and SLAB
allocators" patch originally prepared by Dmitry Chernenkov.

Signed-off-by: Alexander Potapenko <glider@google.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Andrey Konovalov <adech.fo@gmail.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Konstantin Serebryany <kcc@google.com>
Cc: Dmitry Chernenkov <dmitryc@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-25 16:37:42 -07:00
Joe Perches
1170532bb4 mm: convert printk(KERN_<LEVEL> to pr_<level>
Most of the mm subsystem uses pr_<level> so make it consistent.

Miscellanea:

 - Realign arguments
 - Add missing newline to format
 - kmemleak-test.c has a "kmemleak: " prefix added to the
   "Kmemleak testing" logging message via pr_fmt

Signed-off-by: Joe Perches <joe@perches.com>
Acked-by: Tejun Heo <tj@kernel.org>	[percpu]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-17 15:09:34 -07:00
Joe Perches
756a025f00 mm: coalesce split strings
Kernel style prefers a single string over split strings when the string is
'user-visible'.

Miscellanea:

 - Add a missing newline
 - Realign arguments

Signed-off-by: Joe Perches <joe@perches.com>
Acked-by: Tejun Heo <tj@kernel.org>	[percpu]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-17 15:09:34 -07:00
Vladimir Davydov
b6ecd2dea4 mm: memcontrol: zap memcg_kmem_online helper
As kmem accounting is now either enabled for all cgroups or disabled
system-wide, there's no point in having memcg_kmem_online() helper -
instead one can use memcg_kmem_enabled() and mem_cgroup_online(), as
shrink_slab() now does.

There are only two places left where this helper is used -
__memcg_kmem_charge() and memcg_create_kmem_cache().  The former can
only be called if memcg_kmem_enabled() returned true.  Since the cgroup
it operates on is online, mem_cgroup_is_root() check will be enough.

memcg_create_kmem_cache() can't use mem_cgroup_online() helper instead
of memcg_kmem_online(), because it relies on the fact that in
memcg_offline_kmem() memcg->kmem_state is changed before
memcg_deactivate_kmem_caches() is called, but there we can just
open-code the check.

Signed-off-by: Vladimir Davydov <vdavydov@virtuozzo.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-17 15:09:34 -07:00
Jesper Dangaard Brouer
ca25719551 mm: new API kfree_bulk() for SLAB+SLUB allocators
This patch introduce a new API call kfree_bulk() for bulk freeing memory
objects not bound to a single kmem_cache.

Christoph pointed out that it is possible to implement freeing of
objects, without knowing the kmem_cache pointer as that information is
available from the object's page->slab_cache.  Proposing to remove the
kmem_cache argument from the bulk free API.

Jesper demonstrated that these extra steps per object comes at a
performance cost.  It is only in the case CONFIG_MEMCG_KMEM is compiled
in and activated runtime that these steps are done anyhow.  The extra
cost is most visible for SLAB allocator, because the SLUB allocator does
the page lookup (virt_to_head_page()) anyhow.

Thus, the conclusion was to keep the kmem_cache free bulk API with a
kmem_cache pointer, but we can still implement a kfree_bulk() API fairly
easily.  Simply by handling if kmem_cache_free_bulk() gets called with a
kmem_cache NULL pointer.

This does increase the code size a bit, but implementing a separate
kfree_bulk() call would likely increase code size even more.

Below benchmarks cost of alloc+free (obj size 256 bytes) on CPU i7-4790K
@ 4.00GHz, no PREEMPT and CONFIG_MEMCG_KMEM=y.

Code size increase for SLAB:

 add/remove: 0/0 grow/shrink: 1/0 up/down: 74/0 (74)
 function                                     old     new   delta
 kmem_cache_free_bulk                         660     734     +74

SLAB fastpath: 87 cycles(tsc) 21.814
  sz - fallback             - kmem_cache_free_bulk - kfree_bulk
   1 - 103 cycles 25.878 ns -  41 cycles 10.498 ns - 81 cycles 20.312 ns
   2 -  94 cycles 23.673 ns -  26 cycles  6.682 ns - 42 cycles 10.649 ns
   3 -  92 cycles 23.181 ns -  21 cycles  5.325 ns - 39 cycles 9.950 ns
   4 -  90 cycles 22.727 ns -  18 cycles  4.673 ns - 26 cycles 6.693 ns
   8 -  89 cycles 22.270 ns -  14 cycles  3.664 ns - 23 cycles 5.835 ns
  16 -  88 cycles 22.038 ns -  14 cycles  3.503 ns - 22 cycles 5.543 ns
  30 -  89 cycles 22.284 ns -  13 cycles  3.310 ns - 20 cycles 5.197 ns
  32 -  88 cycles 22.249 ns -  13 cycles  3.420 ns - 20 cycles 5.166 ns
  34 -  88 cycles 22.224 ns -  14 cycles  3.643 ns - 20 cycles 5.170 ns
  48 -  88 cycles 22.088 ns -  14 cycles  3.507 ns - 20 cycles 5.203 ns
  64 -  88 cycles 22.063 ns -  13 cycles  3.428 ns - 20 cycles 5.152 ns
 128 -  89 cycles 22.483 ns -  15 cycles  3.891 ns - 23 cycles 5.885 ns
 158 -  89 cycles 22.381 ns -  15 cycles  3.779 ns - 22 cycles 5.548 ns
 250 -  91 cycles 22.798 ns -  16 cycles  4.152 ns - 23 cycles 5.967 ns

SLAB when enabling MEMCG_KMEM runtime:
 - kmemcg fastpath: 130 cycles(tsc) 32.684 ns (step:0)
 1 - 148 cycles 37.220 ns -  66 cycles 16.622 ns - 66 cycles 16.583 ns
 2 - 141 cycles 35.510 ns -  51 cycles 12.820 ns - 58 cycles 14.625 ns
 3 - 140 cycles 35.017 ns -  37 cycles 9.326 ns - 33 cycles 8.474 ns
 4 - 137 cycles 34.507 ns -  31 cycles 7.888 ns - 33 cycles 8.300 ns
 8 - 140 cycles 35.069 ns -  25 cycles 6.461 ns - 25 cycles 6.436 ns
 16 - 138 cycles 34.542 ns -  23 cycles 5.945 ns - 22 cycles 5.670 ns
 30 - 136 cycles 34.227 ns -  22 cycles 5.502 ns - 22 cycles 5.587 ns
 32 - 136 cycles 34.253 ns -  21 cycles 5.475 ns - 21 cycles 5.324 ns
 34 - 136 cycles 34.254 ns -  21 cycles 5.448 ns - 20 cycles 5.194 ns
 48 - 136 cycles 34.075 ns -  21 cycles 5.458 ns - 21 cycles 5.367 ns
 64 - 135 cycles 33.994 ns -  21 cycles 5.350 ns - 21 cycles 5.259 ns
 128 - 137 cycles 34.446 ns -  23 cycles 5.816 ns - 22 cycles 5.688 ns
 158 - 137 cycles 34.379 ns -  22 cycles 5.727 ns - 22 cycles 5.602 ns
 250 - 138 cycles 34.755 ns -  24 cycles 6.093 ns - 23 cycles 5.986 ns

Code size increase for SLUB:
 function                                     old     new   delta
 kmem_cache_free_bulk                         717     799     +82

SLUB benchmark:
 SLUB fastpath: 46 cycles(tsc) 11.691 ns (step:0)
  sz - fallback             - kmem_cache_free_bulk - kfree_bulk
   1 -  61 cycles 15.486 ns -  53 cycles 13.364 ns - 57 cycles 14.464 ns
   2 -  54 cycles 13.703 ns -  32 cycles  8.110 ns - 33 cycles 8.482 ns
   3 -  53 cycles 13.272 ns -  25 cycles  6.362 ns - 27 cycles 6.947 ns
   4 -  51 cycles 12.994 ns -  24 cycles  6.087 ns - 24 cycles 6.078 ns
   8 -  50 cycles 12.576 ns -  21 cycles  5.354 ns - 22 cycles 5.513 ns
  16 -  49 cycles 12.368 ns -  20 cycles  5.054 ns - 20 cycles 5.042 ns
  30 -  49 cycles 12.273 ns -  18 cycles  4.748 ns - 19 cycles 4.758 ns
  32 -  49 cycles 12.401 ns -  19 cycles  4.821 ns - 19 cycles 4.810 ns
  34 -  98 cycles 24.519 ns -  24 cycles  6.154 ns - 24 cycles 6.157 ns
  48 -  83 cycles 20.833 ns -  21 cycles  5.446 ns - 21 cycles 5.429 ns
  64 -  75 cycles 18.891 ns -  20 cycles  5.247 ns - 20 cycles 5.238 ns
 128 -  93 cycles 23.271 ns -  27 cycles  6.856 ns - 27 cycles 6.823 ns
 158 - 102 cycles 25.581 ns -  30 cycles  7.714 ns - 30 cycles 7.695 ns
 250 - 107 cycles 26.917 ns -  38 cycles  9.514 ns - 38 cycles 9.506 ns

SLUB when enabling MEMCG_KMEM runtime:
 - kmemcg fastpath: 71 cycles(tsc) 17.897 ns (step:0)
 1 - 85 cycles 21.484 ns -  78 cycles 19.569 ns - 75 cycles 18.938 ns
 2 - 81 cycles 20.363 ns -  45 cycles 11.258 ns - 44 cycles 11.076 ns
 3 - 78 cycles 19.709 ns -  33 cycles 8.354 ns - 32 cycles 8.044 ns
 4 - 77 cycles 19.430 ns -  28 cycles 7.216 ns - 28 cycles 7.003 ns
 8 - 101 cycles 25.288 ns -  23 cycles 5.849 ns - 23 cycles 5.787 ns
 16 - 76 cycles 19.148 ns -  20 cycles 5.162 ns - 20 cycles 5.081 ns
 30 - 76 cycles 19.067 ns -  19 cycles 4.868 ns - 19 cycles 4.821 ns
 32 - 76 cycles 19.052 ns -  19 cycles 4.857 ns - 19 cycles 4.815 ns
 34 - 121 cycles 30.291 ns -  25 cycles 6.333 ns - 25 cycles 6.268 ns
 48 - 108 cycles 27.111 ns -  21 cycles 5.498 ns - 21 cycles 5.458 ns
 64 - 100 cycles 25.164 ns -  20 cycles 5.242 ns - 20 cycles 5.229 ns
 128 - 155 cycles 38.976 ns -  27 cycles 6.886 ns - 27 cycles 6.892 ns
 158 - 132 cycles 33.034 ns -  30 cycles 7.711 ns - 30 cycles 7.728 ns
 250 - 130 cycles 32.612 ns -  38 cycles 9.560 ns - 38 cycles 9.549 ns

Signed-off-by: Jesper Dangaard Brouer <brouer@redhat.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Vladimir Davydov <vdavydov@virtuozzo.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-15 16:55:16 -07:00
Dmitry Safonov
52b4b950b5 mm: slab: free kmem_cache_node after destroy sysfs file
When slub_debug alloc_calls_show is enabled we will try to track
location and user of slab object on each online node, kmem_cache_node
structure and cpu_cache/cpu_slub shouldn't be freed till there is the
last reference to sysfs file.

This fixes the following panic:

   BUG: unable to handle kernel NULL pointer dereference at 0000000000000020
   IP:  list_locations+0x169/0x4e0
   PGD 257304067 PUD 438456067 PMD 0
   Oops: 0000 [#1] SMP
   CPU: 3 PID: 973074 Comm: cat ve: 0 Not tainted 3.10.0-229.7.2.ovz.9.30-00007-japdoll-dirty #2 9.30
   Hardware name: DEPO Computers To Be Filled By O.E.M./H67DE3, BIOS L1.60c 07/14/2011
   task: ffff88042a5dc5b0 ti: ffff88037f8d8000 task.ti: ffff88037f8d8000
   RIP: list_locations+0x169/0x4e0
   Call Trace:
     alloc_calls_show+0x1d/0x30
     slab_attr_show+0x1b/0x30
     sysfs_read_file+0x9a/0x1a0
     vfs_read+0x9c/0x170
     SyS_read+0x58/0xb0
     system_call_fastpath+0x16/0x1b
   Code: 5e 07 12 00 b9 00 04 00 00 3d 00 04 00 00 0f 4f c1 3d 00 04 00 00 89 45 b0 0f 84 c3 00 00 00 48 63 45 b0 49 8b 9c c4 f8 00 00 00 <48> 8b 43 20 48 85 c0 74 b6 48 89 df e8 46 37 44 00 48 8b 53 10
   CR2: 0000000000000020

Separated __kmem_cache_release from __kmem_cache_shutdown which now
called on slab_kmem_cache_release (after the last reference to sysfs
file object has dropped).

Reintroduced locking in free_partial as sysfs file might access cache's
partial list after shutdowning - partial revert of the commit
69cb8e6b7c ("slub: free slabs without holding locks").  Zap
__remove_partial and use remove_partial (w/o underscores) as
free_partial now takes list_lock which s partial revert for commit
1e4dd9461f ("slub: do not assert not having lock in removing freed
partial")

Signed-off-by: Dmitry Safonov <dsafonov@virtuozzo.com>
Suggested-by: Vladimir Davydov <vdavydov@virtuozzo.com>
Acked-by: Vladimir Davydov <vdavydov@virtuozzo.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-02-18 16:23:24 -08:00
Johannes Weiner
127424c86b mm: memcontrol: move kmem accounting code to CONFIG_MEMCG
The cgroup2 memory controller will account important in-kernel memory
consumers per default.  Move all necessary components to CONFIG_MEMCG.

Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Vladimir Davydov <vdavydov@virtuozzo.com>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-20 17:09:18 -08:00
Johannes Weiner
567e9ab2e6 mm: memcontrol: give the kmem states more descriptive names
On any given memcg, the kmem accounting feature has three separate
states: not initialized, structures allocated, and actively accounting
slab memory.  These are represented through a combination of the
kmem_acct_activated and kmem_acct_active flags, which is confusing.

Convert to a kmem_state enum with the states NONE, ALLOCATED, and
ONLINE.  Then rename the functions to modify the state accordingly.
This follows the nomenclature of css object states more closely.

Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Tejun Heo <tj@kernel.org>
Acked-by: Vladimir Davydov <vdavydov@virtuozzo.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-20 17:09:18 -08:00
Vladimir Davydov
230e9fc286 slab: add SLAB_ACCOUNT flag
Currently, if we want to account all objects of a particular kmem cache,
we have to pass __GFP_ACCOUNT to each kmem_cache_alloc call, which is
inconvenient.  This patch introduces SLAB_ACCOUNT flag which if passed
to kmem_cache_create will force accounting for every allocation from
this cache even if __GFP_ACCOUNT is not passed.

This patch does not make any of the existing caches use this flag - it
will be done later in the series.

Note, a cache with SLAB_ACCOUNT cannot be merged with a cache w/o
SLAB_ACCOUNT, because merged caches share the same kmem_cache struct and
hence cannot have different sets of SLAB_* flags.  Thus using this flag
will probably reduce the number of merged slabs even if kmem accounting
is not used (only compiled in).

Signed-off-by: Vladimir Davydov <vdavydov@virtuozzo.com>
Suggested-by: Tejun Heo <tj@kernel.org>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-14 16:00:49 -08:00
Jesper Dangaard Brouer
865762a811 slab/slub: adjust kmem_cache_alloc_bulk API
Adjust kmem_cache_alloc_bulk API before we have any real users.

Adjust API to return type 'int' instead of previously type 'bool'.  This
is done to allow future extension of the bulk alloc API.

A future extension could be to allow SLUB to stop at a page boundary, when
specified by a flag, and then return the number of objects.

The advantage of this approach, would make it easier to make bulk alloc
run without local IRQs disabled.  With an approach of cmpxchg "stealing"
the entire c->freelist or page->freelist.  To avoid overshooting we would
stop processing at a slab-page boundary.  Else we always end up returning
some objects at the cost of another cmpxchg.

To keep compatible with future users of this API linking against an older
kernel when using the new flag, we need to return the number of allocated
objects with this API change.

Signed-off-by: Jesper Dangaard Brouer <brouer@redhat.com>
Cc: Vladimir Davydov <vdavydov@virtuozzo.com>
Acked-by: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-11-22 11:58:44 -08:00
Alexandru Moise
40911a798b mm/slab_common.c: initialize kmem_cache pointer to NULL
The assignment to NULL within the error condition was written in a 2014
patch to suppress a compiler warning.  However it would be cleaner to just
initialize the kmem_cache to NULL and just return it in case of an error
condition.

Signed-off-by: Alexandru Moise <00moses.alexander00@gmail.com>
Acked-by: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-11-05 19:34:48 -08:00
Vladimir Davydov
cd918c5574 mm/slab_common.c: do not warn that cache is busy on destroy more than once
Currently, when kmem_cache_destroy() is called for a global cache, we
print a warning for each per memcg cache attached to it that has active
objects (see shutdown_cache).  This is redundant, because it gives no new
information and only clutters the log.  If a cache being destroyed has
active objects, there must be a memory leak in the module that created the
cache, and it does not matter if the cache was used by users in memory
cgroups or not.

This patch moves the warning from shutdown_cache(), which is called for
shutting down both global and per memcg caches, to kmem_cache_destroy(),
so that the warning is only printed once if there are objects left in the
cache being destroyed.

Signed-off-by: Vladimir Davydov <vdavydov@virtuozzo.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-11-05 19:34:48 -08:00
Vladimir Davydov
d60fdcc9e3 mm/slab_common.c: clear pointers to per memcg caches on destroy
Currently, we do not clear pointers to per memcg caches in the
memcg_params.memcg_caches array when a global cache is destroyed with
kmem_cache_destroy.

This is fine if the global cache does get destroyed.  However, a cache can
be left on the list if it still has active objects when kmem_cache_destroy
is called (due to a memory leak).  If this happens, the entries in the
array will point to already freed areas, which is likely to result in data
corruption when the cache is reused (via slab merging).

Signed-off-by: Vladimir Davydov <vdavydov@virtuozzo.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-11-05 19:34:48 -08:00
Vladimir Davydov
c9a77a7920 mm/slab_common.c: rename cache create/destroy helpers
do_kmem_cache_create(), do_kmem_cache_shutdown(), and
do_kmem_cache_release() sound awkward for static helper functions that are
not supposed to be used outside slab_common.c.  Rename them to
create_cache(), shutdown_cache(), and release_caches(), respectively.
This patch is a pure cleanup and does not introduce any functional
changes.

Signed-off-by: Vladimir Davydov <vdavydov@virtuozzo.com>
Acked-by: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-11-05 19:34:48 -08:00
Denis Kirjanov
fda901241f slab: convert slab_is_available() to boolean
A good candidate to return a boolean result.

Signed-off-by: Denis Kirjanov <kda@linux-powerpc.org>
Cc: Christoph Lameter <cl@linux.com>
Reviewed-by: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-11-05 19:34:48 -08:00
Michal Hocko
33398cf2f3 memcg: export struct mem_cgroup
mem_cgroup structure is defined in mm/memcontrol.c currently which means
that the code outside of this file has to use external API even for
trivial access stuff.

This patch exports mm_struct with its dependencies and makes some of the
exported functions inlines.  This even helps to reduce the code size a bit
(make defconfig + CONFIG_MEMCG=y)

  text		data    bss     dec     	 hex 	filename
  12355346        1823792 1089536 15268674         e8fb42 vmlinux.before
  12354970        1823792 1089536 15268298         e8f9ca vmlinux.after

This is not much (370B) but better than nothing.

We also save a function call in some hot paths like callers of
mem_cgroup_count_vm_event which is used for accounting.

The patch doesn't introduce any functional changes.

[vdavykov@parallels.com: inline memcg_kmem_is_active]
[vdavykov@parallels.com: do not expose type outside of CONFIG_MEMCG]
[akpm@linux-foundation.org: memcontrol.h needs eventfd.h for eventfd_ctx]
[akpm@linux-foundation.org: export mem_cgroup_from_task() to modules]
Signed-off-by: Michal Hocko <mhocko@suse.cz>
Reviewed-by: Vladimir Davydov <vdavydov@parallels.com>
Suggested-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-09-08 15:35:28 -07:00
Sergey Senozhatsky
3942d29918 mm/slab_common: allow NULL cache pointer in kmem_cache_destroy()
kmem_cache_destroy() does not tolerate a NULL kmem_cache pointer argument
and performs a NULL-pointer dereference.  This requires additional
attention and effort from developers/reviewers and forces all
kmem_cache_destroy() callers (200+ as of 4.1) to do a NULL check

    if (cache)
        kmem_cache_destroy(cache);

Or, otherwise, be invalid kmem_cache_destroy() users.

Tweak kmem_cache_destroy() and NULL-check the pointer there.

Proposed by Andrew Morton.

Link: https://lkml.org/lkml/2015/6/8/583
Signed-off-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Julia Lawall <julia.lawall@lip6.fr>
Cc: Joe Perches <joe@perches.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-09-08 15:35:28 -07:00
Christoph Lameter
484748f0b6 slab: infrastructure for bulk object allocation and freeing
Add the basic infrastructure for alloc/free operations on pointer arrays.
It includes a generic function in the common slab code that is used in
this infrastructure patch to create the unoptimized functionality for slab
bulk operations.

Allocators can then provide optimized allocation functions for situations
in which large numbers of objects are needed.  These optimization may
avoid taking locks repeatedly and bypass metadata creation if all objects
in slab pages can be used to provide the objects required.

Allocators can extend the skeletons provided and add their own code to the
bulk alloc and free functions.  They can keep the generic allocation and
freeing and just fall back to those if optimizations would not work (like
for example when debugging is on).

Signed-off-by: Christoph Lameter <cl@linux.com>
Signed-off-by: Jesper Dangaard Brouer <brouer@redhat.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-09-04 16:54:41 -07:00
Konstantin Khlebnikov
3e810ae2db mm/slub: allow merging when SLAB_DEBUG_FREE is set
This patch fixes creation of new kmem-caches after enabling
sanity_checks for existing mergeable kmem-caches in runtime: before that
patch creation fails because unique name in sysfs already taken by
existing kmem-cache.

Unlike other debug options this doesn't change object layout and could
be enabled and disabled at any time.

Signed-off-by: Konstantin Khlebnikov <khlebnikov@yandex-team.ru>
Acked-by: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-08-07 04:39:40 +03:00
Christoph Lameter
ae6f2462e5 Add __init attribute to new_kmalloc_cache
Avoid the warning:

  WARNING: mm/built-in.o(.text.unlikely+0xc22): Section mismatch in reference from the function .new_kmalloc_cache() to the variable .init.rodata:kmalloc_info
  The function .new_kmalloc_cache() references
  the variable __initconst kmalloc_info.

Signed-off-by: Christoph Lameter <cl@linux.com>
Reported-by: Stephen Rothwell <sfr@canb.auug.org.au>
Tested-by: Geert Uytterhoeven <geert@linux-m68k.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-07-01 14:22:33 -07:00
Christoph Lameter
a9730fca99 Fix kmalloc slab creation sequence
This patch restores the slab creation sequence that was broken by commit
4066c33d03 and also reverts the portions that introduced the
KMALLOC_LOOP_XXX macros. Those can never really work since the slab creation
is much more complex than just going from a minimum to a maximum number.

The latest upstream kernel boots cleanly on my machine with a 64 bit x86
configuration under KVM using either SLAB or SLUB.

Fixes: 4066c33d03 ("support the slub_debug boot option")
Reported-by: Theodore Ts'o <tytso@mit.edu>
Signed-off-by: Christoph Lameter <cl@linux.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-06-29 10:49:51 -07:00
Daniel Sanders
34cc6990d4 slab: correct size_index table before replacing the bootstrap kmem_cache_node
This patch moves the initialization of the size_index table slightly
earlier so that the first few kmem_cache_node's can be safely allocated
when KMALLOC_MIN_SIZE is large.

There are currently two ways to generate indices into kmalloc_caches (via
kmalloc_index() and via the size_index table in slab_common.c) and on some
arches (possibly only MIPS) they potentially disagree with each other
until create_kmalloc_caches() has been called.  It seems that the
intention is that the size_index table is a fast equivalent to
kmalloc_index() and that create_kmalloc_caches() patches the table to
return the correct value for the cases where kmalloc_index()'s
if-statements apply.

The failing sequence was:
* kmalloc_caches contains NULL elements
* kmem_cache_init initialises the element that 'struct
  kmem_cache_node' will be allocated to. For 32-bit Mips, this is a
  56-byte struct and kmalloc_index returns KMALLOC_SHIFT_LOW (7).
* init_list is called which calls kmalloc_node to allocate a 'struct
  kmem_cache_node'.
* kmalloc_slab selects the kmem_caches element using
  size_index[size_index_elem(size)]. For MIPS, size is 56, and the
  expression returns 6.
* This element of kmalloc_caches is NULL and allocation fails.
* If it had not already failed, it would have called
  create_kmalloc_caches() at this point which would have changed
  size_index[size_index_elem(size)] to 7.

I don't believe the bug to be LLVM specific but GCC doesn't normally
encounter the problem.  I haven't been able to identify exactly what GCC
is doing better (probably inlining) but it seems that GCC is managing to
optimize to the point that it eliminates the problematic allocations.
This theory is supported by the fact that GCC can be made to fail in the
same way by changing inline, __inline, __inline__, and __always_inline in
include/linux/compiler-gcc.h such that they don't actually inline things.

Signed-off-by: Daniel Sanders <daniel.sanders@imgtec.com>
Acked-by: Pekka Enberg <penberg@kernel.org>
Acked-by: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-06-24 17:49:41 -07:00
Gavin Guo
4066c33d03 mm/slab_common: support the slub_debug boot option on specific object size
The slub_debug=PU,kmalloc-xx cannot work because in the
create_kmalloc_caches() the s->name is created after the
create_kmalloc_cache() is called.  The name is NULL in the
create_kmalloc_cache() so the kmem_cache_flags() would not set the
slub_debug flags to the s->flags.  The fix here set up a kmalloc_names
string array for the initialization purpose and delete the dynamic name
creation of kmalloc_caches.

[akpm@linux-foundation.org: s/kmalloc_names/kmalloc_info/, tweak comment text]
Signed-off-by: Gavin Guo <gavin.guo@canonical.com>
Acked-by: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-06-24 17:49:40 -07:00
Andrey Ryabinin
0316bec22e mm: slub: add kernel address sanitizer support for slub allocator
With this patch kasan will be able to catch bugs in memory allocated by
slub.  Initially all objects in newly allocated slab page, marked as
redzone.  Later, when allocation of slub object happens, requested by
caller number of bytes marked as accessible, and the rest of the object
(including slub's metadata) marked as redzone (inaccessible).

We also mark object as accessible if ksize was called for this object.
There is some places in kernel where ksize function is called to inquire
size of really allocated area.  Such callers could validly access whole
allocated memory, so it should be marked as accessible.

Code in slub.c and slab_common.c files could validly access to object's
metadata, so instrumentation for this files are disabled.

