On NVIDIA Tegra30 there is a requirement for regulator "A" to have voltage
higher than voltage of regulator "B" by N microvolts, the N value changes
depending on the voltage of regulator "B". This is similar to min-spread
between voltages of regulators, the difference is that the spread value
isn't fixed. This means that extra carefulness is required for regulator
"A" to drop its voltage without violating the requirement, hence its
voltage should be changed in steps so that its couple "B" could follow
(there is also max-spread requirement).
Add new "max_uV_step" constraint that breaks voltage change into several
steps, each step is limited by the max_uV_step value.
Signed-off-by: Dmitry Osipenko <digetx@gmail.com>
Signed-off-by: Mark Brown <broonie@kernel.org>
Don't allow to get regulator until all of its couples resolved because
consumer will get EPERM and coupling shall be transparent for the drivers.
Signed-off-by: Dmitry Osipenko <digetx@gmail.com>
Signed-off-by: Mark Brown <broonie@kernel.org>
If registered regulator found a couple, then the couple can find the
registered regulator too and hence coupling can be mutually resolved
at the registration time.
Signed-off-by: Dmitry Osipenko <digetx@gmail.com>
Signed-off-by: Mark Brown <broonie@kernel.org>
On Odroid XU3/4 and other Exynos5422 based boards there is a case, that
different devices on the board are supplied by different regulators
with non-fixed voltages. If one of these devices temporarily requires
higher voltage, there might occur a situation that the spread between
two devices' voltages is so high, that there is a risk of changing
'high' and 'low' states on the interconnection between devices powered
by those regulators.
Uncoupled regulators should be a special case of coupled regulators, so
they should share a common voltage setting path. When enabling,
disabling or setting voltage of a coupled regulator, all coupled
regulators should be locked. Regulator's supplies should be locked, when
setting voltage of a single regulator. Enabling a coupled regulator or
setting its voltage should not be possible if some of its coupled
regulators, has not been registered.
Add function for locking coupled regulators and supplies. Extract
a new function regulator_set_voltage_rdev() from
regulator_set_voltage_unlocked(), which is called when setting
voltage of a single regulator.
Signed-off-by: Maciej Purski <m.purski@samsung.com>
Signed-off-by: Dmitry Osipenko <digetx@gmail.com>
Signed-off-by: Mark Brown <broonie@kernel.org>
On Odroid XU3/4 and other Exynos5422 based boards there is a case, that
different devices on the board are supplied by different regulators
with non-fixed voltages. If one of these devices temporarily requires
higher voltage, there might occur a situation that the spread between
two devices' voltages is so high, that there is a risk of changing
'high' and 'low' states on the interconnection between devices powered
by those regulators.
Introduce new function regulator_balance_voltage(), which
keeps max_spread constraint fulfilled between a group of coupled
regulators. It should be called if a regulator changes its
voltage or after disabling or enabling. Disabled regulators should
follow changes of the enabled ones, but their consumers' demands
shouldn't be taken into account while calculating voltage of other
coupled regulators.
Find voltages, which are closest to suiting all the consumers' demands,
while fulfilling max_spread constraint, keeping the following rules:
- if one regulator is about to rise its voltage, rise others
voltages in order to keep the max_spread
- if a regulator, which has caused rising other regulators, is
lowered, lower other regulators if possible
- if one regulator is about to lower its voltage, but it hasn't caused
rising other regulators, change its voltage so that it doesn't break the
max_spread
Change regulators' voltages step by step, keeping max_spread constraint
fulfilled all the time. Function regulator_get_optimal_voltage()
should find the best possible change for the regulator, which doesn't
break max_spread constraint. In function regulator_balance_voltage()
optimize number of steps by finding highest voltage difference on
each iteration.
If a regulator, which is about to change its voltage, is not coupled,
method regulator_get_optimal_voltage() should simply return the lowest
voltage fulfilling consumers' demands.
Coupling should be checked only if the system is in PM_SUSPEND_ON state.
