- Update the ACPICA code in the kernel to upstream revision 20191018
including:
* Fixes for Clang warnings (Bob Moore).
* Fix for possible overflow in get_tick_count() (Bob Moore).
* Introduction of acpi_unload_table() (Bob Moore).
* Debugger and utilities updates (Erik Schmauss).
* Fix for unloading tables loaded via configfs (Nikolaus Voss).
- Add support for EFI specific purpose memory to optionally allow
either application-exclusive or core-kernel-mm managed access to
differentiated memory (Dan Williams).
- Fix and clean up processing of the HMAT table (Brice Goglin,
Qian Cai, Tao Xu).
- Update the ACPI EC driver to make it work on systems with
hardware-reduced ACPI (Daniel Drake).
- Always build in support for the Generic Event Device (GED) to
allow one kernel binary to work both on systems with full
hardware ACPI and hardware-reduced ACPI (Arjan van de Ven).
- Fix the table unload mechanism to unregister platform devices
created when the given table was loaded (Andy Shevchenko).
- Rework the lid blacklist handling in the button driver and add
more lid quirks to it (Hans de Goede).
- Improve ACPI-based device enumeration for some platforms based
on Intel BayTrail SoCs (Hans de Goede).
- Add an OpRegion driver for the Cherry Trail Crystal Cove PMIC
and prevent handlers from being registered for unhandled PMIC
OpRegions (Hans de Goede).
- Unify ACPI _HID/_UID matching (Andy Shevchenko).
- Clean up documentation and comments (Cao jin, James Pack, Kacper
Piwiński).
-----BEGIN PGP SIGNATURE-----
iQJGBAABCAAwFiEE4fcc61cGeeHD/fCwgsRv/nhiVHEFAl3dHNkSHHJqd0Byand5
c29ja2kubmV0AAoJEILEb/54YlRx/NkP/2y6DWjslA6UW4gjZwaRBcjYoyWExMtQ
Z86goiRJtP+/NqOwm09wHFcV6FdZ4kitUno3UgMCDZJjrURapg1D0rxb1lSYtMzs
mGr2FBZlVsJ9erOVSzKj1x2afVhdgl0Rl0fxPzoKgCFt8tCJar6cXy4CVEQKdeLs
eUui2ksXMIEODGhpN/tr/fJqY4O4jlLmPY6gKWfFpSTsv6lnZmzcCxLf5EvUU7JW
O91/jXdWz4Vl6IdP32sce6dGDjkvwnY105c7HeBf5EQWUe9RHFuSex982qhCD8U+
iE+JzlhoYpUb03EktJSXbL++IKUHvoUpTanbhka6unMhazC86x0hDf7ruUtYo2Bk
V8347CFeQ1x2O5IabfJNnUfKaMYhYmOXIoFHJTLKFO5mcCJmP8KOOyDAYilC1psb
RJpl1fDoAhk7NqhMttyBqfxiotP0kMoKuqtAAl8Y0hTF0DwR9IfKntuTtp1yTGds
R4dpJrizUDzw1/o4fCWbc3dFZQR3NFGpL/EAyfPzqjGaeaBBkLoNYstqkal5XHwT
CILmQg2WHoNuQLXZ4NFFDrM2k2G+VUAjQdkYcb/MCOFbw+aTVPu1wyQq37RLtbMo
9UwGeeT6SXW3iA1nyMoM+YvitjmxS7gHPPPl+b9G6kBubAzBPp91Ra0Mj9dPIGRB
Evv5nzOIh8Hi
=7Cqr
-----END PGP SIGNATURE-----
Merge tag 'acpi-5.5-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm
Pull ACPI updates from Rafael Wysocki:
"These update the ACPICA code in the kernel to upstream revision
20191018, add support for EFI specific purpose memory, update the ACPI
EC driver to make it work on systems with hardware-reduced ACPI,
improve ACPI-based device enumeration for some platforms, rework the
lid blacklist handling in the button driver and add more lid quirks to
it, unify ACPI _HID/_UID matching, fix assorted issues and clean up
the code and documentation.
Specifics:
- Update the ACPICA code in the kernel to upstream revision 20191018
including:
* Fixes for Clang warnings (Bob Moore)
* Fix for possible overflow in get_tick_count() (Bob Moore)
* Introduction of acpi_unload_table() (Bob Moore)
* Debugger and utilities updates (Erik Schmauss)
* Fix for unloading tables loaded via configfs (Nikolaus Voss)
- Add support for EFI specific purpose memory to optionally allow
either application-exclusive or core-kernel-mm managed access to
differentiated memory (Dan Williams)
- Fix and clean up processing of the HMAT table (Brice Goglin, Qian
Cai, Tao Xu)
- Update the ACPI EC driver to make it work on systems with
hardware-reduced ACPI (Daniel Drake)
- Always build in support for the Generic Event Device (GED) to allow
one kernel binary to work both on systems with full hardware ACPI
and hardware-reduced ACPI (Arjan van de Ven)
- Fix the table unload mechanism to unregister platform devices
created when the given table was loaded (Andy Shevchenko)
- Rework the lid blacklist handling in the button driver and add more
lid quirks to it (Hans de Goede)
- Improve ACPI-based device enumeration for some platforms based on
Intel BayTrail SoCs (Hans de Goede)
- Add an OpRegion driver for the Cherry Trail Crystal Cove PMIC and
prevent handlers from being registered for unhandled PMIC OpRegions
(Hans de Goede)
- Unify ACPI _HID/_UID matching (Andy Shevchenko)
- Clean up documentation and comments (Cao jin, James Pack, Kacper
Piwiński)"
* tag 'acpi-5.5-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm: (52 commits)
ACPI: OSI: Shoot duplicate word
ACPI: HMAT: use %u instead of %d to print u32 values
ACPI: NUMA: HMAT: fix a section mismatch
ACPI: HMAT: don't mix pxm and nid when setting memory target processor_pxm
ACPI: NUMA: HMAT: Register "soft reserved" memory as an "hmem" device
ACPI: NUMA: HMAT: Register HMAT at device_initcall level
device-dax: Add a driver for "hmem" devices
dax: Fix alloc_dax_region() compile warning
lib: Uplevel the pmem "region" ida to a global allocator
x86/efi: Add efi_fake_mem support for EFI_MEMORY_SP
arm/efi: EFI soft reservation to memblock
x86/efi: EFI soft reservation to E820 enumeration
efi: Common enable/disable infrastructure for EFI soft reservation
x86/efi: Push EFI_MEMMAP check into leaf routines
efi: Enumerate EFI_MEMORY_SP
ACPI: NUMA: Establish a new drivers/acpi/numa/ directory
ACPICA: Update version to 20191018
ACPICA: debugger: remove leading whitespaces when converting a string to a buffer
ACPICA: acpiexec: initialize all simple types and field units from user input
ACPICA: debugger: add field unit support for acpi_db_get_next_token
...
Pull x86 asm updates from Ingo Molnar:
"The main changes in this cycle were:
- Cross-arch changes to move the linker sections for NOTES and
EXCEPTION_TABLE into the RO_DATA area, where they belong on most
architectures. (Kees Cook)
- Switch the x86 linker fill byte from x90 (NOP) to 0xcc (INT3), to
trap jumps into the middle of those padding areas instead of
sliding execution. (Kees Cook)
- A thorough cleanup of symbol definitions within x86 assembler code.