Signed-off-by: Andrey Ryabinin <a.ryabinin@samsung.com>
Signed-off-by: Dmitry Chernenkov <dmitryc@google.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Konstantin Serebryany <kcc@google.com>
Signed-off-by: Andrey Konovalov <adech.fo@gmail.com>
Cc: Yuri Gribov <tetra2005@gmail.com>
Cc: Konstantin Khlebnikov <koct9i@gmail.com>
Cc: Sasha Levin <sasha.levin@oracle.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-02-13 21:21:41 -08:00
Andrzej Hajda
3dec16ea38 mm/slab: convert cache name allocations to kstrdup_const
slab frequently performs duplication of strings located in read-only
memory section.  Replacing kstrdup by kstrdup_const allows to avoid such
operations.

[akpm@linux-foundation.org: make the handling of kmem_cache.name const-correct]
Signed-off-by: Andrzej Hajda <a.hajda@samsung.com>
Cc: Marek Szyprowski <m.szyprowski@samsung.com>
Cc: Kyungmin Park <kyungmin.park@samsung.com>
Cc: Mike Turquette <mturquette@linaro.org>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Greg KH <greg@kroah.com>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-02-13 21:21:36 -08:00
Vladimir Davydov
d6e0b7fa11 slub: make dead caches discard free slabs immediately
To speed up further allocations SLUB may store empty slabs in per cpu/node
partial lists instead of freeing them immediately.  This prevents per
memcg caches destruction, because kmem caches created for a memory cgroup
are only destroyed after the last page charged to the cgroup is freed.

To fix this issue, this patch resurrects approach first proposed in [1].
It forbids SLUB to cache empty slabs after the memory cgroup that the
cache belongs to was destroyed.  It is achieved by setting kmem_cache's
cpu_partial and min_partial constants to 0 and tuning put_cpu_partial() so
that it would drop frozen empty slabs immediately if cpu_partial = 0.

The runtime overhead is minimal.  From all the hot functions, we only
touch relatively cold put_cpu_partial(): we make it call
unfreeze_partials() after freezing a slab that belongs to an offline
memory cgroup.  Since slab freezing exists to avoid moving slabs from/to a
partial list on free/alloc, and there can't be allocations from dead
caches, it shouldn't cause any overhead.  We do have to disable preemption
for put_cpu_partial() to achieve that though.

The original patch was accepted well and even merged to the mm tree.
However, I decided to withdraw it due to changes happening to the memcg
core at that time.  I had an idea of introducing per-memcg shrinkers for
kmem caches, but now, as memcg has finally settled down, I do not see it
as an option, because SLUB shrinker would be too costly to call since SLUB
does not keep free slabs on a separate list.  Besides, we currently do not
even call per-memcg shrinkers for offline memcgs.  Overall, it would
introduce much more complexity to both SLUB and memcg than this small
patch.

Regarding to SLAB, there's no problem with it, because it shrinks
per-cpu/node caches periodically.  Thanks to list_lru reparenting, we no
longer keep entries for offline cgroups in per-memcg arrays (such as
memcg_cache_params->memcg_caches), so we do not have to bother if a
per-memcg cache will be shrunk a bit later than it could be.

[1] http://thread.gmane.org/gmane.linux.kernel.mm/118649/focus=118650

Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-02-12 18:54:10 -08:00
Vladimir Davydov
2a4db7eb93 memcg: free memcg_caches slot on css offline
We need to look up a kmem_cache in ->memcg_params.memcg_caches arrays only
on allocations, so there is no need to have the array entries set until
css free - we can clear them on css offline.  This will allow us to reuse
array entries more efficiently and avoid costly array relocations.

Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Tejun Heo <tj@kernel.org>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Dave Chinner <david@fromorbit.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-02-12 18:54:10 -08:00
Vladimir Davydov
f1008365bb slab: use css id for naming per memcg caches
Currently, we use mem_cgroup->kmemcg_id to guarantee kmem_cache->name
uniqueness.  This is correct, because kmemcg_id is only released on css
free after destroying all per memcg caches.

However, I am going to change that and release kmemcg_id on css offline,
because it is not wise to keep it for so long, wasting valuable entries of
memcg_cache_params->memcg_caches arrays.  Therefore, to preserve cache
name uniqueness, let us switch to css->id.

Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Tejun Heo <tj@kernel.org>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Dave Chinner <david@fromorbit.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-02-12 18:54:09 -08:00
Vladimir Davydov
426589f571 slab: link memcg caches of the same kind into a list
Sometimes, we need to iterate over all memcg copies of a particular root
kmem cache.  Currently, we use memcg_cache_params->memcg_caches array for
that, because it contains all existing memcg caches.

However, it's a bad practice to keep all caches, including those that
belong to offline cgroups, in this array, because it will be growing
beyond any bounds then.  I'm going to wipe away dead caches from it to
save space.  To still be able to perform iterations over all memcg caches
of the same kind, let us link them into a list.

Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Tejun Heo <tj@kernel.org>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Dave Chinner <david@fromorbit.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-02-12 18:54:09 -08:00
Vladimir Davydov
f7ce3190c4 slab: embed memcg_cache_params to kmem_cache
Currently, kmem_cache stores a pointer to struct memcg_cache_params
instead of embedding it.  The rationale is to save memory when kmem
accounting is disabled.  However, the memcg_cache_params has shrivelled
drastically since it was first introduced:

* Initially:

struct memcg_cache_params {
	bool is_root_cache;
	union {
		struct kmem_cache *memcg_caches[0];
		struct {
			struct mem_cgroup *memcg;
			struct list_head list;
			struct kmem_cache *root_cache;
			bool dead;
			atomic_t nr_pages;
			struct work_struct destroy;
		};
	};
};

* Now:

struct memcg_cache_params {
	bool is_root_cache;
	union {
		struct {
			struct rcu_head rcu_head;
			struct kmem_cache *memcg_caches[0];
		};
		struct {
			struct mem_cgroup *memcg;
			struct kmem_cache *root_cache;
		};
	};
};

So the memory saving does not seem to be a clear win anymore.

OTOH, keeping a pointer to memcg_cache_params struct instead of embedding
it results in touching one more cache line on kmem alloc/free hot paths.
Besides, it makes linking kmem caches in a list chained by a field of
struct memcg_cache_params really painful due to a level of indirection,
while I want to make them linked in the following patch.  That said, let
us embed it.

Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Tejun Heo <tj@kernel.org>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Dan Carpenter <dan.carpenter@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-02-12 18:54:09 -08:00
Vladimir Davydov
05257a1a3d memcg: add rwsem to synchronize against memcg_caches arrays relocation
We need a stable value of memcg_nr_cache_ids in kmem_cache_create()
(memcg_alloc_cache_params() wants it for root caches), where we only
hold the slab_mutex and no memcg-related locks.  As a result, we have to
update memcg_nr_cache_ids under the slab_mutex, which we can only take
on the slab's side (see memcg_update_array_size).  This looks awkward
and will become even worse when per-memcg list_lru is introduced, which
also wants stable access to memcg_nr_cache_ids.

To get rid of this dependency between the memcg_nr_cache_ids and the
slab_mutex, this patch introduces a special rwsem.  The rwsem is held
for writing during memcg_caches arrays relocation and memcg_nr_cache_ids
updates.  Therefore one can take it for reading to get a stable access
to memcg_caches arrays and/or memcg_nr_cache_ids.

Currently the semaphore is taken for reading only from
kmem_cache_create, right before taking the slab_mutex, so right now
there's no much point in using rwsem instead of mutex.  However, once
list_lru is made per-memcg it will allow list_lru initializations to
proceed concurrently.

Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Greg Thelen <gthelen@google.com>
Cc: Glauber Costa <glommer@gmail.com>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-02-12 18:54:09 -08:00
Vladimir Davydov
dbcf73e26c memcg: rename some cache id related variables
memcg_limited_groups_array_size, which defines the size of memcg_caches
arrays, sounds rather cumbersome.  Also it doesn't point anyhow that
it's related to kmem/caches stuff.  So let's rename it to
memcg_nr_cache_ids.  It's concise and points us directly to
memcg_cache_id.

Also, rename kmem_limited_groups to memcg_cache_ida.

Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Greg Thelen <gthelen@google.com>
Cc: Glauber Costa <glommer@gmail.com>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-02-12 18:54:09 -08:00
Vladimir Davydov
d5b3cf7139 memcg: zap memcg_slab_caches and memcg_slab_mutex
mem_cgroup->memcg_slab_caches is a list of kmem caches corresponding to
the given cgroup.  Currently, it is only used on css free in order to
destroy all caches corresponding to the memory cgroup being freed.  The
list is protected by memcg_slab_mutex.  The mutex is also used to protect
kmem_cache->memcg_params->memcg_caches arrays and synchronizes
kmem_cache_destroy vs memcg_unregister_all_caches.

However, we can perfectly get on without these two.  To destroy all caches
corresponding to a memory cgroup, we can walk over the global list of kmem
caches, slab_caches, and we can do all the synchronization stuff using the
slab_mutex instead of the memcg_slab_mutex.  This patch therefore gets rid
of the memcg_slab_caches and memcg_slab_mutex.

Apart from this nice cleanup, it also:

 - assures that rcu_barrier() is called once at max when a root cache is
   destroyed or a memory cgroup is freed, no matter how many caches have
   SLAB_DESTROY_BY_RCU flag set;

 - fixes the race between kmem_cache_destroy and kmem_cache_create that
   exists, because memcg_cleanup_cache_params, which is called from
   kmem_cache_destroy after checking that kmem_cache->refcount=0,
   releases the slab_mutex, which gives kmem_cache_create a chance to
   make an alias to a cache doomed to be destroyed.

Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Acked-by: Christoph Lameter <cl@linux.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-02-10 14:30:34 -08:00
Vladimir Davydov
3e0350a364 memcg: zap memcg_name argument of memcg_create_kmem_cache
Instead of passing the name of the memory cgroup which the cache is
created for in the memcg_name_argument, let's obtain it immediately in
memcg_create_kmem_cache.

Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-02-10 14:30:34 -08:00
Vaishali Thakkar
7c4da061f2 mm/slab_common.c: use kmem_cache_free()
Here, free memory is allocated using kmem_cache_zalloc.  So, use
kmem_cache_free instead of kfree.

This is done using Coccinelle and semantic patch used
is as follows:

@@
expression x,E,c;
@@

 x = \(kmem_cache_alloc\|kmem_cache_zalloc\|kmem_cache_alloc_node\)(c,...)
 ... when != x = E
     when != &x
?-kfree(x)
+kmem_cache_free(c,x)

Signed-off-by: Vaishali Thakkar <vthakkar1994@gmail.com>
Acked-by: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-02-10 14:30:30 -08:00
Vladimir Davydov
b047501cd9 memcg: use generic slab iterators for showing slabinfo
Let's use generic slab_start/next/stop for showing memcg caches info.  In
contrast to the current implementation, this will work even if all memcg
caches' info doesn't fit into a seq buffer (a page), plus it simply looks
neater.

Actually, the main reason I do this isn't mere cleanup.  I'm going to zap
the memcg_slab_caches list, because I find it useless provided we have the
slab_caches list, and this patch is a step in this direction.

It should be noted that before this patch an attempt to read
memory.kmem.slabinfo of a cgroup that doesn't have kmem limit set resulted
in -EIO, while after this patch it will silently show nothing except the
header, but I don't think it will frustrate anyone.

Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-12-10 17:41:07 -08:00
Joonsoo Kim
5436205738 mm/slab: reverse iteration on find_mergeable()
Unlike SLUB, sometimes, object isn't started at the beginning of the slab
in the SLAB.  This causes the unalignment problem when after slab merging
is supported by commit 12220dea07 ("mm/slab: support slab merge").
Alignment mismatch check is introduced ("mm/slab: fix unalignment problem
on Malta with EVA due to slab merge") to prevent merge in this case.

This causes undesirable result that merging happens between infrequently
used kmem_caches if there are kmem_caches with same size and is 256 bytes,
are merged into pool_workqueue rather than kmalloc-256, because
kmem_caches for kmalloc are at the tail of the list.

To prevent this situation, this patch reverses iteration order in
find_mergeable() to find frequently used kmem_caches.  This change helps
to merge kmem_cache to frequently used kmem_caches, such as kmalloc
kmem_caches.

Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Acked-by: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-12-10 17:41:04 -08:00
Vladimir Davydov
1df3b26f20 slab: print slabinfo header in seq show
Currently we print the slabinfo header in the seq start method, which
makes it unusable for showing leaks, so we have leaks_show, which does
practically the same as s_show except it doesn't show the header.

However, we can print the header in the seq show method - we only need
to check if the current element is the first on the list.  This will
allow us to use the same set of seq iterators for both leaks and
slabinfo reporting, which is nice.

Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-12-10 17:41:04 -08:00
Joonsoo Kim
95069ac8da mm/slab: fix unalignment problem on Malta with EVA due to slab merge
Unlike SLUB, sometimes, object isn't started at the beginning of the
slab in SLAB.  This causes the unalignment problem after slab merging is
supported by commit 12220dea07 ("mm/slab: support slab merge").

Following is the report from Markos that fail to boot on Malta with EVA.