Signed-off-by: Maciej Purski <m.purski@samsung.com>
Signed-off-by: Dmitry Osipenko <digetx@gmail.com>
Signed-off-by: Mark Brown <broonie@kernel.org>
This adds support for the BD71847 which touches both MFD and regulator.
There's a few other bits and pieces included as some dependency patches
had already been applied so would've required rebasing.
-----BEGIN PGP SIGNATURE-----
iQFHBAABCgAxFiEEreZoqmdXGLWf4p/qJNaLcl1Uh9AFAluuM/8THGJyb29uaWVA
a2VybmVsLm9yZwAKCRAk1otyXVSH0Az7B/4ye6MIEn8hwKmS36NU3oCvCTFiOZHe
W+T1/O7gOYPSOeHk/4SA8v+A0X2ry+zCschSJtnGDWeZwiZmuhSbQO3SKKM+iAKJ
R1UFioMVd8cr8UySX0ddSdFit+rI+FcZHd8TYAjbseX+0YKZX7z7/rXPVhSEhdU3
BxRy58DJRbLxYofiGruvDd/sj6VFukVmLRjQUE5SqZ8aTKXBbrT7h0Jgi3m7aOmK
g/a+ulMNecq8884oQuBjj1+xCuT02GJsT04BKaXEBsAFX1Fh8IyOxej2N2PaX1z/
6HoPjSAac/Gl9BAgpV0YDdEJJR8yumkdDJubF3SayMyoiv16zMTT1fvC
=t0Ni
-----END PGP SIGNATURE-----
gpgsig -----BEGIN PGP SIGNATURE-----
iQFHBAABCgAxFiEEreZoqmdXGLWf4p/qJNaLcl1Uh9AFAluuNaMTHGJyb29uaWVA
a2VybmVsLm9yZwAKCRAk1otyXVSH0H/3B/9u/IGN9LWSnauAivTDqZGx1V3a97e2
ijZSiWaTWFmIBPUNIJgDQirdqsX61Mgu9mTbeD9+tmi2Mm4AOZRJT4pdtzZCehWT
HQuN4dcF9heftf/6Q4c+5yZFAJzOJHHuFklNdDAuM12rUp5IDpKxIo2nrx7MDN6r
RgrxK6eTluvOL4+VJwN/VqXRBWfN857uMjaGkbFV3CrYJh2Ktumts3IcFd18Cpvd
U3gBUYNsPBiQtmGXFkrCCBaYWqn5Ry91CAvpTjoJdZx50xbeXVOEUnUMaidQ4/ru
XL+PqcdTovKuV5OhMzra5MCVt3Cv8Oc/21KeNvFEIV3X6O531LEcksDx
=zN+p
-----END PGP SIGNATURE-----
Merge tag 'bd71847-support' into regulator-4.20
regulator/mfd: Support for the ROHM BD71847
This adds support for the BD71847 which touches both MFD and regulator.
There's a few other bits and pieces included as some dependency patches
had already been applied so would've required rebasing.
For example ROHM BD71837 and ROHM BD71847 Power management ICs have
regulators which provide multiple linear ranges. Ranges can be
selected by individual non contagious bit in vsel register. Add
regmap helper functions for selecting ranges.
Signed-off-by: Matti Vaittinen <matti.vaittinen@fi.rohmeurope.com>
Signed-off-by: Mark Brown <broonie@kernel.org>
dev_set_drvdata() needs to be called before device_register()
exposes device to userspace. Otherwise kernel crashes after it
gets null pointer from dev_get_drvdata() when userspace tries
to access sysfs entries.
[Removed backtrace for length -- broonie]
Signed-off-by: Yu Zhao <yuzhao@google.com>
Signed-off-by: Mark Brown <broonie@kernel.org>
Cc: stable@vger.kernel.org
Fix kernel-doc warning:
../drivers/regulator/core.c:4479: warning: Excess function parameter 'state' description in 'regulator_suspend'
Signed-off-by: Randy Dunlap <rdunlap@infradead.org>
Cc: Liam Girdwood <lgirdwood@gmail.com>
Cc: Mark Brown <broonie@kernel.org>
Signed-off-by: Mark Brown <broonie@kernel.org>
regulator_pm_ops with regulator_suspend and regulator_resume functions are
assigned to every regulator device registered in the system, so there is no
need to iterate over all again in them. Replace class_for_each_device()
construction with direct operation on the rdev embedded in the given
regulator device. This saves a lots of useless operations in suspend and
resume paths.