The rather randomly named macros got streamlined around a
(hopefully) straightforward naming scheme:
SYM_START(name, linkage, align...)
SYM_END(name, sym_type)
SYM_FUNC_START(name)
SYM_FUNC_END(name)
SYM_CODE_START(name)
SYM_CODE_END(name)
SYM_DATA_START(name)
SYM_DATA_END(name)
etc - with about three times of these basic primitives with some
label, local symbol or attribute variant, expressed via postfixes.
No change in functionality intended. (Jiri Slaby)
- Misc other changes, cleanups and smaller fixes"
* 'x86-asm-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (67 commits)
x86/entry/64: Remove pointless jump in paranoid_exit
x86/entry/32: Remove unused resume_userspace label
x86/build/vdso: Remove meaningless CFLAGS_REMOVE_*.o
m68k: Convert missed RODATA to RO_DATA
x86/vmlinux: Use INT3 instead of NOP for linker fill bytes
x86/mm: Report actual image regions in /proc/iomem
x86/mm: Report which part of kernel image is freed
x86/mm: Remove redundant address-of operators on addresses
xtensa: Move EXCEPTION_TABLE to RO_DATA segment
powerpc: Move EXCEPTION_TABLE to RO_DATA segment
parisc: Move EXCEPTION_TABLE to RO_DATA segment
microblaze: Move EXCEPTION_TABLE to RO_DATA segment
ia64: Move EXCEPTION_TABLE to RO_DATA segment
h8300: Move EXCEPTION_TABLE to RO_DATA segment
c6x: Move EXCEPTION_TABLE to RO_DATA segment
arm64: Move EXCEPTION_TABLE to RO_DATA segment
alpha: Move EXCEPTION_TABLE to RO_DATA segment
x86/vmlinux: Move EXCEPTION_TABLE to RO_DATA segment
x86/vmlinux: Actually use _etext for the end of the text segment
vmlinux.lds.h: Allow EXCEPTION_TABLE to live in RO_DATA
...
Pull x86 boot updates from Ingo Molnar:
"The main changes were:
- Extend the boot protocol to allow future extensions without hitting
the setup_header size limit.
- Add quirk to devicetree systems to disable the RTC unless it's
listed as a supported device.
- Fix ld.lld linker pedantry"
* 'x86-boot-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/boot: Introduce setup_indirect
x86/boot: Introduce kernel_info.setup_type_max
x86/boot: Introduce kernel_info
x86/init: Allow DT configured systems to disable RTC at boot time
x86/realmode: Explicitly set entry point via ENTRY in linker script
BIOSen -> BIOSes; paing -> paging. Append to 640 its proper unit "Kb".
encomapssing -> encompassing.
[ bp: Merge into a single patch, fix one more typo, massage. ]
Signed-off-by: Cao jin <caoj.fnst@cn.fujitsu.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Baoquan He <bhe@redhat.com>
Cc: Dave Young <dyoung@redhat.com>
Cc: David Howells <dhowells@redhat.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Robert Richter <rrichter@marvell.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Thomas Lendacky <Thomas.Lendacky@amd.com>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/20191118070012.27850-1-caoj.fnst@cn.fujitsu.com
The setup_data is a bit awkward to use for extremely large data objects,
both because the setup_data header has to be adjacent to the data object
and because it has a 32-bit length field. However, it is important that
intermediate stages of the boot process have a way to identify which
chunks of memory are occupied by kernel data. Thus introduce an uniform
way to specify such indirect data as setup_indirect struct and
SETUP_INDIRECT type.
And finally bump setup_header version in arch/x86/boot/header.S.
Suggested-by: H. Peter Anvin (Intel) <hpa@zytor.com>
Signed-off-by: Daniel Kiper <daniel.kiper@oracle.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Ross Philipson <ross.philipson@oracle.com>
Reviewed-by: H. Peter Anvin (Intel) <hpa@zytor.com>
Acked-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: ard.biesheuvel@linaro.org
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: dave.hansen@linux.intel.com
Cc: eric.snowberg@oracle.com
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Juergen Gross <jgross@suse.com>
Cc: kanth.ghatraju@oracle.com
Cc: linux-doc@vger.kernel.org
Cc: linux-efi <linux-efi@vger.kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: rdunlap@infradead.org
Cc: ross.philipson@oracle.com
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: x86-ml <x86@kernel.org>
Cc: xen-devel@lists.xenproject.org
Link: https://lkml.kernel.org/r/20191112134640.16035-4-daniel.kiper@oracle.com
In preparation for adding another EFI_MEMMAP dependent call that needs
to occur before e820__memblock_setup() fixup the existing efi calls to
check for EFI_MEMMAP internally. This ends up being cleaner than the
alternative of checking EFI_MEMMAP multiple times in setup_arch().
Reviewed-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
The resource reservations in /proc/iomem made for the kernel image did
not reflect the gaps between text, rodata, and data. Add the "rodata"
resource and update the start/end calculations to match the respective
calls to free_kernel_image_pages().
Before (booted with "nokaslr" for easier comparison):
00100000-bffd9fff : System RAM
01000000-01e011d0 : Kernel code
01e011d1-025619bf : Kernel data
02a95000-035fffff : Kernel bss
After:
00100000-bffd9fff : System RAM
01000000-01e011d0 : Kernel code
02000000-023d4fff : Kernel rodata
02400000-025619ff : Kernel data
02a95000-035fffff : Kernel bss
Signed-off-by: Kees Cook <keescook@chromium.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Dave Young <dyoung@redhat.com>
Cc: David Howells <dhowells@redhat.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: linux-alpha@vger.kernel.org
Cc: linux-arch@vger.kernel.org
Cc: linux-arm-kernel@lists.infradead.org
Cc: linux-c6x-dev@linux-c6x.org
Cc: linux-ia64@vger.kernel.org
Cc: linuxppc-dev@lists.ozlabs.org
Cc: linux-s390@vger.kernel.org
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Michal Simek <monstr@monstr.eu>
Cc: Rick Edgecombe <rick.p.edgecombe@intel.com>
Cc: Robert Richter <rrichter@marvell.com>
Cc: Segher Boessenkool <segher@kernel.crashing.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Thomas Lendacky <Thomas.Lendacky@amd.com>
Cc: Will Deacon <will@kernel.org>
Cc: x86-ml <x86@kernel.org>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Link: https://lkml.kernel.org/r/20191029211351.13243-29-keescook@chromium.org
After commit cf65a0f6f6 ("dma-mapping: move all DMA mapping code to
kernel/dma") some of the files are referring to outdated information,
i.e. old file names of DMA mapping sources. Fix it here.
Note, the lines with "Glue code for..." have been removed completely.
Signed-off-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Pull x865 kdump updates from Thomas Gleixner:
"Yet more kexec/kdump updates:
- Properly support kexec when AMD's memory encryption (SME) is
enabled
- Pass reserved e820 ranges to the kexec kernel so both PCI and SME
can work"
* 'x86-kdump-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
fs/proc/vmcore: Enable dumping of encrypted memory when SEV was active
x86/kexec: Set the C-bit in the identity map page table when SEV is active
x86/kexec: Do not map kexec area as decrypted when SEV is active
x86/crash: Add e820 reserved ranges to kdump kernel's e820 table
x86/mm: Rework ioremap resource mapping determination
x86/e820, ioport: Add a new I/O resource descriptor IORES_DESC_RESERVED
x86/mm: Create a workarea in the kernel for SME early encryption
x86/mm: Identify the end of the kernel area to be reserved
Restrict kdump to only reserve crashkernel below 64TB.