    Calibrating delay loop... 19.86 BogoMIPS (lpj=99328)
    pid_max: default: 32768 minimum: 301
    Mount-cache hash table entries: 4096 (order: 0, 16384 bytes)
    Mountpoint-cache hash table entries: 4096 (order: 0, 16384 bytes)
    Kernel bug detected[#1]:
    CPU: 0 PID: 1 Comm: swapper/0 Not tainted 3.17.0-05639-g12220dea07f1 #1631
    task: 1f04f5d8 ti: 1f050000 task.ti: 1f050000
    epc   : 80141190 alloc_unbound_pwq+0x234/0x304
        Not tainted
    ra    : 80141184 alloc_unbound_pwq+0x228/0x304
    Process swapper/0 (pid: 1, threadinfo=1f050000, task=1f04f5d8, tls=00000000)
    Call Trace:
      alloc_unbound_pwq+0x234/0x304
      apply_workqueue_attrs+0x11c/0x294
      __alloc_workqueue_key+0x23c/0x470
      init_workqueues+0x320/0x400
      do_one_initcall+0xe8/0x23c
      kernel_init_freeable+0x9c/0x224
      kernel_init+0x10/0x100
      ret_from_kernel_thread+0x14/0x1c
    [ end trace cb88537fdc8fa200 ]
    Kernel panic - not syncing: Attempted to kill init! exitcode=0x0000000b

alloc_unbound_pwq() allocates slab object from pool_workqueue.  This
kmem_cache requires 256 bytes alignment, but, current merging code
doesn't honor that, and merge it with kmalloc-256.  kmalloc-256 requires
only cacheline size alignment so that above failure occurs.  However, in
x86, kmalloc-256 is luckily aligned in 256 bytes, so the problem didn't
happen on it.

To fix this problem, this patch introduces alignment mismatch check in
find_mergeable().  This will fix the problem.

Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Reported-by: Markos Chandras <Markos.Chandras@imgtec.com>
Tested-by: Markos Chandras <Markos.Chandras@imgtec.com>
Acked-by: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-11-13 16:17:05 -08:00
Mikulas Patocka
8aba7e0a2c mm/slab_common: don't check for duplicate cache names
The SLUB cache merges caches with the same size and alignment and there
was long standing bug with this behavior:

 - create the cache named "foo"
 - create the cache named "bar" (which is merged with "foo")
 - delete the cache named "foo" (but it stays allocated because "bar"
   uses it)
 - create the cache named "foo" again - it fails because the name "foo"
   is already used

That bug was fixed in commit 694617474e ("slab_common: fix the check
for duplicate slab names") by not warning on duplicate cache names when
the SLUB subsystem is used.

Recently, cache merging was implemented the with SLAB subsystem too, in
12220dea07 ("mm/slab: support slab merge")).  Therefore we need stop
checking for duplicate names even for the SLAB subsystem.

This patch fixes the bug by removing the check.

Signed-off-by: Mikulas Patocka <mpatocka@redhat.com>
Acked-by: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-10-29 16:33:15 -07:00
Vladimir Davydov
6f817f4cda memcg: move memcg_update_cache_size() to slab_common.c
`While growing per memcg caches arrays, we jump between memcontrol.c and
slab_common.c in a weird way:

  memcg_alloc_cache_id - memcontrol.c
    memcg_update_all_caches - slab_common.c
      memcg_update_cache_size - memcontrol.c

There's absolutely no reason why memcg_update_cache_size can't live on the
slab's side though.  So let's move it there and settle it comfortably amid
per-memcg cache allocation functions.

Besides, this patch cleans this function up a bit, removing all the
useless comments from it, and renames it to memcg_update_cache_params to
conform to memcg_alloc/free_cache_params, which we already have in
slab_common.c.

Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.cz>
Cc: Christoph Lameter <cl@linux.com>
Cc: Glauber Costa <glommer@gmail.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Pekka Enberg <penberg@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-10-09 22:25:59 -04:00
Vladimir Davydov
33a690c45b memcg: move memcg_{alloc,free}_cache_params to slab_common.c
The only reason why they live in memcontrol.c is that we get/put css
reference to the owner memory cgroup in them.  However, we can do that in
memcg_{un,}register_cache.  OTOH, there are several reasons to move them
to slab_common.c.

First, I think that the less public interface functions we have in
memcontrol.h the better.  Since the functions I move don't depend on
memcontrol, I think it's worth making them private to slab, especially
taking into account that the arrays are defined on the slab's side too.

Second, the way how per-memcg arrays are updated looks rather awkward: it
proceeds from memcontrol.c (__memcg_activate_kmem) to slab_common.c
(memcg_update_all_caches) and back to memcontrol.c again
(memcg_update_array_size).  In the following patches I move the function
relocating the arrays (memcg_update_array_size) to slab_common.c and
therefore get rid this circular call path.  I think we should have the
cache allocation stuff in the same place where we have relocation, because
it's easier to follow the code then.  So I move arrays alloc/free
functions to slab_common.c too.

The third point isn't obvious.  I'm going to make the list_lru structure
per-memcg to allow targeted kmem reclaim.  That means we will have
per-memcg arrays in list_lrus too.  It turns out that it's much easier to
update these arrays in list_lru.c rather than in memcontrol.c, because all
the stuff we need is defined there.  This patch makes memcg caches arrays
allocation path conform that of the upcoming list_lru.

So let's move these functions to slab_common.c and make them static.

Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.cz>
Cc: Christoph Lameter <cl@linux.com>
Cc: Glauber Costa <glommer@gmail.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Pekka Enberg <penberg@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-10-09 22:25:59 -04:00
Joonsoo Kim
423c929cbb mm/slab_common: commonize slab merge logic
Slab merge is good feature to reduce fragmentation.  Now, it is only
applied to SLUB, but, it would be good to apply it to SLAB.  This patch is
preparation step to apply slab merge to SLAB by commonizing slab merge
logic.

Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-10-09 22:25:51 -04:00
Joonsoo Kim
07f361b2be mm/slab_common: move kmem_cache definition to internal header
We don't need to keep kmem_cache definition in include/linux/slab.h if we
don't need to inline kmem_cache_size().  According to my code inspection,
this function is only called at lc_create() in lib/lru_cache.c which may
be called at initialization phase of something, so we don't need to inline
it.  Therfore, move it to slab_common.c and move kmem_cache definition to
internal header.

After this change, we can change kmem_cache definition easily without full
kernel build.  For instance, we can turn on/off CONFIG_SLUB_STATS without
full kernel build.

[akpm@linux-foundation.org: export kmem_cache_size() to modules]
[rdunlap@infradead.org: add header files to fix kmemcheck.c build errors]
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Acked-by: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Zhang Yanfei <zhangyanfei@cn.fujitsu.com>
Signed-off-by: Randy Dunlap <rdunlap@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-10-09 22:25:50 -04:00
Andrew Morton
3aa24f519e mm/slab_common.c: suppress warning
False positive:

mm/slab_common.c: In function 'kmem_cache_create':
mm/slab_common.c:204: warning: 's' may be used uninitialized in this function

Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-10-09 22:25:50 -04:00
Andrey Ryabinin
928cec9cd6 mm: move slab related stuff from util.c to slab_common.c
Functions krealloc(), __krealloc(), kzfree() belongs to slab API, so
should be placed in slab_common.c

Also move slab allocator's tracepoints defenitions to slab_common.c No
functional changes here.

Signed-off-by: Andrey Ryabinin <a.ryabinin@samsung.com>
Acked-by: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-08-06 18:01:15 -07:00
Mike Snitzer
45ccaf4764 Merge branch 'slab/urgent' of git://git.kernel.org/pub/scm/linux/kernel/git/penberg/linux into for-3.16-rcX 2014-07-22 18:38:27 -04:00
Vladimir Davydov
0bd62b1190 slab: delete cache from list after __kmem_cache_shutdown succeeds
Currently, on kmem_cache_destroy we delete the cache from the slab_list
before __kmem_cache_shutdown, inserting it back to the list on failure.
Initially, this was done, because we could release the slab_mutex in
__kmem_cache_shutdown to delete sysfs slub entry, but since commit
41a212859a ("slub: use sysfs'es release mechanism for kmem_cache") we
remove sysfs entry later in kmem_cache_destroy after dropping the
slab_mutex, so that no implementation of __kmem_cache_shutdown can ever
release the lock.  Therefore we can simplify the code a bit by moving
list_del after __kmem_cache_shutdown.

Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Cc: Christoph Lameter <cl@linux-foundation.org>
Cc: Pekka Enberg <penberg@kernel.org>
Acked-by: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-06-04 16:54:08 -07:00
Vladimir Davydov
776ed0f037 memcg: cleanup kmem cache creation/destruction functions naming
Current names are rather inconsistent. Let's try to improve them.

Brief change log:

** old name **                          ** new name **

kmem_cache_create_memcg                 memcg_create_kmem_cache
memcg_kmem_create_cache                 memcg_regsiter_cache
memcg_kmem_destroy_cache                memcg_unregister_cache

kmem_cache_destroy_memcg_children       memcg_cleanup_cache_params
mem_cgroup_destroy_all_caches           memcg_unregister_all_caches

create_work                             memcg_register_cache_work
memcg_create_cache_work_func            memcg_register_cache_func
memcg_create_cache_enqueue              memcg_schedule_register_cache

Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-06-04 16:54:08 -07:00
Vladimir Davydov
073ee1c6cd memcg: get rid of memcg_create_cache_name
Instead of calling back to memcontrol.c from kmem_cache_create_memcg in
order to just create the name of a per memcg cache, let's allocate it in
place.  We only need to pass the memcg name to kmem_cache_create_memcg for
that - everything else can be done in slab_common.c.

Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-06-04 16:54:06 -07:00
Vladimir Davydov
bd67314586 memcg, slab: simplify synchronization scheme
At present, we have the following mutexes protecting data related to per
memcg kmem caches:

 - slab_mutex.  This one is held during the whole kmem cache creation
   and destruction paths.  We also take it when updating per root cache
   memcg_caches arrays (see memcg_update_all_caches).  As a result, taking
   it guarantees there will be no changes to any kmem cache (including per
   memcg).  Why do we need something else then?  The point is it is
   private to slab implementation and has some internal dependencies with
   other mutexes (get_online_cpus).  So we just don't want to rely upon it
   and prefer to introduce additional mutexes instead.

 - activate_kmem_mutex.  Initially it was added to synchronize
   initializing kmem limit (memcg_activate_kmem).  However, since we can
   grow per root cache memcg_caches arrays only on kmem limit
   initialization (see memcg_update_all_caches), we also employ it to
   protect against memcg_caches arrays relocation (e.g.  see
   __kmem_cache_destroy_memcg_children).

 - We have a convention not to take slab_mutex in memcontrol.c, but we
   want to walk over per memcg memcg_slab_caches lists there (e.g.  for
   destroying all memcg caches on offline).  So we have per memcg
   slab_caches_mutex's protecting those lists.

The mutexes are taken in the following order:

   activate_kmem_mutex -> slab_mutex -> memcg::slab_caches_mutex

Such a syncrhonization scheme has a number of flaws, for instance:

 - We can't call kmem_cache_{destroy,shrink} while walking over a
   memcg::memcg_slab_caches list due to locking order.  As a result, in
   mem_cgroup_destroy_all_caches we schedule the
   memcg_cache_params::destroy work shrinking and destroying the cache.

 - We don't have a mutex to synchronize per memcg caches destruction
   between memcg offline (mem_cgroup_destroy_all_caches) and root cache
   destruction (__kmem_cache_destroy_memcg_children).  Currently we just
   don't bother about it.

This patch simplifies it by substituting per memcg slab_caches_mutex's
with the global memcg_slab_mutex.  It will be held whenever a new per
memcg cache is created or destroyed, so it protects per root cache
memcg_caches arrays and per memcg memcg_slab_caches lists.  The locking
order is following:

   activate_kmem_mutex -> memcg_slab_mutex -> slab_mutex

This allows us to call kmem_cache_{create,shrink,destroy} under the
memcg_slab_mutex.  As a result, we don't need memcg_cache_params::destroy
work any more - we can simply destroy caches while iterating over a per
memcg slab caches list.

Also using the global mutex simplifies synchronization between concurrent
per memcg caches creation/destruction, e.g.  mem_cgroup_destroy_all_caches
vs __kmem_cache_destroy_memcg_children.

The downside of this is that we substitute per-memcg slab_caches_mutex's
with a hummer-like global mutex, but since we already take either the
slab_mutex or the cgroup_mutex along with a memcg::slab_caches_mutex, it
shouldn't hurt concurrency a lot.

Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Glauber Costa <glommer@gmail.com>
Cc: Pekka Enberg <penberg@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-06-04 16:54:01 -07:00
Vladimir Davydov
03afc0e25f slab: get_online_mems for kmem_cache_{create,destroy,shrink}
When we create a sl[au]b cache, we allocate kmem_cache_node structures
for each online NUMA node.  To handle nodes taken online/offline, we
register memory hotplug notifier and allocate/free kmem_cache_node
corresponding to the node that changes its state for each kmem cache.

To synchronize between the two paths we hold the slab_mutex during both
the cache creationg/destruction path and while tuning per-node parts of
kmem caches in memory hotplug handler, but that's not quite right,
because it does not guarantee that a newly created cache will have all
kmem_cache_nodes initialized in case it races with memory hotplug.  For
instance, in case of slub:

    CPU0                            CPU1
    ----                            ----
    kmem_cache_create:              online_pages:
     __kmem_cache_create:            slab_memory_callback:
                                      slab_mem_going_online_callback:
                                       lock slab_mutex
                                       for each slab_caches list entry
                                           allocate kmem_cache node
                                       unlock slab_mutex
      lock slab_mutex
      init_kmem_cache_nodes:
       for_each_node_state(node, N_NORMAL_MEMORY)
           allocate kmem_cache node
      add kmem_cache to slab_caches list
      unlock slab_mutex
                                    online_pages (continued):
                                     node_states_set_node

As a result we'll get a kmem cache with not all kmem_cache_nodes
allocated.

To avoid issues like that we should hold get/put_online_mems() during
the whole kmem cache creation/destruction/shrink paths, just like we
deal with cpu hotplug.  This patch does the trick.

Note, that after it's applied, there is no need in taking the slab_mutex
for kmem_cache_shrink any more, so it is removed from there.

Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Tang Chen <tangchen@cn.fujitsu.com>
Cc: Zhang Yanfei <zhangyanfei@cn.fujitsu.com>
Cc: Toshi Kani <toshi.kani@hp.com>
Cc: Xishi Qiu <qiuxishi@huawei.com>
Cc: Jiang Liu <liuj97@gmail.com>
Cc: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Wen Congyang <wency@cn.fujitsu.com>
Cc: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com>
Cc: Lai Jiangshan <laijs@cn.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-06-04 16:53:59 -07:00
Vladimir Davydov
cea371f4f3 slab: document kmalloc_order
Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-06-04 16:53:58 -07:00
Vladimir Davydov
52383431b3 mm: get rid of __GFP_KMEMCG
Currently to allocate a page that should be charged to kmemcg (e.g.
threadinfo), we pass __GFP_KMEMCG flag to the page allocator.  The page
allocated is then to be freed by free_memcg_kmem_pages.  Apart from
looking asymmetrical, this also requires intrusion to the general
allocation path.  So let's introduce separate functions that will
alloc/free pages charged to kmemcg.

The new functions are called alloc_kmem_pages and free_kmem_pages.  They
should be used when the caller actually would like to use kmalloc, but
has to fall back to the page allocator for the allocation is large.
They only differ from alloc_pages and free_pages in that besides
allocating or freeing pages they also charge them to the kmem resource
counter of the current memory cgroup.

[sfr@canb.auug.org.au: export kmalloc_order() to modules]
Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Acked-by: Greg Thelen <gthelen@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.cz>
Cc: Glauber Costa <glommer@gmail.com>
Cc: Christoph Lameter <cl@linux-foundation.org>
Cc: Pekka Enberg <penberg@kernel.org>
Signed-off-by: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-06-04 16:53:56 -07:00
Vladimir Davydov
5dfb417509 sl[au]b: charge slabs to kmemcg explicitly
We have only a few places where we actually want to charge kmem so
instead of intruding into the general page allocation path with
__GFP_KMEMCG it's better to explictly charge kmem there.  All kmem
charges will be easier to follow that way.

This is a step towards removing __GFP_KMEMCG.  It removes __GFP_KMEMCG
from memcg caches' allocflags.  Instead it makes slab allocation path
call memcg_charge_kmem directly getting memcg to charge from the cache's
memcg params.

This also eliminates any possibility of misaccounting an allocation
going from one memcg's cache to another memcg, because now we always
charge slabs against the memcg the cache belongs to.  That's why this
patch removes the big comment to memcg_kmem_get_cache.

Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Acked-by: Greg Thelen <gthelen@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.cz>
Cc: Glauber Costa <glommer@gmail.com>
Cc: Christoph Lameter <cl@linux-foundation.org>
Cc: Pekka Enberg <penberg@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-06-04 16:53:56 -07:00
Mikulas Patocka
694617474e slab_common: fix the check for duplicate slab names
The patch 3e374919b3 is supposed to fix the
problem where kmem_cache_create incorrectly reports duplicate cache name
and fails. The problem is described in the header of that patch.

However, the patch doesn't really fix the problem because of these
reasons:

* the logic to test for debugging is reversed. It was intended to perform
  the check only if slub debugging is enabled (which implies that caches
  with the same parameters are not merged). Therefore, there should be
  #if !defined(CONFIG_SLUB) || defined(CONFIG_SLUB_DEBUG_ON)
  The current code has the condition reversed and performs the test if
  debugging is disabled.

* slub debugging may be enabled or disabled based on kernel command line,
  CONFIG_SLUB_DEBUG_ON is just the default settings. Therefore the test
  based on definition of CONFIG_SLUB_DEBUG_ON is unreliable.

This patch fixes the problem by removing the test
"!defined(CONFIG_SLUB_DEBUG_ON)". Therefore, duplicate names are never
checked if the SLUB allocator is used.

Note to stable kernel maintainers: when backporint this patch, please
backport also the patch 3e374919b3.

Acked-by: David Rientjes <rientjes@google.com>
Acked-by: Christoph Lameter <cl@linux.com>
Signed-off-by: Mikulas Patocka <mpatocka@redhat.com>
Cc: stable@vger.kernel.org	# 3.6+
Signed-off-by: Pekka Enberg <penberg@kernel.org>
2014-05-24 00:25:46 +03:00
Christoph Lameter
41a212859a slub: use sysfs'es release mechanism for kmem_cache
debugobjects warning during netfilter exit:

    ------------[ cut here ]------------
    WARNING: CPU: 6 PID: 4178 at lib/debugobjects.c:260 debug_print_object+0x8d/0xb0()
    ODEBUG: free active (active state 0) object type: timer_list hint: delayed_work_timer_fn+0x0/0x20
    Modules linked in:
    CPU: 6 PID: 4178 Comm: kworker/u16:2 Tainted: G        W 3.11.0-next-20130906-sasha #3984
    Workqueue: netns cleanup_net
    Call Trace:
      dump_stack+0x52/0x87
      warn_slowpath_common+0x8c/0xc0
      warn_slowpath_fmt+0x46/0x50
      debug_print_object+0x8d/0xb0
      __debug_check_no_obj_freed+0xa5/0x220
      debug_check_no_obj_freed+0x15/0x20
      kmem_cache_free+0x197/0x340
      kmem_cache_destroy+0x86/0xe0
      nf_conntrack_cleanup_net_list+0x131/0x170
      nf_conntrack_pernet_exit+0x5d/0x70
      ops_exit_list+0x5e/0x70
      cleanup_net+0xfb/0x1c0
      process_one_work+0x338/0x550
      worker_thread+0x215/0x350
      kthread+0xe7/0xf0
      ret_from_fork+0x7c/0xb0

Also during dcookie cleanup:

    WARNING: CPU: 12 PID: 9725 at lib/debugobjects.c:260 debug_print_object+0x8c/0xb0()
    ODEBUG: free active (active state 0) object type: timer_list hint: delayed_work_timer_fn+0x0/0x20
    Modules linked in:
    CPU: 12 PID: 9725 Comm: trinity-c141 Not tainted 3.15.0-rc2-next-20140423-sasha-00018-gc4ff6c4 #408
    Call Trace:
      dump_stack (lib/dump_stack.c:52)
      warn_slowpath_common (kernel/panic.c:430)
      warn_slowpath_fmt (kernel/panic.c:445)
      debug_print_object (lib/debugobjects.c:262)
      __debug_check_no_obj_freed (lib/debugobjects.c:697)
      debug_check_no_obj_freed (lib/debugobjects.c:726)
      kmem_cache_free (mm/slub.c:2689 mm/slub.c:2717)
      kmem_cache_destroy (mm/slab_common.c:363)
      dcookie_unregister (fs/dcookies.c:302 fs/dcookies.c:343)
      event_buffer_release (arch/x86/oprofile/../../../drivers/oprofile/event_buffer.c:153)
      __fput (fs/file_table.c:217)
      ____fput (fs/file_table.c:253)
      task_work_run (kernel/task_work.c:125 (discriminator 1))
      do_notify_resume (include/linux/tracehook.h:196 arch/x86/kernel/signal.c:751)
      int_signal (arch/x86/kernel/entry_64.S:807)

Sysfs has a release mechanism.  Use that to release the kmem_cache
structure if CONFIG_SYSFS is enabled.

Only slub is changed - slab currently only supports /proc/slabinfo and
not /sys/kernel/slab/*.  We talked about adding that and someone was
working on it.

[akpm@linux-foundation.org: fix CONFIG_SYSFS=n build]
[akpm@linux-foundation.org: fix CONFIG_SYSFS=n build even more]
Signed-off-by: Christoph Lameter <cl@linux.com>
Reported-by: Sasha Levin <sasha.levin@oracle.com>
Tested-by: Sasha Levin <sasha.levin@oracle.com>
Acked-by: Greg KH <greg@kroah.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Russell King <rmk@arm.linux.org.uk>
Cc: Bart Van Assche <bvanassche@acm.org>
Cc: Al Viro <viro@ZenIV.linux.org.uk>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-05-06 13:04:59 -07:00
Vladimir Davydov
b8529907ba memcg, slab: do not destroy children caches if parent has aliases
Currently we destroy children caches at the very beginning of
kmem_cache_destroy().  This is wrong, because the root cache will not
necessarily be destroyed in the end - if it has aliases (refcount > 0),
kmem_cache_destroy() will simply decrement its refcount and return.  In
this case, at best we will get a bunch of warnings in dmesg, like this
one:

  kmem_cache_destroy kmalloc-32:0: Slab cache still has objects
  CPU: 1 PID: 7139 Comm: modprobe Tainted: G    B   W    3.13.0+ #117
  Call Trace:
    dump_stack+0x49/0x5b
    kmem_cache_destroy+0xdf/0xf0
    kmem_cache_destroy_memcg_children+0x97/0xc0
    kmem_cache_destroy+0xf/0xf0
    xfs_mru_cache_uninit+0x21/0x30 [xfs]
    exit_xfs_fs+0x2e/0xc44 [xfs]
    SyS_delete_module+0x198/0x1f0
    system_call_fastpath+0x16/0x1b

At worst - if kmem_cache_destroy() will race with an allocation from a
memcg cache - the kernel will panic.

This patch fixes this by moving children caches destruction after the
check if the cache has aliases.  Plus, it forbids destroying a root
cache if it still has children caches, because each children cache keeps
a reference to its parent.

Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Glauber Costa <glommer@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-04-07 16:36:13 -07:00
Vladimir Davydov
051dd46050 memcg, slab: unregister cache from memcg before starting to destroy it
Currently, memcg_unregister_cache(), which deletes the cache being
destroyed from the memcg_slab_caches list, is called after
__kmem_cache_shutdown() (see kmem_cache_destroy()), which starts to
destroy the cache.

As a result, one can access a partially destroyed cache while traversing
a memcg_slab_caches list, which can have deadly consequences (for
instance, cache_show() called for each cache on a memcg_slab_caches list
from mem_cgroup_slabinfo_read() will dereference pointers to already
freed data).

To fix this, let's move memcg_unregister_cache() before the cache
destruction process beginning, issuing memcg_register_cache() on failure.

Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Glauber Costa <glommer@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-04-07 16:36:12 -07:00
Vladimir Davydov
794b1248be memcg, slab: separate memcg vs root cache creation paths
Memcg-awareness turned kmem_cache_create() into a dirty interweaving of
memcg-only and except-for-memcg calls.  To clean this up, let's move the
code responsible for memcg cache creation to a separate function.

Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Glauber Costa <glommer@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-04-07 16:36:12 -07:00
Vladimir Davydov
5722d094ad memcg, slab: cleanup memcg cache creation
This patch cleans up the memcg cache creation path as follows:

- Move memcg cache name creation to a separate function to be called
  from kmem_cache_create_memcg().  This allows us to get rid of the mutex
  protecting the temporary buffer used for the name formatting, because
  the whole cache creation path is protected by the slab_mutex.

- Get rid of memcg_create_kmem_cache().  This function serves as a proxy
  to kmem_cache_create_memcg().  After separating the cache name creation
  path, it would be reduced to a function call, so let's inline it.

Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Glauber Costa <glommer@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-04-07 16:36:12 -07:00
Vladimir Davydov
a44cb94491 memcg, slab: never try to merge memcg caches
When a kmem cache is created (kmem_cache_create_memcg()), we first try to
find a compatible cache that already exists and can handle requests from
the new cache, i.e.  has the same object size, alignment, ctor, etc.  If
there is such a cache, we do not create any new caches, instead we simply
increment the refcount of the cache found and return it.

Currently we do this procedure not only when creating root caches, but
also for memcg caches.  However, there is no point in that, because, as
every memcg cache has exactly the same parameters as its parent and cache
merging cannot be turned off in runtime (only on boot by passing
"slub_nomerge"), the root caches of any two potentially mergeable memcg
caches should be merged already, i.e.  it must be the same root cache, and
therefore we couldn't even get to the memcg cache creation, because it
already exists.

The only exception is boot caches - they are explicitly forbidden to be
merged by setting their refcount to -1.  There are currently only two of
them - kmem_cache and kmem_cache_node, which are used in slab internals (I
do not count kmalloc caches as their refcount is set to 1 immediately
after creation).  Since they are prevented from merging preliminary I
guess we should avoid to merge their children too.

So let's remove the useless code responsible for merging memcg caches.

Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Glauber Costa <glommer@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-04-07 16:36:12 -07:00
Dave Jones
ba3253c78d slab: fix wrong retval on kmem_cache_create_memcg error path
On kmem_cache_create_memcg() error path we set 'err', but leave 's' (the
new cache ptr) undefined.  The latter can be NULL if we could not
allocate the cache, or pointing to a freed area if we failed somewhere
later while trying to initialize it.  Initially we checked 'err'
immediately before exiting the function and returned NULL if it was set
ignoring the value of 's':

    out_unlock:
        ...
        if (err) {
            /* report error */
            return NULL;
        }
        return s;

Recently this check was, in fact, broken by commit f717eb3abb ("slab:
do not panic if we fail to create memcg cache"), which turned it to:

    out_unlock:
        ...
        if (err && !memcg) {
            /* report error */
            return NULL;
        }
        return s;

As a result, if we are failing creating a cache for a memcg, we will
skip the check and return 's' that can contain crap.  Obviously, commit
f717eb3abb intended not to return crap on error allocating a cache for
a memcg, but only to remove the error reporting in this case, so the
check should look like this:

    out_unlock:
        ...
        if (err) {
            if (!memcg)
                return NULL;
            /* report error */
            return NULL;
        }
        return s;

[rientjes@google.com: despaghettification]
[vdavydov@parallels.com: patch monkeying]
Signed-off-by: David Rientjes <rientjes@google.com>
Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Signed-off-by: Dave Jones <davej@redhat.com>
Reported-by: Dave Jones <davej@redhat.com>
Acked-by: Pekka Enberg <penberg@kernel.org>
Cc: Christoph Lameter <cl@linux.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-01-29 16:22:40 -08:00
Vladimir Davydov
f717eb3abb slab: do not panic if we fail to create memcg cache
There is no point in flooding logs with warnings or especially crashing
the system if we fail to create a cache for a memcg.  In this case we
will be accounting the memcg allocation to the root cgroup until we
succeed to create its own cache, but it isn't that critical.

Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Glauber Costa <glommer@gmail.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Christoph Lameter <cl@linux.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-01-23 16:36:51 -08:00
Vladimir Davydov
2edefe1155 memcg, slab: fix races in per-memcg cache creation/destruction
We obtain a per-memcg cache from a root kmem_cache by dereferencing an
entry of the root cache's memcg_params::memcg_caches array.  If we find
no cache for a memcg there on allocation, we initiate the memcg cache
creation (see memcg_kmem_get_cache()).  The cache creation proceeds
asynchronously in memcg_create_kmem_cache() in order to avoid lock
clashes, so there can be several threads trying to create the same
kmem_cache concurrently, but only one of them may succeed.  However, due
to a race in the code, it is not always true.  The point is that the
memcg_caches array can be relocated when we activate kmem accounting for
a memcg (see memcg_update_all_caches(), memcg_update_cache_size()).  If
memcg_update_cache_size() and memcg_create_kmem_cache() proceed
concurrently as described below, we can leak a kmem_cache.

Asume two threads schedule creation of the same kmem_cache.  One of them
successfully creates it.  Another one should fail then, but if
memcg_create_kmem_cache() interleaves with memcg_update_cache_size() as
follows, it won't:

  memcg_create_kmem_cache()             memcg_update_cache_size()
  (called w/o mutexes held)             (called with slab_mutex,
                                         set_limit_mutex held)
  -------------------------             -------------------------

  mutex_lock(&memcg_cache_mutex)

                                        s->memcg_params=kzalloc(...)

  new_cachep=cache_from_memcg_idx(cachep,idx)
  // new_cachep==NULL => proceed to creation

                                        s->memcg_params->memcg_caches[i]
                                            =cur_params->memcg_caches[i]

  // kmem_cache_create_memcg takes slab_mutex
  // so we will hang around until
  // memcg_update_cache_size finishes, but
  // nothing will prevent it from succeeding so
  // memcg_caches[idx] will be overwritten in
  // memcg_register_cache!

  new_cachep = kmem_cache_create_memcg(...)
  mutex_unlock(&memcg_cache_mutex)

Let's fix this by moving the check for existence of the memcg cache to
kmem_cache_create_memcg() to be called under the slab_mutex and make it
return NULL if so.

A similar race is possible when destroying a memcg cache (see
kmem_cache_destroy()).  Since memcg_unregister_cache(), which clears the
pointer in the memcg_caches array, is called w/o protection, we can race
with memcg_update_cache_size() and omit clearing the pointer.  Therefore
memcg_unregister_cache() should be moved before we release the
slab_mutex.

Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Glauber Costa <glommer@gmail.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Christoph Lameter <cl@linux.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-01-23 16:36:51 -08:00
Vladimir Davydov
1aa1325425 memcg, slab: clean up memcg cache initialization/destruction
Currently, we have rather a messy function set relating to per-memcg
kmem cache initialization/destruction.

Per-memcg caches are created in memcg_create_kmem_cache().  This
function calls kmem_cache_create_memcg() to allocate and initialize a
kmem cache and then "registers" the new cache in the
memcg_params::memcg_caches array of the parent cache.

During its work-flow, kmem_cache_create_memcg() executes the following
memcg-related functions:

 - memcg_alloc_cache_params(), to initialize memcg_params of the newly
   created cache;
 - memcg_cache_list_add(), to add the new cache to the memcg_slab_caches
   list.

On the other hand, kmem_cache_destroy() called on a cache destruction
only calls memcg_release_cache(), which does all the work: it cleans the
reference to the cache in its parent's memcg_params::memcg_caches,
removes the cache from the memcg_slab_caches list, and frees
memcg_params.

Such an inconsistency between destruction and initialization paths make
the code difficult to read, so let's clean this up a bit.

This patch moves all the code relating to registration of per-memcg
caches (adding to memcg list, setting the pointer to a cache from its
parent) to the newly created memcg_register_cache() and
memcg_unregister_cache() functions making the initialization and
destruction paths look symmetrical.

Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Glauber Costa <glommer@gmail.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Christoph Lameter <cl@linux.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-01-23 16:36:51 -08:00
Vladimir Davydov
363a044f73 memcg, slab: kmem_cache_create_memcg(): fix memleak on fail path
We do not free the cache's memcg_params if __kmem_cache_create fails.
Fix this.

Plus, rename memcg_register_cache() to memcg_alloc_cache_params(),
because it actually does not register the cache anywhere, but simply
initialize kmem_cache::memcg_params.

[akpm@linux-foundation.org: fix build]
Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Glauber Costa <glommer@gmail.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Christoph Lameter <cl@linux.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-01-23 16:36:51 -08:00
Vladimir Davydov
3965fc3652 slab: clean up kmem_cache_create_memcg() error handling
Currently kmem_cache_create_memcg() backoffs on failure inside
conditionals, without using gotos.  This results in the rollback code
duplication, which makes the function look cumbersome even though on
error we should only free the allocated cache.  Since in the next patch
I am going to add yet another rollback function call on error path
there, let's employ labels instead of conditionals for undoing any
changes on failure to keep things clean.

Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Reviewed-by: Pekka Enberg <penberg@kernel.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Glauber Costa <glommer@gmail.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Christoph Lameter <cl@linux.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-01-23 16:36:50 -08:00
Qiang Huang
2ade4de871 memcg, kmem: rename cache_from_memcg to cache_from_memcg_idx
We can't see the relationship with memcg from the parameters,
so the name with memcg_idx would be more reasonable.

Signed-off-by: Qiang Huang <h.huangqiang@huawei.com>
Reviewed-by: Pekka Enberg <penberg@kernel.org>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Glauber Costa <glommer@parallels.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-11-13 12:09:10 +09:00
Christoph Lameter
3e374919b3 slab_common: Do not check for duplicate slab names
SLUB can alias multiple slab kmem_create_requests to one slab cache to save
memory and increase the cache hotness. As a result the name of the slab can be
stale. Only check the name for duplicates if we are in debug mode where we do
not merge multiple caches.

This fixes the following problem reported by Jonathan Brassow:

  The problem with kmem_cache* is this:

  *) Assume CONFIG_SLUB is set
  1) kmem_cache_create(name="foo-a")
  - creates new kmem_cache structure
  2) kmem_cache_create(name="foo-b")
  - If identical cache characteristics, it will be merged with the previously
    created cache associated with "foo-a".  The cache's refcount will be
    incremented and an alias will be created via sysfs_slab_alias().
  3) kmem_cache_destroy(<ptr>)
  - Attempting to destroy cache associated with "foo-a", but instead the
    refcount is simply decremented.  I don't even think the sysfs aliases are
    ever removed...
  4) kmem_cache_create(name="foo-a")
  - This FAILS because kmem_cache_sanity_check colides with the existing
    name ("foo-a") associated with the non-removed cache.

  This is a problem for RAID (specifically dm-raid) because the name used
  for the kmem_cache_create is ("raid%d-%p", level, mddev).  If the cache
  persists for long enough, the memory address of an old mddev will be
  reused for a new mddev - causing an identical formulation of the cache
  name.  Even though kmem_cache_destory had long ago been used to delete
  the old cache, the merging of caches has cause the name and cache of that
  old instance to be preserved and causes a colision (and thus failure) in
  kmem_cache_create().  I see this regularly in my testing.

Reported-by: Jonathan Brassow <jbrassow@redhat.com>
Signed-off-by: Christoph Lameter <cl@linux.com>
Signed-off-by: Pekka Enberg <penberg@kernel.org>
2013-09-28 09:47:41 +03:00
Christoph Lameter
f1b6eb6e6b mm/sl[aou]b: Move kmallocXXX functions to common code
The kmalloc* functions of all slab allcoators are similar now so
lets move them into slab.h. This requires some function naming changes
in slob.

As a results of this patch there is a common set of functions for
all allocators. Also means that kmalloc_large() is now available
in general to perform large order allocations that go directly
via the page allocator. kmalloc_large() can be substituted if
kmalloc() throws warnings because of too large allocations.

kmalloc_large() has exactly the same semantics as kmalloc but
can only used for allocations > PAGE_SIZE.

Signed-off-by: Christoph Lameter <cl@linux.com>
Signed-off-by: Pekka Enberg <penberg@kernel.org>
2013-09-04 20:51:33 +03:00
Joonsoo Kim
9de1bc8752 mm, slab_common: add 'unlikely' to size check of kmalloc_slab()
Size is usually below than KMALLOC_MAX_SIZE.
If we add a 'unlikely' macro, compiler can make better code.

Acked-by: Christoph Lameter <cl@linux.com>
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Pekka Enberg <penberg@kernel.org>
2013-08-14 18:26:10 +03:00
Linus Torvalds
54be820019 Merge branch 'slab/for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/penberg/linux
Pull slab update from Pekka Enberg:
 "Highlights:

  - Fix for boot-time problems on some architectures due to
    init_lock_keys() not respecting kmalloc_caches boundaries
    (Christoph Lameter)

  - CONFIG_SLUB_CPU_PARTIAL requested by RT folks (Joonsoo Kim)

  - Fix for excessive slab freelist draining (Wanpeng Li)

  - SLUB and SLOB cleanups and fixes (various people)"

I ended up editing the branch, and this avoids two commits at the end
that were immediately reverted, and I instead just applied the oneliner
fix in between myself.

* 'slab/for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/penberg/linux
  slub: Check for page NULL before doing the node_match check
  mm/slab: Give s_next and s_stop slab-specific names
  slob: Check for NULL pointer before calling ctor()
  slub: Make cpu partial slab support configurable
  slab: add kmalloc() to kernel API documentation
  slab: fix init_lock_keys
  slob: use DIV_ROUND_UP where possible
  slub: do not put a slab to cpu partial list when cpu_partial is 0
  mm/slub: Use node_nr_slabs and node_nr_objs in get_slabinfo
  mm/slub: Drop unnecessary nr_partials
  mm/slab: Fix /proc/slabinfo unwriteable for slab
  mm/slab: Sharing s_next and s_stop between slab and slub
  mm/slab: Fix drain freelist excessively
  slob: Rework #ifdeffery in slab.h
  mm, slab: moved kmem_cache_alloc_node comment to correct place
2013-07-14 15:14:29 -07:00
Wanpeng Li
276a2439ce mm/slab: Give s_next and s_stop slab-specific names
Give s_next and s_stop slab-specific names instead of exporting
"s_next" and "s_stop".

Signed-off-by: Wanpeng Li <liwanp@linux.vnet.ibm.com>
Signed-off-by: Pekka Enberg <penberg@kernel.org>
2013-07-08 11:02:17 +03:00
Wanpeng Li
e9b4db2b8d mm/slab: Fix /proc/slabinfo unwriteable for slab
Slab have some tunables like limit, batchcount, and sharedfactor can be
tuned through function slabinfo_write. Commit (b7454ad3: mm/sl[au]b: Move
slabinfo processing to slab_common.c) uncorrectly change /proc/slabinfo
unwriteable for slab, this patch fix it by revert to original mode.

Acked-by: Christoph Lameter <cl@linux.com>
Signed-off-by: Wanpeng Li <liwanp@linux.vnet.ibm.com>
Signed-off-by: Pekka Enberg <penberg@kernel.org>
2013-07-07 18:37:47 +03:00
Wanpeng Li
e25839f679 mm/slab: Sharing s_next and s_stop between slab and slub
This patch shares s_next and s_stop between slab and slub.

Acked-by: Christoph Lameter <cl@linux.com>
Signed-off-by: Wanpeng Li <liwanp@linux.vnet.ibm.com>
Signed-off-by: Pekka Enberg <penberg@kernel.org>
2013-07-07 18:37:47 +03:00
Sasha Levin
907985f48b slab: prevent warnings when allocating with __GFP_NOWARN
Sasha Levin noticed that the warning introduced by commit 6286ae9
("slab: Return NULL for oversized allocations) is being triggered:

  WARNING: CPU: 15 PID: 21519 at mm/slab_common.c:376 kmalloc_slab+0x2f/0xb0()
  can: request_module (can-proto-4) failed.
  mpoa: proc_mpc_write: could not parse ''
  Modules linked in:
  CPU: 15 PID: 21519 Comm: trinity-child15 Tainted: G W    3.10.0-rc4-next-20130607-sasha-00011-gcd78395-dirty #2
   0000000000000009 ffff880020a95e30 ffffffff83ff4041 0000000000000000
   ffff880020a95e68 ffffffff8111fe12 fffffffffffffff0 00000000000082d0
   0000000000080000 0000000000080000 0000000001400000 ffff880020a95e78
  Call Trace:
   [<ffffffff83ff4041>] dump_stack+0x4e/0x82
   [<ffffffff8111fe12>] warn_slowpath_common+0x82/0xb0
   [<ffffffff8111fe55>] warn_slowpath_null+0x15/0x20
   [<ffffffff81243dcf>] kmalloc_slab+0x2f/0xb0
   [<ffffffff81278d54>] __kmalloc+0x24/0x4b0
   [<ffffffff8196ffe3>] ? security_capable+0x13/0x20
   [<ffffffff812a26b7>] ? pipe_fcntl+0x107/0x210
   [<ffffffff812a26b7>] pipe_fcntl+0x107/0x210
   [<ffffffff812b7ea0>] ? fget_raw_light+0x130/0x3f0
   [<ffffffff812aa5fb>] SyS_fcntl+0x60b/0x6a0
   [<ffffffff8403ca98>] tracesys+0xe1/0xe6

Andrew Morton writes:

  __GFP_NOWARN is frequently used by kernel code to probe for "how big
  an allocation can I get".  That's a bit lame, but it's used on slow
  paths and is pretty simple.