Fixes: f7efad10b5: regulator: add PM suspend and resume hooks
Signed-off-by: Marek Szyprowski <m.szyprowski@samsung.com>
Signed-off-by: Mark Brown <broonie@kernel.org>
Some regulators don't have all states defined and in such cases regulator
core should not assume anything. However in current implementation
of of_get_regulation_constraints() DO_NOTHING_IN_SUSPEND enable value was
set only for regulators which had suspend node defined, otherwise the
default 0 value was used, what means DISABLE_IN_SUSPEND. This lead to
broken system suspend/resume on boards, which had simple regulator
constraints definition (without suspend state nodes).
To avoid further mismatches between the default and uninitialized values
of the suspend enabled/disabled states, change the values of the them,
so default '0' means DO_NOTHING_IN_SUSPEND.
Fixes: 72069f9957: regulator: leave one item to record whether regulator is enabled
Signed-off-by: Marek Szyprowski <m.szyprowski@samsung.com>
Signed-off-by: Mark Brown <broonie@kernel.org>
Cc: stable@vger.kernel.org
Most functions that access the rdev lock the rdev mutex before looking
at data. ...but not the code that implements the debugfs
regulator_summary. It probably should though, so let's do it.
Note: this fixes no known issues. The problem was found only by code
inspection.
Signed-off-by: Douglas Anderson <dianders@chromium.org>
Signed-off-by: Mark Brown <broonie@kernel.org>
It's handy to see the load requested by a regulator consumer in the
regulator_summary. Add it.
Signed-off-by: Douglas Anderson <dianders@chromium.org>
Signed-off-by: Mark Brown <broonie@kernel.org>
It's handy to know what opmode a regulator has been configured to in
the summary. Add it.
Signed-off-by: Douglas Anderson <dianders@chromium.org>
Signed-off-by: Mark Brown <broonie@kernel.org>
Add a device link between the consumer and the driver so that
the consumer is not suspended before the driver. The goal is to avoid
implementing suspend_late ops in regulator drivers.
Signed-off-by: pascal paillet <p.paillet@st.com>
Signed-off-by: Mark Brown <broonie@kernel.org>
Change suspend_late ops to suspend normal ops. The goal is to avoid
requesting all the regulator drivers to be operational in suspend late
phase.
Signed-off-by: pascal paillet <p.paillet@st.com>
Signed-off-by: Mark Brown <broonie@kernel.org>
Revert the last two commits of the voltage coupling mechanism patch set:
456e7cdf3b regulator: core: Change voltage setting path
696861761a regulator: core: Add voltage balancing mechanism
as they broke boot on OMAP again.
Reported-by: Tony Lindgren <tony@atomide.com>
Signed-off-by: Mark Brown <broonie@kernel.org>
On Odroid XU3/4 and other Exynos5422 based boards there is a case, that
different devices on the board are supplied by different regulators
with non-fixed voltages. If one of these devices temporarily requires
higher voltage, there might occur a situation that the spread between
two devices' voltages is so high, that there is a risk of changing
'high' and 'low' states on the interconnection between devices powered
by those regulators.
Uncoupled regulators should be a special case of coupled regulators, so
they should share a common voltage setting path. When enabling,
disabling or setting voltage of a coupled regulator, all coupled
regulators should be locked. Regulator's supplies should be locked, when
setting voltage of a single regulator. Enabling a coupled regulator or
setting its voltage should not be possible if some of its coupled
regulators, has not been registered.