The reaons is that the kdump may jump from a 5-level paging mode to a
4-level paging mode kernel. If a 4-level paging mode kdump kernel is put
above 64TB, then the kdump kernel cannot start.
The 1st kernel reserves the kdump kernel region during bootup. At that
point it is not known whether the kdump kernel has 5-level or 4-level
paging support.
To support both restrict the kdump kernel reservation to the lower 64TB
address space to ensure that a 4-level paging mode kdump kernel can be
loaded and successfully started.
[ tglx: Massaged changelog ]
Signed-off-by: Baoquan He <bhe@redhat.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Acked-by: Dave Young <dyoung@redhat.com>
Cc: bp@alien8.de
Cc: hpa@zytor.com
Link: https://lkml.kernel.org/r/20190524073810.24298-4-bhe@redhat.com
The memory occupied by the kernel is reserved using memblock_reserve()
in setup_arch(). Currently, the area is from symbols _text to __bss_stop.
Everything after __bss_stop must be specifically reserved otherwise it
is discarded. This is not clearly documented.
Add a new symbol, __end_of_kernel_reserve, that more readily identifies
what is reserved, along with comments that indicate what is reserved,
what is discarded and what needs to be done to prevent a section from
being discarded.
Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Baoquan He <bhe@redhat.com>
Reviewed-by: Dave Hansen <dave.hansen@intel.com>
Tested-by: Lianbo Jiang <lijiang@redhat.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Brijesh Singh <brijesh.singh@amd.com>
Cc: Dave Young <dyoung@redhat.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Joerg Roedel <jroedel@suse.de>
Cc: Juergen Gross <jgross@suse.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Nick Desaulniers <ndesaulniers@google.com>
Cc: Pavel Tatashin <pasha.tatashin@oracle.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Robert Richter <rrichter@marvell.com>
Cc: Sami Tolvanen <samitolvanen@google.com>
Cc: Sinan Kaya <okaya@codeaurora.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: "x86@kernel.org" <x86@kernel.org>
Link: https://lkml.kernel.org/r/7db7da45b435f8477f25e66f292631ff766a844c.1560969363.git.thomas.lendacky@amd.com
Add SPDX license identifiers to all files which:
- Have no license information of any form
- Have EXPORT_.*_SYMBOL_GPL inside which was used in the
initial scan/conversion to ignore the file
These files fall under the project license, GPL v2 only. The resulting SPDX
license identifier is:
GPL-2.0-only
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Pull x86 kdump update from Ingo Molnar:
"This includes two changes:
- Raise the crash kernel reservation limit from from ~896MB to ~4GB.
Only very old (and already known-broken) kexec-tools is supposed to
be affected by this negatively.
- Allow higher than 4GB crash kernel allocations when low allocations
fail"
* 'x86-kdump-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/kdump: Fall back to reserve high crashkernel memory
x86/kdump: Have crashkernel=X reserve under 4G by default
crashkernel=xM tries to reserve memory for the crash kernel under 4G,
which is enough, usually. But this could fail sometimes, for example
when one tries to reserve a big chunk like 2G, for example.
So let the crashkernel=xM just fall back to use high memory in case it
fails to find a suitable low range. Do not set the ,high as default
because it allocates extra low memory for DMA buffers and swiotlb, and
this is not always necessary for all machines.
Typically, crashkernel=128M usually works with low reservation under 4G,
so keep <4G as default.
[ bp: Massage. ]
Signed-off-by: Dave Young <dyoung@redhat.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Baoquan He <bhe@redhat.com>
Cc: Dave Young <dyoung@redhat.com>
Cc: David Howells <dhowells@redhat.com>
Cc: Eric Biederman <ebiederm@xmission.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jiri Kosina <jkosina@suse.cz>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Juergen Gross <jgross@suse.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Cc: linux-doc@vger.kernel.org
Cc: "Paul E. McKenney" <paulmck@linux.ibm.com>
Cc: Petr Tesarik <ptesarik@suse.cz>
Cc: piliu@redhat.com
Cc: Ram Pai <linuxram@us.ibm.com>
Cc: Sinan Kaya <okaya@codeaurora.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Thymo van Beers <thymovanbeers@gmail.com>
Cc: vgoyal@redhat.com
Cc: x86-ml <x86@kernel.org>
Cc: Yinghai Lu <yinghai@kernel.org>
Cc: Zhimin Gu <kookoo.gu@intel.com>
Link: https://lkml.kernel.org/r/20190422031905.GA8387@dhcp-128-65.nay.redhat.com
The kdump crashkernel low reservation is limited to under 896M even for
X86_64. This obscure and miserable limitation exists for compatibility
with old kexec-tools but the reason is not documented anywhere.
Some more tests/investigations about the background:
a) Previously, old kexec-tools could only load purgatory to memory under
2G. Eric removed that limitation in 2012 in kexec-tools:
b4f9f8599679 ("kexec x86_64: Make purgatory relocatable anywhere
in the 64bit address space.")
b) Back in 2013 Yinghai removed all the limitations in new kexec-tools,
bzImage64 can be loaded anywhere:
82c3dd2280d2 ("kexec, x86_64: Load bzImage64 above 4G")
c) Test results with old kexec-tools with old and latest kernels:
1. Old kexec-tools can not build with modern toolchain anymore,
I built it in a RHEL6 vm.
2. 2.0.0 kexec-tools does not work with the latest kernel even with
memory under 896M and gives an error:
"ELF core (kcore) parse failed"
For that it needs below kexec-tools fix:
ed15ba1b9977 ("build_mem_phdrs(): check if p_paddr is invalid")
3. Even with patched kexec-tools which fixes 2), it still needs some
other fixes to work correctly for KASLR-enabled kernels.
So the situation is:
* Old kexec-tools is already broken with latest kernels.
* We can not keep these limitations forever just for compatibility with very
old kexec-tools.
* If one must use old tools then he/she can choose crashkernel=X@Y.
* People have reported bugs where crashkernel=384M failed because KASLR
makes the 0-896M space sparse.
* Crashkernel can reserve in low or high area, it is natural to understand
low as memory under 4G.
Hence drop the 896M limitation and change crashkernel low reservation to
reserve under 4G by default.
Signed-off-by: Dave Young <dyoung@redhat.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Baoquan He <bhe@redhat.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: David Howells <dhowells@redhat.com>
Cc: Eric Biederman <ebiederm@xmission.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Petr Tesarik <ptesarik@suse.cz>
Cc: piliu@redhat.com
Cc: Ram Pai <linuxram@us.ibm.com>
Cc: Sinan Kaya <okaya@codeaurora.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: vgoyal@redhat.com
Cc: x86-ml <x86@kernel.org>
Cc: Yinghai Lu <yinghai@kernel.org>
Cc: Zhimin Gu <kookoo.gu@intel.com>
Link: https://lkml.kernel.org/r/20190421035058.943630505@redhat.com
All architectures (arm/arm64, ia64 and x86) do the same here, so unify
the code.
Note: We do not need to call dump_stack_set_arch_desc() in case of
!dmi_available. Both strings, dmi_ids_string and dump_stack_arch_
desc_str are initialized zero and thus nothing would change.