However, SLAB would still spew a warning when a big allocation happens
if the __GFP_NOWARN flag is _not_ set to expose kernel bugs.

Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
[ penberg@kernel.org: improve changelog ]
Signed-off-by: Pekka Enberg <penberg@kernel.org>
2013-06-13 10:01:58 +03:00
Chris Mason
956e46efb2 mm/slab: Fix crash during slab init
Commit 8a965b3baa ("mm, slab_common: Fix bootstrap creation of kmalloc
caches") introduced a regression that caused us to crash early during
boot.  The commit was introducing ordering of slab creation, making sure
two odd-sized slabs were created after specific powers of two sizes.

But, if any of the power of two slabs were created earlier during boot,
slabs at index 1 or 2 might not get created at all.  This patch makes
sure none of the slabs get skipped.

Tony Lindgren bisected this down to the offending commit, which really
helped because bisect kept bringing me to almost but not quite this one.

Signed-off-by: Chris Mason <chris.mason@fusionio.com>
Acked-by: Christoph Lameter <cl@linux.com>
Acked-by: Tony Lindgren <tony@atomide.com>
Acked-by: Soren Brinkmann <soren.brinkmann@xilinx.com>
Tested-by: Tetsuo Handa <penguin-kernel@i-love.sakura.ne.jp>
Tested-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-05-08 15:02:33 -07:00
Christoph Lameter
8a965b3baa mm, slab_common: Fix bootstrap creation of kmalloc caches
For SLAB the kmalloc caches must be created in ascending sizes in order
for the OFF_SLAB sub-slab cache to work properly.

Create the non power of two caches immediately after the prior power of
two kmalloc cache. Do not create the non power of two caches before all
other caches.

Reported-and-tested-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Signed-off-by: Christoph Lamete <cl@linux.com>
Link: http://lkml.kernel.org/r/201305040348.CIF81716.OStQOHFJMFLOVF@I-love.SAKURA.ne.jp
Signed-off-by: Pekka Enberg <penberg@kernel.org>
2013-05-06 23:22:17 +03:00
Christoph Lameter
6286ae97d1 slab: Return NULL for oversized allocations
The inline path seems to have changed the SLAB behavior for very large
kmalloc allocations with  commit e3366016 ("slab: Use common
kmalloc_index/kmalloc_size functions"). This patch restores the old
behavior but also adds diagnostics so that we can figure where in the
code these large allocations occur.

Reported-and-tested-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Signed-off-by: Christoph Lameter <cl@linux.com>
Link: http://lkml.kernel.org/r/201305040348.CIF81716.OStQOHFJMFLOVF@I-love.SAKURA.ne.jp
[ penberg@kernel.org: use WARN_ON_ONCE ]
Signed-off-by: Pekka Enberg <penberg@kernel.org>
2013-05-06 09:24:16 +03:00
Joonsoo Kim
b1e0541674 mm/sl[au]b: correct allocation type check in kmalloc_slab()
commit "slab: Common Kmalloc cache determination" made mistake
in kmalloc_slab(). SLAB_CACHE_DMA is for kmem_cache creation,
not for allocation. For allocation, we should use GFP_XXX to identify
type of allocation. So, change SLAB_CACHE_DMA to GFP_DMA.

Acked-by: Christoph Lameter <cl@linux.com>
Reported-by: Fengguang Wu <fengguang.wu@intel.com>
Signed-off-by: Joonsoo Kim <js1304@gmail.com>
Signed-off-by: Pekka Enberg <penberg@kernel.org>
2013-02-06 20:37:55 +02:00
Christoph Lameter
2c59dd6544 slab: Common Kmalloc cache determination
Extract the optimized lookup functions from slub and put them into
slab_common.c. Then make slab use these functions as well.

Joonsoo notes that this fixes some issues with constant folding which
also reduces the code size for slub.

https://lkml.org/lkml/2012/10/20/82

Signed-off-by: Christoph Lameter <cl@linux.com>
Signed-off-by: Pekka Enberg <penberg@kernel.org>
2013-02-01 12:32:08 +02:00
Christoph Lameter
f97d5f634d slab: Common function to create the kmalloc array
The kmalloc array is created in similar ways in both SLAB
and SLUB. Create a common function and have both allocators
call that function.

V1->V2:
	Whitespace cleanup

Reviewed-by: Glauber Costa <glommer@parallels.com>
Signed-off-by: Christoph Lameter <cl@linux.com>
Signed-off-by: Pekka Enberg <penberg@kernel.org>
2013-02-01 12:32:08 +02:00
Christoph Lameter
9425c58e54 slab: Common definition for the array of kmalloc caches
Have a common definition fo the kmalloc cache arrays in
SLAB and SLUB

Acked-by: Glauber Costa <glommer@parallels.com>
Signed-off-by: Christoph Lameter <cl@linux.com>
Signed-off-by: Pekka Enberg <penberg@kernel.org>
2013-02-01 12:32:07 +02:00
Christoph Lameter
31ba7346f0 slab: Use proper formatting specs for unsigned size_t
Signed-off-by: Christoph Lameter <cl@linux.com>
Signed-off-by: Pekka Enberg <penberg@kernel.org>
2013-02-01 12:32:05 +02:00
Glauber Costa
943a451a87 slab: propagate tunable values
SLAB allows us to tune a particular cache behavior with tunables.  When
creating a new memcg cache copy, we'd like to preserve any tunables the
parent cache already had.

This could be done by an explicit call to do_tune_cpucache() after the
cache is created.  But this is not very convenient now that the caches are
created from common code, since this function is SLAB-specific.

Another method of doing that is taking advantage of the fact that
do_tune_cpucache() is always called from enable_cpucache(), which is
called at cache initialization.  We can just preset the values, and then
things work as expected.

It can also happen that a root cache has its tunables updated during
normal system operation.  In this case, we will propagate the change to
all caches that are already active.

This change will require us to move the assignment of root_cache in
memcg_params a bit earlier.  We need this to be already set - which
memcg_kmem_register_cache will do - when we reach __kmem_cache_create()

Signed-off-by: Glauber Costa <glommer@parallels.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Frederic Weisbecker <fweisbec@redhat.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: JoonSoo Kim <js1304@gmail.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Pekka Enberg <penberg@cs.helsinki.fi>
Cc: Rik van Riel <riel@redhat.com>
Cc: Suleiman Souhlal <suleiman@google.com>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-12-18 15:02:14 -08:00
Glauber Costa
749c54151a memcg: aggregate memcg cache values in slabinfo
When we create caches in memcgs, we need to display their usage
information somewhere.  We'll adopt a scheme similar to /proc/meminfo,
with aggregate totals shown in the global file, and per-group information
stored in the group itself.

For the time being, only reads are allowed in the per-group cache.

Signed-off-by: Glauber Costa <glommer@parallels.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Frederic Weisbecker <fweisbec@redhat.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: JoonSoo Kim <js1304@gmail.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Pekka Enberg <penberg@cs.helsinki.fi>
Cc: Rik van Riel <riel@redhat.com>
Cc: Suleiman Souhlal <suleiman@google.com>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-12-18 15:02:14 -08:00
Glauber Costa
7cf2798240 memcg/sl[au]b: track all the memcg children of a kmem_cache
This enables us to remove all the children of a kmem_cache being
destroyed, if for example the kernel module it's being used in gets
unloaded.  Otherwise, the children will still point to the destroyed
parent.

Signed-off-by: Suleiman Souhlal <suleiman@google.com>
Signed-off-by: Glauber Costa <glommer@parallels.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Frederic Weisbecker <fweisbec@redhat.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: JoonSoo Kim <js1304@gmail.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Pekka Enberg <penberg@cs.helsinki.fi>
Cc: Rik van Riel <riel@redhat.com>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-12-18 15:02:14 -08:00
Glauber Costa
55007d8497 memcg: allocate memory for memcg caches whenever a new memcg appears
Every cache that is considered a root cache (basically the "original"
caches, tied to the root memcg/no-memcg) will have an array that should be
large enough to store a cache pointer per each memcg in the system.

Theoreticaly, this is as high as 1 << sizeof(css_id), which is currently
in the 64k pointers range.  Most of the time, we won't be using that much.

What goes in this patch, is a simple scheme to dynamically allocate such
an array, in order to minimize memory usage for memcg caches.  Because we
would also like to avoid allocations all the time, at least for now, the
array will only grow.  It will tend to be big enough to hold the maximum
number of kmem-limited memcgs ever achieved.

We'll allocate it to be a minimum of 64 kmem-limited memcgs.  When we have
more than that, we'll start doubling the size of this array every time the
limit is reached.

Because we are only considering kmem limited memcgs, a natural point for
this to happen is when we write to the limit.  At that point, we already
have set_limit_mutex held, so that will become our natural synchronization
mechanism.

Signed-off-by: Glauber Costa <glommer@parallels.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Frederic Weisbecker <fweisbec@redhat.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: JoonSoo Kim <js1304@gmail.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Pekka Enberg <penberg@cs.helsinki.fi>
Cc: Rik van Riel <riel@redhat.com>
Cc: Suleiman Souhlal <suleiman@google.com>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-12-18 15:02:13 -08:00
Glauber Costa
2633d7a028 slab/slub: consider a memcg parameter in kmem_create_cache
Allow a memcg parameter to be passed during cache creation.  When the slub
allocator is being used, it will only merge caches that belong to the same
memcg.  We'll do this by scanning the global list, and then translating
the cache to a memcg-specific cache

Default function is created as a wrapper, passing NULL to the memcg
version.  We only merge caches that belong to the same memcg.

A helper is provided, memcg_css_id: because slub needs a unique cache name
for sysfs.  Since this is visible, but not the canonical location for slab
data, the cache name is not used, the css_id should suffice.

Signed-off-by: Glauber Costa <glommer@parallels.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Frederic Weisbecker <fweisbec@redhat.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: JoonSoo Kim <js1304@gmail.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Pekka Enberg <penberg@cs.helsinki.fi>
Cc: Rik van Riel <riel@redhat.com>
Cc: Suleiman Souhlal <suleiman@google.com>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-12-18 15:02:13 -08:00
Christoph Lameter
4590685546 mm/sl[aou]b: Common alignment code
Extract the code to do object alignment from the allocators.
Do the alignment calculations in slab_common so that the
__kmem_cache_create functions of the allocators do not have
to deal with alignment.

Signed-off-by: Christoph Lameter <cl@linux.com>
Signed-off-by: Pekka Enberg <penberg@kernel.org>
2012-12-11 12:14:28 +02:00
Christoph Lameter
45530c4474 mm, sl[au]b: create common functions for boot slab creation
Use a special function to create kmalloc caches and use that function in
SLAB and SLUB.

Acked-by: Joonsoo Kim <js1304@gmail.com>
Reviewed-by: Glauber Costa <glommer@parallels.com>
Acked-by: David Rientjes <rientjes@google.com>
Signed-off-by: Christoph Lameter <cl@linux.com>
Signed-off-by: Pekka Enberg <penberg@kernel.org>
2012-12-11 12:14:27 +02:00
Glauber Costa
d8843922fb slab: Ignore internal flags in cache creation
Some flags are used internally by the allocators for management
purposes. One example of that is the CFLGS_OFF_SLAB flag that slab uses
to mark that the metadata for that cache is stored outside of the slab.

No cache should ever pass those as a creation flags. We can just ignore
this bit if it happens to be passed (such as when duplicating a cache in
the kmem memcg patches).

Because such flags can vary from allocator to allocator, we allow them
to make their own decisions on that, defining SLAB_AVAILABLE_FLAGS with
all flags that are valid at creation time.  Allocators that doesn't have
any specific flag requirement should define that to mean all flags.

Common code will mask out all flags not belonging to that set.

Acked-by: Christoph Lameter <cl@linux.com>
Acked-by: David Rientjes <rientjes@google.com>
Signed-off-by: Glauber Costa <glommer@parallels.com>
Signed-off-by: Pekka Enberg <penberg@kernel.org>
2012-10-31 09:13:01 +02:00
Glauber Costa
0d7561c61d sl[au]b: Process slabinfo_show in common code
With all the infrastructure in place, we can now have slabinfo_show
done from slab_common.c. A cache-specific function is called to grab
information about the cache itself, since that is still heavily
dependent on the implementation. But with the values produced by it, all
the printing and handling is done from common code.

Signed-off-by: Glauber Costa <glommer@parallels.com>
CC: Christoph Lameter <cl@linux.com>
CC: David Rientjes <rientjes@google.com>
Signed-off-by: Pekka Enberg <penberg@kernel.org>
2012-10-24 09:39:16 +03:00
Glauber Costa
bcee6e2a13 mm/sl[au]b: Move print_slabinfo_header to slab_common.c
The header format is highly similar between slab and slub. The main
difference lays in the fact that slab may optionally have statistics
added here in case of CONFIG_SLAB_DEBUG, while the slub will stick them
somewhere else.

By making sure that information conditionally lives inside a
globally-visible CONFIG_DEBUG_SLAB switch, we can move the header
printing to a common location.

Signed-off-by: Glauber Costa <glommer@parallels.com>
Acked-by: Christoph Lameter <cl@linux.com>
CC: David Rientjes <rientjes@google.com>
Signed-off-by: Pekka Enberg <penberg@kernel.org>
2012-10-24 09:38:38 +03:00
Glauber Costa
b7454ad3cf mm/sl[au]b: Move slabinfo processing to slab_common.c
This patch moves all the common machinery to slabinfo processing
to slab_common.c. We can do better by noticing that the output is
heavily common, and having the allocators to just provide finished
information about this. But after this first step, this can be done
easier.