Add function for locking coupled regulators and supplies. Extract
a new function regulator_set_voltage_rdev() from
regulator_set_voltage_unlocked(), which is called when setting
voltage of a single regulator.
Signed-off-by: Maciej Purski <m.purski@samsung.com>
Signed-off-by: Mark Brown <broonie@kernel.org>
On Odroid XU3/4 and other Exynos5422 based boards there is a case, that
different devices on the board are supplied by different regulators
with non-fixed voltages. If one of these devices temporarily requires
higher voltage, there might occur a situation that the spread between
two devices' voltages is so high, that there is a risk of changing
'high' and 'low' states on the interconnection between devices powered
by those regulators.
Introduce new function regulator_balance_voltage(), which
keeps max_spread constraint fulfilled between a group of coupled
regulators. It should be called if a regulator changes its
voltage or after disabling or enabling. Disabled regulators should
follow changes of the enabled ones, but their consumers' demands
shouldn't be taken into account while calculating voltage of other
coupled regulators.
Find voltages, which are closest to suiting all the consumers' demands,
while fulfilling max_spread constraint, keeping the following rules:
- if one regulator is about to rise its voltage, rise others
voltages in order to keep the max_spread
- if a regulator, which has caused rising other regulators, is
lowered, lower other regulators if possible
- if one regulator is about to lower its voltage, but it hasn't caused
rising other regulators, don't change its voltage if it breaks the
max_spread
Change regulators' voltages step by step, keeping max_spread constraint
fulfilled all the time. Function regulator_get_optimal_voltage()
should find the best possible change for the regulator, which doesn't
break max_spread constraint. In function regulator_balance_voltage()
optimize number of steps by finding highest voltage difference on
each iteration.
If a regulator, which is about to change its voltage, is not coupled,
method regulator_get_optimal_voltage() should simply return the lowest
voltage fulfilling consumers' demands.
Coupling should be checked only if the system is in PM_SUSPEND_ON state.
Signed-off-by: Maciej Purski <m.purski@samsung.com>
Signed-off-by: Mark Brown <broonie@kernel.org>
On Odroid XU3/4 and other Exynos5422 based boards there is a case, that
different devices on the board are supplied by different regulators
with non-fixed voltages. If one of these devices temporarily requires
higher voltage, there might occur a situation that the spread between
two devices' voltages is so high, that there is a risk of changing
'high' and 'low' states on the interconnection between devices powered
by those regulators.
Fill coupling descriptor with data obtained from DTS using previously
defined of_functions. Fail to register a regulator, if some data
inconsistency occurs. If some coupled regulators are not yet registered,
don't fail to register, but try to resolve them in late init call.
Signed-off-by: Maciej Purski <m.purski@samsung.com>
Signed-off-by: Mark Brown <broonie@kernel.org>
Setting voltage, enabling/disabling regulators requires operations on
all regulators related with the regulator being changed. Therefore,
all of them should be locked for the whole operation. With the current
locking implementation, adding additional dependency (regulators
coupling) causes deadlocks in some cases.
Introduce a possibility to attempt to lock a mutex multiple times
by the same task without waiting on a mutex. This should handle all
reasonable coupling-supplying combinations, especially when two coupled
regulators share common supplies. The only situation that should be
forbidden is simultaneous coupling and supplying between a pair of
regulators.
The idea is based on clk core.
Signed-off-by: Maciej Purski <m.purski@samsung.com>
Signed-off-by: Mark Brown <broonie@kernel.org>
Regulators attached via RPMh on Qualcomm sdm845 apparently are
write-only. Specifically you can send a request for a certain voltage
but you can't read back to see what voltage you've requested. What
this means is that at bootup we have absolutely no idea what voltage
we could be at.
As discussed in the patches to try to support the RPMh regulators [1],
the fact that regulators are write-only means that its driver's
get_voltage_sel() should return an error code if it's called before
any calls to set_voltage_sel(). This causes problems in
machine_constraints_voltage() when trying to apply the constraints.
A proposed fix was to come up with an error code that could be
returned by get_voltage_sel() which would cause the regulator
framework to simply try setting the voltage with the current
constraints.