Signed-off-by: Robert Richter <rrichter@marvell.com>
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Reviewed-by: Jean Delvare <jdelvare@suse.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Matt Fleming <matt@codeblueprint.co.uk>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-efi@vger.kernel.org
Link: http://lkml.kernel.org/r/20190328193429.21373-5-ard.biesheuvel@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Pull vfs mount API prep from Al Viro:
"Mount API prereqs.
Mostly that's LSM mount options cleanups. There are several minor
fixes in there, but nothing earth-shattering (leaks on failure exits,
mostly)"
* 'mount.part1' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs: (27 commits)
mount_fs: suppress MAC on MS_SUBMOUNT as well as MS_KERNMOUNT
smack: rewrite smack_sb_eat_lsm_opts()
smack: get rid of match_token()
smack: take the guts of smack_parse_opts_str() into a new helper
LSM: new method: ->sb_add_mnt_opt()
selinux: rewrite selinux_sb_eat_lsm_opts()
selinux: regularize Opt_... names a bit
selinux: switch away from match_token()
selinux: new helper - selinux_add_opt()
LSM: bury struct security_mnt_opts
smack: switch to private smack_mnt_opts
selinux: switch to private struct selinux_mnt_opts
LSM: hide struct security_mnt_opts from any generic code
selinux: kill selinux_sb_get_mnt_opts()
LSM: turn sb_eat_lsm_opts() into a method
nfs_remount(): don't leak, don't ignore LSM options quietly
btrfs: sanitize security_mnt_opts use
selinux; don't open-code a loop in sb_finish_set_opts()
LSM: split ->sb_set_mnt_opts() out of ->sb_kern_mount()
new helper: security_sb_eat_lsm_opts()
...
Only the mount namespace code that implements mount(2) should be using the
MS_* flags. Suppress them inside the kernel unless uapi/linux/mount.h is
included.
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Reviewed-by: David Howells <dhowells@redhat.com>
Peter Anvin pointed out that commit:
ae7e1238e6 ("x86/boot: Add ACPI RSDP address to setup_header")
should be reverted as setup_header should only contain items set by the
legacy BIOS.
So revert said commit. Instead of fully reverting the dependent commit
of:
e7b66d16fe ("x86/acpi, x86/boot: Take RSDP address for boot params if available")
just remove the setup_header reference in order to replace it by
a boot_params in a followup patch.
Suggested-by: "H. Peter Anvin" <hpa@zytor.com>
Signed-off-by: Juergen Gross <jgross@suse.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: boris.ostrovsky@oracle.com
Cc: bp@alien8.de
Cc: daniel.kiper@oracle.com
Cc: sstabellini@kernel.org
Cc: xen-devel@lists.xenproject.org
Link: http://lkml.kernel.org/r/20181120072529.5489-2-jgross@suse.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Move remaining definitions and declarations from include/linux/bootmem.h
into include/linux/memblock.h and remove the redundant header.
The includes were replaced with the semantic patch below and then
semi-automated removal of duplicated '#include <linux/memblock.h>
@@
@@
- #include <linux/bootmem.h>
+ #include <linux/memblock.h>
[sfr@canb.auug.org.au: dma-direct: fix up for the removal of linux/bootmem.h]
Link: http://lkml.kernel.org/r/20181002185342.133d1680@canb.auug.org.au
[sfr@canb.auug.org.au: powerpc: fix up for removal of linux/bootmem.h]
Link: http://lkml.kernel.org/r/20181005161406.73ef8727@canb.auug.org.au
[sfr@canb.auug.org.au: x86/kaslr, ACPI/NUMA: fix for linux/bootmem.h removal]
Link: http://lkml.kernel.org/r/20181008190341.5e396491@canb.auug.org.au
Link: http://lkml.kernel.org/r/1536927045-23536-30-git-send-email-rppt@linux.vnet.ibm.com
Signed-off-by: Mike Rapoport <rppt@linux.vnet.ibm.com>
Signed-off-by: Stephen Rothwell <sfr@canb.auug.org.au>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Chris Zankel <chris@zankel.net>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Greentime Hu <green.hu@gmail.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Guan Xuetao <gxt@pku.edu.cn>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: "James E.J. Bottomley" <jejb@parisc-linux.org>
Cc: Jonas Bonn <jonas@southpole.se>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Ley Foon Tan <lftan@altera.com>
Cc: Mark Salter <msalter@redhat.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Matt Turner <mattst88@gmail.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Michal Simek <monstr@monstr.eu>
Cc: Palmer Dabbelt <palmer@sifive.com>
Cc: Paul Burton <paul.burton@mips.com>
Cc: Richard Kuo <rkuo@codeaurora.org>
Cc: Richard Weinberger <richard@nod.at>
Cc: Rich Felker <dalias@libc.org>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Serge Semin <fancer.lancer@gmail.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Vineet Gupta <vgupta@synopsys.com>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pull x86 grub2 updates from Ingo Molnar:
"This extends the x86 boot protocol to include an address for the RSDP
table - utilized by Xen currently.
Matching Grub2 patches are pending as well. (Juergen Gross)"
* 'x86-grub2-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/acpi, x86/boot: Take RSDP address for boot params if available
x86/boot: Add ACPI RSDP address to setup_header
x86/xen: Fix boot loader version reported for PVH guests
Xen PVH guests receive the address of the RSDP table from Xen. In order
to support booting a Xen PVH guest via Grub2 using the standard x86
boot entry we need a way for Grub2 to pass the RSDP address to the
kernel.
For this purpose expand the struct setup_header to hold the physical
address of the RSDP address. Being zero means it isn't specified and
has to be located the legacy way (searching through low memory or
EBDA).
While documenting the new setup_header layout and protocol version
2.14 add the missing documentation of protocol version 2.13.
There are Grub2 versions in several distros with a downstream patch
violating the boot protocol by writing past the end of setup_header.
This requires another update of the boot protocol to enable the kernel
to distinguish between a specified RSDP address and one filled with
garbage by such a broken Grub2.
From protocol 2.14 on Grub2 will write the version it is supporting
(but never a higher value than found to be supported by the kernel)
ored with 0x8000 to the version field of setup_header. This enables
the kernel to know up to which field Grub2 has written information
to. All fields after that are supposed to be clobbered.
