Clean up the names of trace events related to MRs so that it's
easy to enable these with a glob.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
When a memory operation fails, the MR's driver state might not match
its hardware state. The only reliable recourse is to dereg the MR.
This is done in ->ro_recover_mr, which then attempts to allocate a
fresh MR to replace the released MR.
Since commit e2ac236c0b ("xprtrdma: Allocate MRs on demand"),
xprtrdma dynamically allocates MRs. It can add more MRs whenever
they are needed.
That makes it possible to simply release an MR when a memory
operation fails, instead of "recovering" it. It will automatically
be replaced by the on-demand MR allocator.
This commit is a little larger than I wanted, but it replaces
->ro_recover_mr, rb_recovery_lock, rb_recovery_worker, and the
rb_stale_mrs list with a generic work queue.
Since MRs are no longer orphaned, the mrs_orphaned metric is no
longer used.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
Some devices require more than 3 MRs to build a single 1MB I/O.
Ensure that rpcrdma_mrs_create() will add enough MRs to build that
I/O.
In a subsequent patch I'm changing the MR recovery logic to just
toss out the MRs. In that case it's possible for ->send_request to
loop acquiring some MRs, not getting enough, getting called again,
recycling the previous MRs, then not getting enough, lather rinse
repeat. Thus first we need to ensure enough MRs are created to
prevent that loop.
I'm "reusing" ia->ri_max_segs. All of its accessors seem to want the
maximum number of data segments plus two, so I'm going to bake that
into the initial calculation.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
Stable bufixes:
- v3.17+: Fix an off-by-one in bl_map_stripe()
- v4.9+: NFSv4 client live hangs after live data migration recovery
- v4.18+: xprtrdma: Fix disconnect regression
- v4.14+: Fix locking in pnfs_generic_recover_commit_reqs
- v4.9+: Fix a sleep in atomic context in nfs4_callback_sequence()
Features:
- Add support for asynchronous server-side COPY operations
Other bugfixes and cleanups:
- Optitmizations and fixes involving NFS v4.1 / pNFS layout handling
- Optimize lseek(fd, SEEK_CUR, 0) on directories to avoid locking
- Immediately reschedule writeback when the server replies with an error
- Fix excessive attribute revalidation in nfs_execute_ok()
- Add error checking to nfs_idmap_prepare_message()
- Use new vm_fault_t return type
- Return a delegation when reclaiming one that the server has recalled
- Referrals should inherit proto setting from parents
- Make rpc_auth_create_args a const
- Improvements to rpc_iostats tracking
- Fix a potential reference leak when there is an error processing a callback
- Fix rmdir / mkdir / rename nlink accounting
- Fix updating inode change attribute
- Fix error handling in nfsn4_sp4_select_mode()
- Use an appropriate work queue for direct-write completion
- Don't busy wait if NFSv4 session draining is interrupted
-----BEGIN PGP SIGNATURE-----
iQIzBAABCAAdFiEEnZ5MQTpR7cLU7KEp18tUv7ClQOsFAlt/CYIACgkQ18tUv7Cl
QOu8gBAA0xQWmgRoG6oIdYUxvgYqhuJmMqC4SU1E6mCJ93xEuUSvEFw51X+84KCt
r6UPkp/bKiVe3EIinKTplIzuxgggXNG0EQmO46FYNTl7nqpN85ffLsQoWsiD23fp
j8afqKPFR2zfhHXLKQC7k1oiOpwGqJ+EJWgIW4llE80pSNaErEoEaDqSPds5thMN
dHEjjLr8ef6cbBux6sSPjwWGNbE82uoSu3MDuV2+e62hpGkgvuEYo1vyE6ujeZW5
MUsmw+AHZkwro0msTtNBOHcPZAS0q/2UMPzl1tsDeCWNl2mugqZ6szQLSS2AThKq
Zr6iK9Q5dWjJfrQHcjRMnYJB+SCX1SfPA7ASuU34opwcWPjecbS9Q92BNTByQYwN
o9ngs2K0mZfqpYESMAmf7Il134cCBrtEp3skGko2KopJcYcE5YUFhdKihi1yQQjU
UbOOubMpQk8vY9DpDCAwGbICKwUZwGvq27uuUWL20kFVDb1+jvfHwcV4KjRAJo/E
J9aFtU+qOh4rMPMnYlEVZcAZBGfenlv/DmBl1upRpjzBkteUpUJsAbCmGyAk4616
3RECasehgsjNCQpFIhv3FpUkWzP5jt0T3gRr1NeY6WKJZwYnHEJr9PtapS+EIsCT
tB5DvvaJqFtuHFOxzn+KlGaxdSodHF7klOq7NM3AC0cX8AkWqaU=
=8+9t
-----END PGP SIGNATURE-----
Merge tag 'nfs-for-4.19-1' of git://git.linux-nfs.org/projects/anna/linux-nfs
Pull NFS client updates from Anna Schumaker:
"These patches include adding async support for the v4.2 COPY
operation. I think Bruce is planning to send the server patches for
the next release, but I figured we could get the client side out of
the way now since it's been in my tree for a while. This shouldn't
cause any problems, since the server will still respond with
synchronous copies even if the client requests async.