In this patch I propose the error code -ENOTRECOVERABLE. In errno.h
this error is described as "State not recoverable". Though the error
code was originally intended "for robust mutexes", the description of
the error code seems to apply here because we can't read the state of
the regulator. Also note that the only existing user of this error
code in the regulator framework is tps65090-regulator.c which returns
this error code from the enable() call (not get_voltage() or
get_voltage_sel()), so there should be no existing regulators that
might accidentally get the new behavior. (Side note is that tps65090
seems to interpret this error code to mean an error that you can't
recover from rather than some data that can't be recovered).
[1] https://patchwork.kernel.org/patch/10340897/
Signed-off-by: Douglas Anderson <dianders@chromium.org>
Signed-off-by: Mark Brown <broonie@kernel.org>
When resuming from idle with the new suspend mode configuration support
we go through the resume callbacks with a state of PM_SUSPEND_TO_IDLE
which we don't have regulator constraints for, causing an error:
dpm_run_callback(): regulator_resume_early+0x0/0x64 returns -22
PM: Device regulator.0 failed to resume early: error -22
Avoid this and similar errors by treating missing constraints as a noop.
See also commit 57a0dd1879 ("regulator: Fix suspend to idle"),
which fixed the suspend part.
Signed-off-by: Geert Uytterhoeven <geert+renesas@glider.be>
Signed-off-by: Mark Brown <broonie@kernel.org>
We are currently passing a GPIO number from the global GPIO numberspace
into the regulator core for handling enable GPIOs. This is not good
since it ties into the global GPIO numberspace and uses gpio_to_desc()
to overcome this.
Start supporting passing an already initialized GPIO descriptor to the
core instead: leaf drivers pick their descriptors, associated directly
with the device node (or from ACPI or from a board descriptor table)
and use that directly without any roundtrip over the global GPIO
numberspace.
This looks messy since it adds a bunch of extra code in the core, but
at the end of the patch series we will delete the handling of the GPIO
number and only deal with descriptors so things end up neat.
Signed-off-by: Linus Walleij <linus.walleij@linaro.org>
Signed-off-by: Mark Brown <broonie@kernel.org>
When suspending to idle with the new suspend mode configuration support
we go through the suspend callbacks with a state of PM_SUSPEND_TO_IDLE
which we don't have regulator constraints for, causing an error. Avoid
this and similar errors by treating missing constraints as a noop.
Reported-by: Geert Uytterhoeven <geert+renesas@glider.be>
Tested-by: Geert Uytterhoeven <geert+renesas@glider.be>
Signed-off-by: Mark Brown <broonie@kernel.org>
3d67fe9507 (regulator: core: Refactor regulator_list_voltage()) missed
one user of regulator_list_voltage(), update for that.
Signed-off-by: Mark Brown <broonie@kernel.org>
Change _regulator_list_voltage() argument from regulator to
regulator_dev in order to provide better separation of core layers.
Allow calling _regulator_list_voltage() from functions, with
regulator_dev argument. This refactoring is needed in order to
implement setting voltage of coupled regulators.
Signed-off-by: Maciej Purski <m.purski@samsung.com>
Signed-off-by: Mark Brown <broonie@kernel.org>
As of_find_regulator_by_node() is an of function it should be moved from
core.c to of_regulator.c. It provides better separation of device tree
functions from the core and allows other of_functions in of_regulator.c
to resolve device_node to regulator_dev. This will be useful for
implementation of parsing coupled regulators properties.
Declare of_find_regulator_by_node() function in internal.h as well as
regulator_class and dev_to_rdev(), as they are needed by
of_find_regulator_by_node().
Signed-off-by: Maciej Purski <m.purski@samsung.com>
Signed-off-by: Mark Brown <broonie@kernel.org>
In this patch, consumers are allowed to set suspend voltage, and this
actually just set the "uV" in constraint::regulator_state, when the
regulator_suspend_late() was called by PM core through callback when
the system is entering into suspend, the regulator device would act
suspend activity then.