Signed-off-by: Juergen Gross <jgross@suse.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: boris.ostrovsky@oracle.com
Cc: bp@alien8.de
Cc: corbet@lwn.net
Cc: linux-doc@vger.kernel.org
Cc: xen-devel@lists.xenproject.org
Link: http://lkml.kernel.org/r/20181010061456.22238-3-jgross@suse.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
-----BEGIN PGP SIGNATURE-----
iQJIBAABCgAyFiEEgMe7l+5h9hnxdsnuWYigwDrT+vwFAlt1f9AUHGJoZWxnYWFz
QGdvb2dsZS5jb20ACgkQWYigwDrT+vxbdhAArnhRvkwOk4m4/LCuKF6HpmlxbBNC
TjnBCenNf+lFXzWskfDFGFl/Wif4UzGbRTSCNQrwMzj3Ww3f/6R2QIq9rEJvyNC4
VdxQnaBEZSUgN87q5UGqgdjMTo3zFvlFH6fpb5XDiQ5IX/QZeXeYqoB64w+HvKPU
M+IsoOvnA5gb7pMcpchrGUnSfS1e6AqQbbTt6tZflore6YCEA4cH5OnpGx8qiZIp
ut+CMBvQjQB01fHeBc/wGrVte4NwXdONrXqpUb4sHF7HqRNfEh0QVyPhvebBi+k1
kquqoBQfPFTqgcab31VOcQhg70dEx+1qGm5/YBAwmhCpHR/g2gioFXoROsr+iUOe
BtF6LZr+Y8cySuhJnkCrJBqWvvBaKbJLg0KMbI+7p4o9MZpod2u7LS5LFrlRDyKW
3nz3o+b1+v3tCCKVKIhKo0ljolgkweQtR1f6KIHvq93wBODHVQnAOt9NlPfHVyks
ryGBnOhMjoU5hvfexgIWFk9Ph9MEVQSffkI+TeFPO/tyGBfGfQyGtESiXuEaMQaH
FGdZHX2RLkY3pWHOtWeMzRHzOnr2XjpDFcAqL3HBGPdJ30K3Umv3WOgoFe2SaocG
0gaddPjKSwwM4Sa/VP+O5cjGuzi7QnczSDdpYjxIGZzBav32hqx4/rsnLw7bHH8y
XkEme7cYJc8MGsA=
=2Dmn
-----END PGP SIGNATURE-----
Merge tag 'pci-v4.19-changes' of git://git.kernel.org/pub/scm/linux/kernel/git/helgaas/pci
Pull pci updates from Bjorn Helgaas:
- Decode AER errors with names similar to "lspci" (Tyler Baicar)
- Expose AER statistics in sysfs (Rajat Jain)
- Clear AER status bits selectively based on the type of recovery (Oza
Pawandeep)
- Honor "pcie_ports=native" even if HEST sets FIRMWARE_FIRST (Alexandru
Gagniuc)
- Don't clear AER status bits if we're using the "Firmware-First"
strategy where firmware owns the registers (Alexandru Gagniuc)
- Use sysfs_match_string() to simplify ASPM sysfs parsing (Andy
Shevchenko)
- Remove unnecessary includes of <linux/pci-aspm.h> (Bjorn Helgaas)
- Defer DPC event handling to work queue (Keith Busch)
- Use threaded IRQ for DPC bottom half (Keith Busch)
- Print AER status while handling DPC events (Keith Busch)
- Work around IDT switch ACS Source Validation erratum (James
Puthukattukaran)
- Emit diagnostics for all cases of PCIe Link downtraining (Links
operating slower than they're capable of) (Alexandru Gagniuc)
- Skip VFs when configuring Max Payload Size (Myron Stowe)
- Reduce Root Port Max Payload Size if necessary when hot-adding a
device below it (Myron Stowe)
- Simplify SHPC existence/permission checks (Bjorn Helgaas)
- Remove hotplug sample skeleton driver (Lukas Wunner)
- Convert pciehp to threaded IRQ handling (Lukas Wunner)
- Improve pciehp tolerance of missed events and initially unstable
links (Lukas Wunner)
- Clear spurious pciehp events on resume (Lukas Wunner)
- Add pciehp runtime PM support, including for Thunderbolt controllers
(Lukas Wunner)
- Support interrupts from pciehp bridges in D3hot (Lukas Wunner)
- Mark fall-through switch cases before enabling -Wimplicit-fallthrough
(Gustavo A. R. Silva)
- Move DMA-debug PCI init from arch code to PCI core (Christoph
Hellwig)
- Fix pci_request_irq() usage of IRQF_ONESHOT when no handler is
supplied (Heiner Kallweit)
- Unify PCI and DMA direction #defines (Shunyong Yang)
- Add PCI_DEVICE_DATA() macro (Andy Shevchenko)
- Check for VPD completion before checking for timeout (Bert Kenward)
- Limit Netronome NFP5000 config space size to work around erratum
(Jakub Kicinski)
- Set IRQCHIP_ONESHOT_SAFE for PCI MSI irqchips (Heiner Kallweit)
- Document ACPI description of PCI host bridges (Bjorn Helgaas)
- Add "pci=disable_acs_redir=" parameter to disable ACS redirection for
peer-to-peer DMA support (we don't have the peer-to-peer support yet;
this is just one piece) (Logan Gunthorpe)
- Clean up devm_of_pci_get_host_bridge_resources() resource allocation
(Jan Kiszka)
- Fixup resizable BARs after suspend/resume (Christian König)
- Make "pci=earlydump" generic (Sinan Kaya)
- Fix ROM BAR access routines to stay in bounds and check for signature
correctly (Rex Zhu)
- Add DMA alias quirk for Microsemi Switchtec NTB (Doug Meyer)
- Expand documentation for pci_add_dma_alias() (Logan Gunthorpe)
- To avoid bus errors, enable PASID only if entire path supports
End-End TLP prefixes (Sinan Kaya)
- Unify slot and bus reset functions and remove hotplug knowledge from
callers (Sinan Kaya)
- Add Function-Level Reset quirks for Intel and Samsung NVMe devices to
fix guest reboot issues (Alex Williamson)
- Add function 1 DMA alias quirk for Marvell 88SS9183 PCIe SSD
Controller (Bjorn Helgaas)
- Remove Xilinx AXI-PCIe host bridge arch dependency (Palmer Dabbelt)
- Remove Aardvark outbound window configuration (Evan Wang)
- Fix Aardvark bridge window sizing issue (Zachary Zhang)
- Convert Aardvark to use pci_host_probe() to reduce code duplication
(Thomas Petazzoni)
- Correct the Cadence cdns_pcie_writel() signature (Alan Douglas)
- Add Cadence support for optional generic PHYs (Alan Douglas)
- Add Cadence power management ops (Alan Douglas)
- Remove redundant variable from Cadence driver (Colin Ian King)
- Add Kirin MSI support (Xiaowei Song)
- Drop unnecessary root_bus_nr setting from exynos, imx6, keystone,
armada8k, artpec6, designware-plat, histb, qcom, spear13xx (Shawn
Guo)
- Move link notification settings from DesignWare core to individual
drivers (Gustavo Pimentel)
- Add endpoint library MSI-X interfaces (Gustavo Pimentel)
- Correct signature of endpoint library IRQ interfaces (Gustavo
Pimentel)
- Add DesignWare endpoint library MSI-X callbacks (Gustavo Pimentel)
- Add endpoint library MSI-X test support (Gustavo Pimentel)
- Remove unnecessary GFP_ATOMIC from Hyper-V "new child" allocation
(Jia-Ju Bai)
- Add more devices to Broadcom PAXC quirk (Ray Jui)
- Work around corrupted Broadcom PAXC config space to enable SMMU and
GICv3 ITS (Ray Jui)
- Disable MSI parsing to work around broken Broadcom PAXC logic in some
devices (Ray Jui)
- Hide unconfigured functions to work around a Broadcom PAXC defect
(Ray Jui)
- Lower iproc log level to reduce console output during boot (Ray Jui)
- Fix mobiveil iomem/phys_addr_t type usage (Lorenzo Pieralisi)
- Fix mobiveil missing include file (Lorenzo Pieralisi)
- Add mobiveil Kconfig/Makefile support (Lorenzo Pieralisi)
- Fix mvebu I/O space remapping issues (Thomas Petazzoni)
- Use generic pci_host_bridge in mvebu instead of ARM-specific API
(Thomas Petazzoni)
- Whitelist VMD devices with fast interrupt handlers to avoid sharing
vectors with slow handlers (Keith Busch)
* tag 'pci-v4.19-changes' of git://git.kernel.org/pub/scm/linux/kernel/git/helgaas/pci: (153 commits)
PCI/AER: Don't clear AER bits if error handling is Firmware-First
PCI: Limit config space size for Netronome NFP5000
PCI/MSI: Set IRQCHIP_ONESHOT_SAFE for PCI-MSI irqchips
PCI/VPD: Check for VPD access completion before checking for timeout
PCI: Add PCI_DEVICE_DATA() macro to fully describe device ID entry
PCI: Match Root Port's MPS to endpoint's MPSS as necessary
PCI: Skip MPS logic for Virtual Functions (VFs)
PCI: Add function 1 DMA alias quirk for Marvell 88SS9183
PCI: Check for PCIe Link downtraining
PCI: Add ACS Redirect disable quirk for Intel Sunrise Point
PCI: Add device-specific ACS Redirect disable infrastructure
PCI: Convert device-specific ACS quirks from NULL termination to ARRAY_SIZE
PCI: Add "pci=disable_acs_redir=" parameter for peer-to-peer support
PCI: Allow specifying devices using a base bus and path of devfns
PCI: Make specifying PCI devices in kernel parameters reusable
PCI: Hide ACS quirk declarations inside PCI core
PCI: Delay after FLR of Intel DC P3700 NVMe
PCI: Disable Samsung SM961/PM961 NVMe before FLR
PCI: Export pcie_has_flr()
PCI: mvebu: Drop bogus comment above mvebu_pcie_map_registers()
...