Signed-off-by: Glauber Costa <glommer@parallels.com>
Acked-by: Christoph Lameter <cl@linux.com>
CC: David Rientjes <rientjes@google.com>
Signed-off-by: Pekka Enberg <penberg@kernel.org>
2012-10-24 09:37:41 +03:00
Jiri Kosina
210ed9deff mm, slab: release slab_mutex earlier in kmem_cache_destroy()
Commit 1331e7a1bb ("rcu: Remove _rcu_barrier() dependency on
__stop_machine()") introduced slab_mutex -> cpu_hotplug.lock dependency
through kmem_cache_destroy() -> rcu_barrier() -> _rcu_barrier() ->
get_online_cpus().

Lockdep thinks that this might actually result in ABBA deadlock,
and reports it as below:

=== [ cut here ] ===
 ======================================================
 [ INFO: possible circular locking dependency detected ]
 3.6.0-rc5-00004-g0d8ee37 #143 Not tainted
 -------------------------------------------------------
 kworker/u:2/40 is trying to acquire lock:
  (rcu_sched_state.barrier_mutex){+.+...}, at: [<ffffffff810f2126>] _rcu_barrier+0x26/0x1e0

 but task is already holding lock:
  (slab_mutex){+.+.+.}, at: [<ffffffff81176e15>] kmem_cache_destroy+0x45/0xe0

 which lock already depends on the new lock.

 the existing dependency chain (in reverse order) is:

 -> #2 (slab_mutex){+.+.+.}:
        [<ffffffff810ae1e2>] validate_chain+0x632/0x720
        [<ffffffff810ae5d9>] __lock_acquire+0x309/0x530
        [<ffffffff810ae921>] lock_acquire+0x121/0x190
        [<ffffffff8155d4cc>] __mutex_lock_common+0x5c/0x450
        [<ffffffff8155d9ee>] mutex_lock_nested+0x3e/0x50
        [<ffffffff81558cb5>] cpuup_callback+0x2f/0xbe
        [<ffffffff81564b83>] notifier_call_chain+0x93/0x140
        [<ffffffff81076f89>] __raw_notifier_call_chain+0x9/0x10
        [<ffffffff8155719d>] _cpu_up+0xba/0x14e
        [<ffffffff815572ed>] cpu_up+0xbc/0x117
        [<ffffffff81ae05e3>] smp_init+0x6b/0x9f
        [<ffffffff81ac47d6>] kernel_init+0x147/0x1dc
        [<ffffffff8156ab44>] kernel_thread_helper+0x4/0x10

 -> #1 (cpu_hotplug.lock){+.+.+.}:
        [<ffffffff810ae1e2>] validate_chain+0x632/0x720
        [<ffffffff810ae5d9>] __lock_acquire+0x309/0x530
        [<ffffffff810ae921>] lock_acquire+0x121/0x190
        [<ffffffff8155d4cc>] __mutex_lock_common+0x5c/0x450
        [<ffffffff8155d9ee>] mutex_lock_nested+0x3e/0x50
        [<ffffffff81049197>] get_online_cpus+0x37/0x50
        [<ffffffff810f21bb>] _rcu_barrier+0xbb/0x1e0
        [<ffffffff810f22f0>] rcu_barrier_sched+0x10/0x20
        [<ffffffff810f2309>] rcu_barrier+0x9/0x10
        [<ffffffff8118c129>] deactivate_locked_super+0x49/0x90
        [<ffffffff8118cc01>] deactivate_super+0x61/0x70
        [<ffffffff811aaaa7>] mntput_no_expire+0x127/0x180
        [<ffffffff811ab49e>] sys_umount+0x6e/0xd0
        [<ffffffff81569979>] system_call_fastpath+0x16/0x1b

 -> #0 (rcu_sched_state.barrier_mutex){+.+...}:
        [<ffffffff810adb4e>] check_prev_add+0x3de/0x440
        [<ffffffff810ae1e2>] validate_chain+0x632/0x720
        [<ffffffff810ae5d9>] __lock_acquire+0x309/0x530
        [<ffffffff810ae921>] lock_acquire+0x121/0x190
        [<ffffffff8155d4cc>] __mutex_lock_common+0x5c/0x450
        [<ffffffff8155d9ee>] mutex_lock_nested+0x3e/0x50
        [<ffffffff810f2126>] _rcu_barrier+0x26/0x1e0
        [<ffffffff810f22f0>] rcu_barrier_sched+0x10/0x20
        [<ffffffff810f2309>] rcu_barrier+0x9/0x10
        [<ffffffff81176ea1>] kmem_cache_destroy+0xd1/0xe0
        [<ffffffffa04c3154>] nf_conntrack_cleanup_net+0xe4/0x110 [nf_conntrack]
        [<ffffffffa04c31aa>] nf_conntrack_cleanup+0x2a/0x70 [nf_conntrack]
        [<ffffffffa04c42ce>] nf_conntrack_net_exit+0x5e/0x80 [nf_conntrack]
        [<ffffffff81454b79>] ops_exit_list+0x39/0x60
        [<ffffffff814551ab>] cleanup_net+0xfb/0x1b0
        [<ffffffff8106917b>] process_one_work+0x26b/0x4c0
        [<ffffffff81069f3e>] worker_thread+0x12e/0x320
        [<ffffffff8106f73e>] kthread+0x9e/0xb0
        [<ffffffff8156ab44>] kernel_thread_helper+0x4/0x10

 other info that might help us debug this:

 Chain exists of:
   rcu_sched_state.barrier_mutex --> cpu_hotplug.lock --> slab_mutex

  Possible unsafe locking scenario:

        CPU0                    CPU1
        ----                    ----
   lock(slab_mutex);
                                lock(cpu_hotplug.lock);
                                lock(slab_mutex);
   lock(rcu_sched_state.barrier_mutex);

  *** DEADLOCK ***
=== [ cut here ] ===

This is actually a false positive. Lockdep has no way of knowing the fact
that the ABBA can actually never happen, because of special semantics of
cpu_hotplug.refcount and its handling in cpu_hotplug_begin(); the mutual
exclusion there is not achieved through mutex, but through
cpu_hotplug.refcount.

The "neither cpu_up() nor cpu_down() will proceed past cpu_hotplug_begin()
until everyone who called get_online_cpus() will call put_online_cpus()"
semantics is totally invisible to lockdep.

This patch therefore moves the unlock of slab_mutex so that rcu_barrier()
is being called with it unlocked. It has two advantages:

- it slightly reduces hold time of slab_mutex; as it's used to protect
  the cachep list, it's not necessary to hold it over kmem_cache_free()
  call any more
- it silences the lockdep false positive warning, as it avoids lockdep ever
  learning about slab_mutex -> cpu_hotplug.lock dependency

Reviewed-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Reviewed-by: Srivatsa S. Bhat <srivatsa.bhat@linux.vnet.ibm.com>
Acked-by: David Rientjes <rientjes@google.com>
Signed-off-by: Jiri Kosina <jkosina@suse.cz>
Signed-off-by: Pekka Enberg <penberg@kernel.org>
2012-10-10 09:25:08 +03:00
Pekka Enberg
aac3a1664a Revert "mm/sl[aou]b: Move sysfs_slab_add to common"
This reverts commit 96d17b7be0 which
caused the following errors at boot:

  [    1.114885] kobject (ffff88001a802578): tried to init an initialized object, something is seriously wrong.
  [    1.114885] Pid: 1, comm: swapper/0 Tainted: G        W    3.6.0-rc1+ #6
  [    1.114885] Call Trace:
  [    1.114885]  [<ffffffff81273f37>] kobject_init+0x87/0xa0
  [    1.115555]  [<ffffffff8127426a>] kobject_init_and_add+0x2a/0x90
  [    1.115555]  [<ffffffff8127c870>] ? sprintf+0x40/0x50
  [    1.115555]  [<ffffffff81124c60>] sysfs_slab_add+0x80/0x210
  [    1.115555]  [<ffffffff81100175>] kmem_cache_create+0xa5/0x250
  [    1.115555]  [<ffffffff81cf24cd>] ? md_init+0x144/0x144
  [    1.115555]  [<ffffffff81cf25b6>] local_init+0xa4/0x11b
  [    1.115555]  [<ffffffff81cf24e1>] dm_init+0x14/0x45
  [    1.115836]  [<ffffffff810001ba>] do_one_initcall+0x3a/0x160
  [    1.116834]  [<ffffffff81cc2c90>] kernel_init+0x133/0x1b7
  [    1.117835]  [<ffffffff81cc25c4>] ? do_early_param+0x86/0x86
  [    1.117835]  [<ffffffff8171aff4>] kernel_thread_helper+0x4/0x10
  [    1.118401]  [<ffffffff81cc2b5d>] ? start_kernel+0x33f/0x33f
  [    1.119832]  [<ffffffff8171aff0>] ? gs_change+0xb/0xb
  [    1.120325] ------------[ cut here ]------------
  [    1.120835] WARNING: at fs/sysfs/dir.c:536 sysfs_add_one+0xc1/0xf0()
  [    1.121437] sysfs: cannot create duplicate filename '/kernel/slab/:t-0000016'
  [    1.121831] Modules linked in:
  [    1.122138] Pid: 1, comm: swapper/0 Tainted: G        W    3.6.0-rc1+ #6
  [    1.122831] Call Trace:
  [    1.123074]  [<ffffffff81195ce1>] ? sysfs_add_one+0xc1/0xf0
  [    1.123833]  [<ffffffff8103adfa>] warn_slowpath_common+0x7a/0xb0
  [    1.124405]  [<ffffffff8103aed1>] warn_slowpath_fmt+0x41/0x50
  [    1.124832]  [<ffffffff81195ce1>] sysfs_add_one+0xc1/0xf0
  [    1.125337]  [<ffffffff81195eb3>] create_dir+0x73/0xd0
  [    1.125832]  [<ffffffff81196221>] sysfs_create_dir+0x81/0xe0
  [    1.126363]  [<ffffffff81273d3d>] kobject_add_internal+0x9d/0x210
  [    1.126832]  [<ffffffff812742a3>] kobject_init_and_add+0x63/0x90
  [    1.127406]  [<ffffffff81124c60>] sysfs_slab_add+0x80/0x210
  [    1.127832]  [<ffffffff81100175>] kmem_cache_create+0xa5/0x250
  [    1.128384]  [<ffffffff81cf24cd>] ? md_init+0x144/0x144
  [    1.128833]  [<ffffffff81cf25b6>] local_init+0xa4/0x11b
  [    1.129831]  [<ffffffff81cf24e1>] dm_init+0x14/0x45
  [    1.130305]  [<ffffffff810001ba>] do_one_initcall+0x3a/0x160
  [    1.130831]  [<ffffffff81cc2c90>] kernel_init+0x133/0x1b7
  [    1.131351]  [<ffffffff81cc25c4>] ? do_early_param+0x86/0x86
  [    1.131830]  [<ffffffff8171aff4>] kernel_thread_helper+0x4/0x10
  [    1.132392]  [<ffffffff81cc2b5d>] ? start_kernel+0x33f/0x33f
  [    1.132830]  [<ffffffff8171aff0>] ? gs_change+0xb/0xb
  [    1.133315] ---[ end trace 2703540871c8fab7 ]---
  [    1.133830] ------------[ cut here ]------------
  [    1.134274] WARNING: at lib/kobject.c:196 kobject_add_internal+0x1f5/0x210()
  [    1.134829] kobject_add_internal failed for :t-0000016 with -EEXIST, don't try to register things with the same name in the same directory.
  [    1.135829] Modules linked in:
  [    1.136135] Pid: 1, comm: swapper/0 Tainted: G        W    3.6.0-rc1+ #6
  [    1.136828] Call Trace:
  [    1.137071]  [<ffffffff81273e95>] ? kobject_add_internal+0x1f5/0x210
  [    1.137830]  [<ffffffff8103adfa>] warn_slowpath_common+0x7a/0xb0
  [    1.138402]  [<ffffffff8103aed1>] warn_slowpath_fmt+0x41/0x50
  [    1.138830]  [<ffffffff811955a3>] ? release_sysfs_dirent+0x73/0xf0
  [    1.139419]  [<ffffffff81273e95>] kobject_add_internal+0x1f5/0x210
  [    1.139830]  [<ffffffff812742a3>] kobject_init_and_add+0x63/0x90
  [    1.140429]  [<ffffffff81124c60>] sysfs_slab_add+0x80/0x210
  [    1.140830]  [<ffffffff81100175>] kmem_cache_create+0xa5/0x250
  [    1.141829]  [<ffffffff81cf24cd>] ? md_init+0x144/0x144
  [    1.142307]  [<ffffffff81cf25b6>] local_init+0xa4/0x11b
  [    1.142829]  [<ffffffff81cf24e1>] dm_init+0x14/0x45
  [    1.143307]  [<ffffffff810001ba>] do_one_initcall+0x3a/0x160
  [    1.143829]  [<ffffffff81cc2c90>] kernel_init+0x133/0x1b7
  [    1.144352]  [<ffffffff81cc25c4>] ? do_early_param+0x86/0x86
  [    1.144829]  [<ffffffff8171aff4>] kernel_thread_helper+0x4/0x10
  [    1.145405]  [<ffffffff81cc2b5d>] ? start_kernel+0x33f/0x33f
  [    1.145828]  [<ffffffff8171aff0>] ? gs_change+0xb/0xb
  [    1.146313] ---[ end trace 2703540871c8fab8 ]---

Conflicts:

	mm/slub.c

Signed-off-by: Pekka Enberg <penberg@kernel.org>
2012-09-05 12:07:44 +03:00