Features:
- Add support for asynchronous server-side COPY operations
Stable bufixes:
- Fix an off-by-one in bl_map_stripe() (v3.17+)
- NFSv4 client live hangs after live data migration recovery (v4.9+)
- xprtrdma: Fix disconnect regression (v4.18+)
- Fix locking in pnfs_generic_recover_commit_reqs (v4.14+)
- Fix a sleep in atomic context in nfs4_callback_sequence() (v4.9+)
Other bugfixes and cleanups:
- Optimizations and fixes involving NFS v4.1 / pNFS layout handling
- Optimize lseek(fd, SEEK_CUR, 0) on directories to avoid locking
- Immediately reschedule writeback when the server replies with an
error
- Fix excessive attribute revalidation in nfs_execute_ok()
- Add error checking to nfs_idmap_prepare_message()
- Use new vm_fault_t return type
- Return a delegation when reclaiming one that the server has
recalled
- Referrals should inherit proto setting from parents
- Make rpc_auth_create_args a const
- Improvements to rpc_iostats tracking
- Fix a potential reference leak when there is an error processing a
callback
- Fix rmdir / mkdir / rename nlink accounting
- Fix updating inode change attribute
- Fix error handling in nfsn4_sp4_select_mode()
- Use an appropriate work queue for direct-write completion
- Don't busy wait if NFSv4 session draining is interrupted"
* tag 'nfs-for-4.19-1' of git://git.linux-nfs.org/projects/anna/linux-nfs: (54 commits)
pNFS: Remove unwanted optimisation of layoutget
pNFS/flexfiles: ff_layout_pg_init_read should exit on error
pNFS: Treat RECALLCONFLICT like DELAY...
pNFS: When updating the stateid in layoutreturn, also update the recall range
NFSv4: Fix a sleep in atomic context in nfs4_callback_sequence()
NFSv4: Fix locking in pnfs_generic_recover_commit_reqs
NFSv4: Fix a typo in nfs4_init_channel_attrs()
NFSv4: Don't busy wait if NFSv4 session draining is interrupted
NFS recover from destination server reboot for copies
NFS add a simple sync nfs4_proc_commit after async COPY
NFS handle COPY ERR_OFFLOAD_NO_REQS
NFS send OFFLOAD_CANCEL when COPY killed
NFS export nfs4_async_handle_error
NFS handle COPY reply CB_OFFLOAD call race
NFS add support for asynchronous COPY
NFS COPY xdr handle async reply
NFS OFFLOAD_CANCEL xdr
NFS CB_OFFLOAD xdr
NFS: Use an appropriate work queue for direct-write completion
NFSv4: Fix error handling in nfs4_sp4_select_mode()
...
I found that injecting disconnects with v4.18-rc resulted in
random failures of the multi-threaded git regression test.
The root cause appears to be that, after a reconnect, the
RPC/RDMA transport is waking pending RPCs before the transport has
posted enough Receive buffers to receive the Replies. If a Reply
arrives before enough Receive buffers are posted, the connection
is dropped. A few connection drops happen in quick succession as
the client and server struggle to regain credit synchronization.