Merge L1 Terminal Fault fixes from Thomas Gleixner:
"L1TF, aka L1 Terminal Fault, is yet another speculative hardware
engineering trainwreck. It's a hardware vulnerability which allows
unprivileged speculative access to data which is available in the
Level 1 Data Cache when the page table entry controlling the virtual
address, which is used for the access, has the Present bit cleared or
other reserved bits set.
If an instruction accesses a virtual address for which the relevant
page table entry (PTE) has the Present bit cleared or other reserved
bits set, then speculative execution ignores the invalid PTE and loads
the referenced data if it is present in the Level 1 Data Cache, as if
the page referenced by the address bits in the PTE was still present
and accessible.
While this is a purely speculative mechanism and the instruction will
raise a page fault when it is retired eventually, the pure act of
loading the data and making it available to other speculative
instructions opens up the opportunity for side channel attacks to
unprivileged malicious code, similar to the Meltdown attack.
While Meltdown breaks the user space to kernel space protection, L1TF
allows to attack any physical memory address in the system and the
attack works across all protection domains. It allows an attack of SGX
and also works from inside virtual machines because the speculation
bypasses the extended page table (EPT) protection mechanism.
The assoicated CVEs are: CVE-2018-3615, CVE-2018-3620, CVE-2018-3646
The mitigations provided by this pull request include:
- Host side protection by inverting the upper address bits of a non
present page table entry so the entry points to uncacheable memory.
- Hypervisor protection by flushing L1 Data Cache on VMENTER.
- SMT (HyperThreading) control knobs, which allow to 'turn off' SMT
by offlining the sibling CPU threads. The knobs are available on
the kernel command line and at runtime via sysfs
- Control knobs for the hypervisor mitigation, related to L1D flush
and SMT control. The knobs are available on the kernel command line
and at runtime via sysfs
- Extensive documentation about L1TF including various degrees of
mitigations.
Thanks to all people who have contributed to this in various ways -
patches, review, testing, backporting - and the fruitful, sometimes
heated, but at the end constructive discussions.
There is work in progress to provide other forms of mitigations, which
might be less horrible performance wise for a particular kind of
workloads, but this is not yet ready for consumption due to their
complexity and limitations"
* 'l1tf-final' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (75 commits)
x86/microcode: Allow late microcode loading with SMT disabled
tools headers: Synchronise x86 cpufeatures.h for L1TF additions
x86/mm/kmmio: Make the tracer robust against L1TF
x86/mm/pat: Make set_memory_np() L1TF safe
x86/speculation/l1tf: Make pmd/pud_mknotpresent() invert
x86/speculation/l1tf: Invert all not present mappings
cpu/hotplug: Fix SMT supported evaluation
KVM: VMX: Tell the nested hypervisor to skip L1D flush on vmentry
x86/speculation: Use ARCH_CAPABILITIES to skip L1D flush on vmentry
x86/speculation: Simplify sysfs report of VMX L1TF vulnerability
Documentation/l1tf: Remove Yonah processors from not vulnerable list
x86/KVM/VMX: Don't set l1tf_flush_l1d from vmx_handle_external_intr()
x86/irq: Let interrupt handlers set kvm_cpu_l1tf_flush_l1d
x86: Don't include linux/irq.h from asm/hardirq.h
x86/KVM/VMX: Introduce per-host-cpu analogue of l1tf_flush_l1d
x86/irq: Demote irq_cpustat_t::__softirq_pending to u16
x86/KVM/VMX: Move the l1tf_flush_l1d test to vmx_l1d_flush()
x86/KVM/VMX: Replace 'vmx_l1d_flush_always' with 'vmx_l1d_flush_cond'
x86/KVM/VMX: Don't set l1tf_flush_l1d to true from vmx_l1d_flush()
cpu/hotplug: detect SMT disabled by BIOS
...
Move early dump functionality into common code so that it is available for
all architectures. No need to carry arch-specific reads around as the read
hooks are already initialized by the time pci_setup_device() is getting
called during scan.
Tested-by: Andy Shevchenko <andy.shevchenko@gmail.com>
Signed-off-by: Sinan Kaya <okaya@codeaurora.org>
Signed-off-by: Bjorn Helgaas <bhelgaas@google.com>
Reviewed-by: Andy Shevchenko <andy.shevchenko@gmail.com>
The L1TF workaround doesn't make any attempt to mitigate speculate accesses
to the first physical page for zeroed PTEs. Normally it only contains some
data from the early real mode BIOS.
It's not entirely clear that the first page is reserved in all
configurations, so add an extra reservation call to make sure it is really
reserved. In most configurations (e.g. with the standard reservations)
it's likely a nop.
Signed-off-by: Andi Kleen <ak@linux.intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Josh Poimboeuf <jpoimboe@redhat.com>
Acked-by: Dave Hansen <dave.hansen@intel.com>
Currently the architecture specific code is expected to display the
protection keys in smap for a given vma. This can lead to redundant
code and possibly to divergent formats in which the key gets
displayed.
This patch changes the implementation. It displays the pkey only if
the architecture support pkeys, i.e arch_pkeys_enabled() returns true.
x86 arch_show_smap() function is not needed anymore, delete it.
Signed-off-by: Thiago Jung Bauermann <bauerman@linux.vnet.ibm.com>
Signed-off-by: Ram Pai <linuxram@us.ibm.com>
[mpe: Split out from larger patch, rebased on header changes]
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Reviewed-by: Dave Hansen <dave.hansen@intel.com>
Xen PV domains cannot shut down and start a crash kernel. Instead,
the crashing kernel makes a SCHEDOP_shutdown hypercall with the
reason code SHUTDOWN_crash, cf. xen_crash_shutdown() machine op in
arch/x86/xen/enlighten_pv.c.
A crash kernel reservation is merely a waste of RAM in this case. It
may also confuse users of kexec_load(2) and/or kexec_file_load(2).
When flags include KEXEC_ON_CRASH or KEXEC_FILE_ON_CRASH,
respectively, these syscalls return success, which is technically
correct, but the crash kexec image will never be actually used.