And it assumes that if any consumer set suspend voltage, the regulator
device should be enabled in the suspend state. And if the suspend
voltage of a regulator device for all consumers was set zero, the
regulator device would be off in the suspend state.
This patch also provides a new function hook to regulator devices for
resuming from suspend states.
Signed-off-by: Chunyan Zhang <zhang.chunyan@linaro.org>
Signed-off-by: Mark Brown <broonie@kernel.org>
Regualtor suspend/resume functions should only be called by PM suspend
core via registering dev_pm_ops, and regulator devices should implement
the callback functions. Thus, any regulator consumer shouldn't call
the regulator suspend/resume functions directly.
In order to avoid compile errors, two empty functions with the same name
still be left for the time being.
Signed-off-by: Chunyan Zhang <zhang.chunyan@linaro.org>
Signed-off-by: Mark Brown <broonie@kernel.org>
The items "disabled" and "enabled" are a little redundant, since only one
of them would be set to record if the regulator device should keep on
or be switched to off in suspend states.
So in this patch, the "disabled" was removed, only leave the "enabled":
- enabled == 1 for regulator-on-in-suspend
- enabled == 0 for regulator-off-in-suspend
- enabled == -1 means do nothing when entering suspend mode.
Signed-off-by: Chunyan Zhang <zhang.chunyan@linaro.org>
Signed-off-by: Mark Brown <broonie@kernel.org>
Some regulator consumers would like to make the regulator device
keeping a voltage range output when the system entering into
suspend states.
Making regulator voltage be an array can allow consumers to set voltage
for normal state as well as for suspend states through the same code.
Signed-off-by: Chunyan Zhang <zhang.chunyan@linaro.org>
Signed-off-by: Mark Brown <broonie@kernel.org>
Remove extraneous space to fix indentation on a couple of assignment
statements.
Signed-off-by: Colin Ian King <colin.king@canonical.com>
Signed-off-by: Mark Brown <broonie@kernel.org>
A race condition between queueing and processing the disable_work
instances results in having a work instance in the queue and the
deferred_disables variable of regulator device structure having a
value '0'. If no new regulator_disable_deferred() call later from
clients, the deferred_disables variable value remains '0' and hits
BUG() in regulator_disable_work() when the queued instance scheduled
for processing the work.
The race occurs as below:
Core-0 Core-1
..... /* deferred_disables = 2 */ .....
..... /* disable_work is queued */ .....
..... .....
regulator_disable_deferred: regulator_disable_work:
mutex_lock(&rdev->mutex); .....
rdev->deferred_disables++; .....
mutex_unlock(&rdev->mutex); .....
queue_delayed_work(...) mutex_lock(&rdev->mutex);
..... count =rdev->deferred_disables;
..... rdev->deferred_disables = 0;
..... .....
..... mutex_unlock(&rdev->mutex);
..... .....
..... return;
..... .....
/* No new regulator_disable_deferred() calls from clients */
/* The newly queued instance is scheduled for processing */
..... .....
regulator_disable_work:
.....
mutex_lock(&rdev->mutex);
BUG_ON(!rdev->deferred_disables); /* deferred_disables = 0 */
The race is fixed by removing the work instance that is queued while
processing the previous queued instance. Cancel the newly queued instance
from disable_work() handler just after reset the deferred_disables variable
to value '0'. Also move the work queueing step before mutex_unlock in
regulator_disable_deferred().
Also use mod_delayed_work() in the pace of queue_delayed_work() as
queue_delayed_work() always uses the delay requested in the first call
when multiple consumers call regulator_disable_deferred() close in time
and does not guarantee the semantics of regulator_disable_deferred().
Signed-off-by: Tirupathi Reddy <tirupath@codeaurora.org>
Signed-off-by: Mark Brown <broonie@kernel.org>
Now that we have a custom printf format specifier, convert users of
full_name to use %pOF instead. This is preparation to remove storing
of the full path string for each node.