This regression was introduced with commit 7c8d9e7c88 ("xprtrdma:
Move Receive posting to Receive handler"). The client is supposed to
post a single Receive when a connection is established because
it's not supposed to send more than one RPC Call before it gets
a fresh credit grant in the first RPC Reply [RFC 8166, Section
3.3.3].
Unfortunately there appears to be a longstanding bug in the Linux
client's credit accounting mechanism. On connect, it simply dumps
all pending RPC Calls onto the new connection. It's possible it has
done this ever since the RPC/RDMA transport was added to the kernel
ten years ago.
Servers have so far been tolerant of this bad behavior. Currently no
server implementation ever changes its credit grant over reconnects,
and servers always repost enough Receives before connections are
fully established.
The Linux client implementation used to post a Receive before each
of these Calls. This has covered up the flooding send behavior.
I could try to correct this old bug so that the client sends exactly
one RPC Call and waits for a Reply. Since we are so close to the
next merge window, I'm going to instead provide a simple patch to
post enough Receives before a reconnect completes (based on the
number of credits granted to the previous connection).
The spurious disconnects will be gone, but the client will still
send multiple RPC Calls immediately after a reconnect.
Addressing the latter problem will wait for a merge window because
a) I expect it to be a large change requiring lots of testing, and
b) obviously the Linux client has interoperated successfully since
day zero while still being broken.
Fixes: 7c8d9e7c88 ("xprtrdma: Move Receive posting to ... ")
Cc: stable@vger.kernel.org # v4.18+
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
Since neither ib_post_send() nor ib_post_recv() modify the data structure
their second argument points at, declare that argument const. This change
makes it necessary to declare the 'bad_wr' argument const too and also to
modify all ULPs that call ib_post_send(), ib_post_recv() or
ib_post_srq_recv(). This patch does not change any functionality but makes
it possible for the compiler to verify whether the
ib_post_(send|recv|srq_recv) really do not modify the posted work request.
To make this possible, only one cast had to be introduce that casts away
constness, namely in rpcrdma_post_recvs(). The only way I can think of to
avoid that cast is to introduce an additional loop in that function or to
change the data type of bad_wr from struct ib_recv_wr ** into int
(an index that refers to an element in the work request list). However,
both approaches would require even more extensive changes than this
patch.
Signed-off-by: Bart Van Assche <bart.vanassche@wdc.com>
Reviewed-by: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: Jason Gunthorpe <jgg@mellanox.com>
This patch replaces the ib_device_attr.max_sge with max_send_sge and
max_recv_sge. It allows ulps to take advantage of devices that have very
different send and recv sge depths. For example cxgb4 has a max_recv_sge
of 4, yet a max_send_sge of 16. Splitting out these attributes allows
much more efficient use of the SQ for cxgb4 with ulps that use the RDMA_RW
API. Consider a large RDMA WRITE that has 16 scattergather entries.
With max_sge of 4, the ulp would send 4 WRITE WRs, but with max_sge of
16, it can be done with 1 WRITE WR.
Acked-by: Sagi Grimberg <sagi@grimberg.me>
Acked-by: Christoph Hellwig <hch@lst.de>
Acked-by: Selvin Xavier <selvin.xavier@broadcom.com>
Acked-by: Shiraz Saleem <shiraz.saleem@intel.com>
Acked-by: Dennis Dalessandro <dennis.dalessandro@intel.com>