Signed-off-by: Petr Tesarik <ptesarik@suse.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Juergen Gross <jgross@suse.com>
Cc: Tom Lendacky <thomas.lendacky@amd.com>
Cc: Dou Liyang <douly.fnst@cn.fujitsu.com>
Cc: Mikulas Patocka <mpatocka@redhat.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: xen-devel@lists.xenproject.org
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: Borislav Petkov <bp@suse.de>
Cc: Jean Delvare <jdelvare@suse.de>
Link: https://lkml.kernel.org/r/20180425120835.23cef60c@ezekiel.suse.cz
The separation of the cpu_entry_area from the fixmap missed the fact that
on 32bit non-PAE kernels the cpu_entry_area mapping might not be covered in
initial_page_table by the previous synchronizations.
This results in suspend/resume failures because 32bit utilizes initial page
table for resume. The absence of the cpu_entry_area mapping results in a
triple fault, aka. insta reboot.
With PAE enabled this works by chance because the PGD entry which covers
the fixmap and other parts incindentally provides the cpu_entry_area
mapping as well.
Synchronize the initial page table after setting up the cpu entry
area. Instead of adding yet another copy of the same code, move it to a
function and invoke it from the various places.
It needs to be investigated if the existing calls in setup_arch() and
setup_per_cpu_areas() can be replaced by the later invocation from
setup_cpu_entry_areas(), but that's beyond the scope of this fix.
Fixes: 92a0f81d89 ("x86/cpu_entry_area: Move it out of the fixmap")
Reported-by: Woody Suwalski <terraluna977@gmail.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Woody Suwalski <terraluna977@gmail.com>
Cc: William Grant <william.grant@canonical.com>
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/alpine.DEB.2.21.1802282137290.1392@nanos.tec.linutronix.de
For boot-time switching between paging modes, we need to be able to
adjust size of physical address space at runtime.
As part of making physical address space size variable, we have to make
X86_5LEVEL dependent on SPARSEMEM_VMEMMAP. !SPARSEMEM_VMEMMAP
configuration doesn't build with variable MAX_PHYSMEM_BITS.
For !SPARSEMEM_VMEMMAP SECTIONS_WIDTH depends on MAX_PHYSMEM_BITS:
SECTIONS_WIDTH
SECTIONS_SHIFT
MAX_PHYSMEM_BITS
And SECTIONS_WIDTH is used on pre-processor stage, it doesn't work if it's
dyncamic. See include/linux/page-flags-layout.h.
Effect on kernel image size:
text data bss dec hex filename
8628393 4734340 1368064 14730797 e0c62d vmlinux.before
8628892 4734340 1368064 14731296 e0c820 vmlinux.after
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Borislav Petkov <bp@suse.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-mm@kvack.org
Link: http://lkml.kernel.org/r/20180214111656.88514-8-kirill.shutemov@linux.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Currently the BSP microcode update code examines the initrd very early
in the boot process. If SME is active, the initrd is treated as being
encrypted but it has not been encrypted (in place) yet. Update the
early boot code that encrypts the kernel to also encrypt the initrd so
that early BSP microcode updates work.
Tested-by: Gabriel Craciunescu <nix.or.die@gmail.com>
Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com>
Reviewed-by: Borislav Petkov <bp@suse.de>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brijesh Singh <brijesh.singh@amd.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20180110192634.6026.10452.stgit@tlendack-t1.amdoffice.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
'add_efi_memmap' is an early param, but do_add_efi_memmap() has no
chance to run because the code path is before parse_early_param().
I believe it worked when the param was introduced but probably later
some other changes caused the wrong order and nobody noticed it.
Move efi_memblock_x86_reserve_range() after parse_early_param()
to fix it.
Signed-off-by: Dave Young <dyoung@redhat.com>
Signed-off-by: Matt Fleming <matt@codeblueprint.co.uk>
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Bryan O'Donoghue <pure.logic@nexus-software.ie>
Cc: Ge Song <ge.song@hxt-semitech.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-efi@vger.kernel.org
Link: http://lkml.kernel.org/r/20180102172110.17018-2-ard.biesheuvel@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Pull x86 timer updates from Thomas Gleixner:
"These updates are related to TSC handling:
- Support platforms which have synchronized TSCs but the boot CPU has
a non zero TSC_ADJUST value, which is considered a firmware bug on
normal systems.
This applies to HPE/SGI UV platforms where the platform firmware
uses TSC_ADJUST to ensure TSC synchronization across a huge number
of sockets, but due to power on timings the boot CPU cannot be
guaranteed to have a zero TSC_ADJUST register value.
- Fix the ordering of udelay calibration and kvmclock_init()
- Cleanup the udelay and calibration code"
* 'x86-timers-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/tsc: Mark cyc2ns_init() and detect_art() __init
x86/platform/UV: Mark tsc_check_sync as an init function
x86/tsc: Make CONFIG_X86_TSC=n build work again
x86/platform/UV: Add check of TSC state set by UV BIOS
x86/tsc: Provide a means to disable TSC ART
x86/tsc: Drastically reduce the number of firmware bug warnings
x86/tsc: Skip TSC test and error messages if already unstable
x86/tsc: Add option that TSC on Socket 0 being non-zero is valid
x86/timers: Move simple_udelay_calibration() past kvmclock_init()
x86/timers: Make recalibrate_cpu_khz() void
x86/timers: Move the simple udelay calibration to tsc.h
Pull x86 APIC updates from Thomas Gleixner:
"This update provides a major overhaul of the APIC initialization and
vector allocation code:
- Unification of the APIC and interrupt mode setup which was
scattered all over the place and was hard to follow. This also
distangles the timer setup from the APIC initialization which
brings a clear separation of functionality.
Great detective work from Dou Lyiang!
- Refactoring of the x86 vector allocation mechanism. The existing
code was based on nested loops and rather convoluted APIC callbacks
which had a horrible worst case behaviour and tried to serve all
different use cases in one go. This led to quite odd hacks when
supporting the new managed interupt facility for multiqueue devices
and made it more or less impossible to deal with the vector space
exhaustion which was a major roadblock for server hibernation.
Aside of that the code dealing with cpu hotplug and the system
vectors was disconnected from the actual vector management and
allocation code, which made it hard to follow and maintain.
Utilizing the new bitmap matrix allocator core mechanism, the new
allocator and management code consolidates the handling of system
vectors, legacy vectors, cpu hotplug mechanisms and the actual
allocation which needs to be aware of system and legacy vectors and
hotplug constraints into a single consistent entity.
This has one visible change: The support for multi CPU targets of
interrupts, which is only available on a certain subset of
CPUs/APIC variants has been removed in favour of single interrupt
targets. A proper analysis of the multi CPU target feature revealed
that there is no real advantage as the vast majority of interrupts
end up on the CPU with the lowest APIC id in the set of target CPUs
anyway. That change was agreed on by the relevant folks and allowed
to simplify the implementation significantly and to replace rather
fragile constructs like the vector cleanup IPI with straight
forward and solid code.
Furthermore this allowed to cleanly separate the allocation details
for legacy, normal and managed interrupts:
* Legacy interrupts are not longer wasting 16 vectors
unconditionally
* Managed interrupts have now a guaranteed vector reservation, but
the actual vector assignment happens when the interrupt is
requested. It's guaranteed not to fail.
* Normal interrupts no longer allocate vectors unconditionally
when the interrupt is set up (IO/APIC init or MSI(X) enable).