Signed-off-by: Rob Herring <robh@kernel.org>
Reviewed-by: Krzysztof Kozlowski <krzk@kernel.org>
Reviewed-by: Philipp Zabel <p.zabel@pengutronix.de>
Signed-off-by: Mark Brown <broonie@kernel.org>
Now the debugfs file supply_map has a size limit PAGE_SIZE and the user
can not see the whole content of regulator_map_list when it is larger
than this limit.
This patch uses seq_file instead to make sure supply_map shows the full
information of regulator_map_list.
Signed-off-by: Haishan Zhou <zhssmail@gmail.com>
Signed-off-by: Mark Brown <broonie@kernel.org>
Some regulators support get_voltage() and some support get_voltage_sel()
operations but currently we only propagate changes if the regulator has
a get_voltage() operation. Also do this if we've got get_voltage_sel()
[Rewite commit message for clarity -- broonie]
Signed-off-by: Tirupathi Reddy <tirupath@codeaurora.org>
Signed-off-by: Mark Brown <broonie@kernel.org>
Currently, when looking up a regulator supply, the regulator name
takes priority over the consumer mappings. As there are a lot of
regulator names that are in fairly common use (VDD, MICVDD, etc.) this
can easily lead to obtaining the wrong supply, when a system contains
two regulators that share a name.
The explicit consumer mappings contain much less ambiguity as they
specify both a name and a consumer device. As such prioritise those if
one exists and only fall back to the regulator name if there are no
matching explicit mappings.
Signed-off-by: Charles Keepax <ckeepax@opensource.wolfsonmicro.com>
Signed-off-by: Mark Brown <broonie@kernel.org>
Some regulators have different settling times for voltage increases and
decreases. To avoid a time penalty on the faster transition allow for
different settings for up- and downward transitions.
Signed-off-by: Matthias Kaehlcke <mka@chromium.org>
Acked-by: Laxman Dewangan <ldewangan@nvidia.com>
Signed-off-by: Mark Brown <broonie@kernel.org>
Rather than just not resolving the supply when there is explicitly no
supply mapping fall through and allow a dummy supply to be substituted.
This fixes issues with constant retries reported by Dong Aisheng.
Signed-off-by: Mark Brown <broonie@kernel.org>
Tested-by: Dong Aisheng <aisheng.dong@nxp.com>
Reviewed-by: Dong Aisheng <aisheng.dong@nxp.com>
When we are propagating voltage changes to parent regulators don't
bother if the parent does not have permission to change voltages. This
simplifies error checking in the function for cases where the regulator
lacks some of the voltage operations.
Reported-by: Dong Aisheng <aisheng.dong@nxp.com>
Tested-by: Dong Aisheng <aisheng.dong@nxp.com>
Reviewed-by: Dong Aisheng <aisheng.dong@nxp.com>
Signed-off-by: Mark Brown <broonie@kernel.org>
Some regulators (some PWM regulators) have the voltage transition
non-linear i.e. exponentially. On such cases, the settling time
for voltage transition can not be presented in the voltage-ramp-delay.
Add new property for non-linear voltage transition and handle this
in getting the voltage settling time.
Signed-off-by: Laxman Dewangan <ldewangan@nvidia.com>
Signed-off-by: Mark Brown <broonie@kernel.org>
Commit 26988efe11 ("regulator: core: Allow to get voltage count and
list from parent") introduces the propagation of the parent voltage
count and list for regulators that don't provide this information
themselves. The goal is to support simple switch regulators, however as
a side effect normal continuous regulators can leak details of their
supplies and provide consumers with inconsistent information.
Limit the propagation of the voltage count and list to switch
regulators.
Fixes: 26988efe11 ("regulator: core: Allow to get voltage count and
list from parent")
Signed-off-by: Matthias Kaehlcke <mka@chromium.org>
Reviewed-by: Javier Martinez Canillas <javier@osg.samsung.com>
Tested-by: Javier Martinez Canillas <javier@osg.samsung.com>
Signed-off-by: Mark Brown <broonie@kernel.org>