The mechanism has been switched to a best effort reservation
mode. The actual allocation happens when the interrupt is
requested. Contrary to managed interrupts the request can fail
due to vector space exhaustion, but drivers must handle a fail
of request_irq() anyway. When the interrupt is freed, the vector
is handed back as well.
This solves a long standing problem with large unconditional
vector allocations for a certain class of enterprise devices
which prevented server hibernation due to vector space
exhaustion when the unused allocated vectors had to be migrated
to CPU0 while unplugging all non boot CPUs.
The code has been equipped with trace points and detailed debugfs
information to aid analysis of the vector space"
* 'x86-apic-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (60 commits)
x86/vector/msi: Select CONFIG_GENERIC_IRQ_RESERVATION_MODE
PCI/MSI: Set MSI_FLAG_MUST_REACTIVATE in core code
genirq: Add config option for reservation mode
x86/vector: Use correct per cpu variable in free_moved_vector()
x86/apic/vector: Ignore set_affinity call for inactive interrupts
x86/apic: Fix spelling mistake: "symmectic" -> "symmetric"
x86/apic: Use dead_cpu instead of current CPU when cleaning up
ACPI/init: Invoke early ACPI initialization earlier
x86/vector: Respect affinity mask in irq descriptor
x86/irq: Simplify hotplug vector accounting
x86/vector: Switch IOAPIC to global reservation mode
x86/vector/msi: Switch to global reservation mode
x86/vector: Handle managed interrupts proper
x86/io_apic: Reevaluate vector configuration on activate()
iommu/amd: Reevaluate vector configuration on activate()
iommu/vt-d: Reevaluate vector configuration on activate()
x86/apic/msi: Force reactivation of interrupts at startup time
x86/vector: Untangle internal state from irq_cfg
x86/vector: Compile SMP only code conditionally
x86/apic: Remove unused callbacks
...
Pull x86 platform updates from Ingo Molnar:
"The main changes in this cycle were:
- a refactoring of the early virt init code by merging 'struct
x86_hyper' into 'struct x86_platform' and 'struct x86_init', which
allows simplifications and also the addition of a new
->guest_late_init() callback. (Juergen Gross)
- timer_setup() conversion of the UV code (Kees Cook)"
* 'x86-platform-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/virt/xen: Use guest_late_init to detect Xen PVH guest
x86/virt, x86/platform: Add ->guest_late_init() callback to hypervisor_x86 structure
x86/virt, x86/acpi: Add test for ACPI_FADT_NO_VGA
x86/virt: Add enum for hypervisors to replace x86_hyper
x86/virt, x86/platform: Merge 'struct x86_hyper' into 'struct x86_platform' and 'struct x86_init'
x86/platform/UV: Convert timers to use timer_setup()
Add a new guest_late_init callback to the hypervisor_x86 structure. It
will replace the current kvm_guest_init() call which is changed to
make use of the new callback.
Signed-off-by: Juergen Gross <jgross@suse.com>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Paolo Bonzini <pbonzini@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: kvm@vger.kernel.org
Cc: rkrcmar@redhat.com
Link: http://lkml.kernel.org/r/20171109132739.23465-5-jgross@suse.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
When SEV is active the initrd/initramfs will already have already been
placed in memory encrypted so do not try to encrypt it.
Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com>
Signed-off-by: Brijesh Singh <brijesh.singh@amd.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Borislav Petkov <bp@suse.de>
Tested-by: Borislav Petkov <bp@suse.de>
Cc: kvm@vger.kernel.org
Cc: Borislav Petkov <bp@alien8.de>
Cc: Andy Lutomirski <luto@kernel.org>
Link: https://lkml.kernel.org/r/20171020143059.3291-4-brijesh.singh@amd.com
It's not obvious to everybody that BP stands for boot processor. At
least it was not for me. And BP is also a CPU register on x86, so it
is ambiguous. Spell out "boot CPU" everywhere instead.
Signed-off-by: Jean Delvare <jdelvare@suse.de>
Cc: Alok Kataria <akataria@vmware.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The 32bit and the 64bit implementation of default_cpu_present_to_apicid()
and default_check_phys_apicid_present() are exactly the same, but
implemented and located differently.
Move them to common apic code and get rid of the pointless difference.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Juergen Gross <jgross@suse.com>
Tested-by: Yu Chen <yu.c.chen@intel.com>
Acked-by: Juergen Gross <jgross@suse.com>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Marc Zyngier <marc.zyngier@arm.com>
Cc: Alok Kataria <akataria@vmware.com>
Cc: Joerg Roedel <joro@8bytes.org>
Cc: "Rafael J. Wysocki" <rjw@rjwysocki.net>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Rui Zhang <rui.zhang@intel.com>
Cc: "K. Y. Srinivasan" <kys@microsoft.com>
Cc: Arjan van de Ven <arjan@linux.intel.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Len Brown <lenb@kernel.org>
Link: https://lkml.kernel.org/r/20170913213153.757329991@linutronix.de
simple_udelay_calibration() relies on x86_platform's calibration ops.
For KVM these ops are set late in setup_arch() and so
simple_udelay_calibration() ends up using native version.
Besides being possibly incorrect, this significantly increases kernel
boot time. For example, on my laptop executing start_kernel() by a guest
takes ~10 times more than when KVM's ops are used.
Since early_xdbc_setup_hardware() relies on calibration having been
performed move it too.
Signed-off-by: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: baolu.lu@linux.intel.com
Link: https://lkml.kernel.org/r/20170911185111.20636-1-boris.ostrovsky@oracle.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Commit dd759d93f4 ("x86/timers: Add simple udelay calibration") adds
an static function in x86 boot-time initializations.
But, this function is actually related to TSC, so it should be maintained
in tsc.c, not in setup.c.
Move simple_udelay_calibration() from setup.c to tsc.c and rename it to
tsc_early_delay_calibrate for more readability.
Signed-off-by: Dou Liyang <douly.fnst@cn.fujitsu.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/1500003247-17368-1-git-send-email-douly.fnst@cn.fujitsu.com
cpu_init() is weird: it's called rather late (after early
identification and after most MMU state is initialized) on the boot
CPU but is called extremely early (before identification) on secondary
CPUs. It's called just late enough on the boot CPU that its CR4 value
isn't propagated to mmu_cr4_features.
Even if we put CR4.PCIDE into mmu_cr4_features, we'd hit two
problems. First, we'd crash in the trampoline code. That's
fixable, and I tried that. It turns out that mmu_cr4_features is
totally ignored by secondary_start_64(), though, so even with the
trampoline code fixed, it wouldn't help.
This means that we don't currently have CR4.PCIDE reliably initialized
before we start playing with cpu_tlbstate. This is very fragile and
tends to cause boot failures if I make even small changes to the TLB
handling code.
Make it more robust: initialize CR4.PCIDE earlier on the boot CPU
and propagate it to secondary CPUs in start_secondary().
( Yes, this is ugly. I think we should have improved mmu_cr4_features
to actually control CR4 during secondary bootup, but that would be
fairly intrusive at this stage. )
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Reported-by: Sai Praneeth Prakhya <sai.praneeth.prakhya@intel.com>
Tested-by: Sai Praneeth Prakhya <sai.praneeth.prakhya@intel.com>
Cc: Borislav Petkov <bpetkov@suse.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Fixes: 660da7c922 ("x86/mm: Enable CR4.PCIDE on supported systems")
Signed-off-by: Ingo Molnar <mingo@kernel.org>