Signed-off-by: Steve Wise <swise@opengridcomputing.com>
Signed-off-by: Jason Gunthorpe <jgg@mellanox.com>
Highlights include:
Stable fixes:
- Fix a 1-byte stack overflow in nfs_idmap_read_and_verify_message
- Fix a hang due to incorrect error returns in rpcrdma_convert_iovs()
- Revert an incorrect change to the NFSv4.1 callback channel
- Fix a bug in the NFSv4.1 sequence error handling
Features and optimisations:
- Support for piggybacking a LAYOUTGET operation to the OPEN compound
- RDMA performance enhancements to deal with transport congestion
- Add proper SPDX tags for NetApp-contributed RDMA source
- Do not request delegated file attributes (size+change) from the server
- Optimise away a GETATTR in the lookup revalidate code when doing NFSv4 OPEN
- Optimise away unnecessary lookups for rename targets
- Misc performance improvements when freeing NFSv4 delegations
Bugfixes and cleanups:
- Try to fail quickly if proto=rdma
- Clean up RDMA receive trace points
- Fix sillyrename to return the delegation when appropriate
- Misc attribute revalidation fixes
- Immediately clear the pNFS layout on a file when the server returns ESTALE
- Return NFS4ERR_DELAY when delegation/layout recalls fail due to igrab()
- Fix the client behaviour on NFS4ERR_SEQ_FALSE_RETRY
-----BEGIN PGP SIGNATURE-----
iQIcBAABAgAGBQJbH8gIAAoJEA4mA3inWBJcpzYQAJYY3ykt9oLQgm/2b/D/weDe
6890M9W5nIeuZq5soWSpYsZTxqIFbGV4laG/eCTW1gUN1TitSZsoOp7kqhRHXOjq
Rv3ZvjlZsP2qv2SnzsEmhJsynfyB46d19smSTJhgQ8dnXhaZv04Wsd4krLHx0z6p
uUUis5Q1m+vL7HsFPp3iUareO/DFKeSkw2cQ2V5ksTIEiAzX7GC+Ex/KKWf82nrJ
hm7+Nq7rLf1QHJkQvsc3fYCMR4gIzEwUu6F8RyxCoAVgD6O90Hx6NbxnINaHDD4N
U0nRP5LwCyN9hbPWvwcH7Sn4ePDTos2yj2tFO5NP9btTLDVLFSGYZ2a74d9PRdAf
9jn6f6juSDwI7T6NXvkHzzkJG6Or9ABAUZo+yX5JoD6lmgOcPUJpLRy6fu7UxAuN
a5OZ7d9edYpOi0Kys8sDSIlLlxZtFkvybOMVuI3dSHsI+c0g39w8oarpqT2wXWMs
/ZtFz0FCreHhKkNtz7Z49z1UQHDv/XYM0WkcO+eaeK58RLIEE0pZHoMvPKP63lkI
nbbgHvBRAu38Jtvvu65Hpb/VpBcqNGM5hjN1cfW/BOqAPKW23s4vWVj+/1silfW/
uw0MkNrDC9endoALp/YMCcMwPvEw9Awt9y4KjMgfVgSnKwXd0HaSZ2zE6aJU3Wry
Fy2Tv0e0OH3z9Bi/LNuJ
=YWSl
-----END PGP SIGNATURE-----
Merge tag 'nfs-for-4.18-1' of git://git.linux-nfs.org/projects/trondmy/linux-nfs
Pull NFS client updates from Trond Myklebust:
"Highlights include:
Stable fixes:
- Fix a 1-byte stack overflow in nfs_idmap_read_and_verify_message
- Fix a hang due to incorrect error returns in rpcrdma_convert_iovs()
- Revert an incorrect change to the NFSv4.1 callback channel
- Fix a bug in the NFSv4.1 sequence error handling
Features and optimisations:
- Support for piggybacking a LAYOUTGET operation to the OPEN compound
- RDMA performance enhancements to deal with transport congestion
- Add proper SPDX tags for NetApp-contributed RDMA source
- Do not request delegated file attributes (size+change) from the
server
- Optimise away a GETATTR in the lookup revalidate code when doing
NFSv4 OPEN
- Optimise away unnecessary lookups for rename targets
- Misc performance improvements when freeing NFSv4 delegations
Bugfixes and cleanups:
- Try to fail quickly if proto=rdma
- Clean up RDMA receive trace points
- Fix sillyrename to return the delegation when appropriate
- Misc attribute revalidation fixes
- Immediately clear the pNFS layout on a file when the server returns
ESTALE
- Return NFS4ERR_DELAY when delegation/layout recalls fail due to
igrab()
- Fix the client behaviour on NFS4ERR_SEQ_FALSE_RETRY"
* tag 'nfs-for-4.18-1' of git://git.linux-nfs.org/projects/trondmy/linux-nfs: (80 commits)
skip LAYOUTRETURN if layout is invalid
NFSv4.1: Fix the client behaviour on NFS4ERR_SEQ_FALSE_RETRY
NFSv4: Fix a typo in nfs41_sequence_process
NFSv4: Revert commit 5f83d86cf5 ("NFSv4.x: Fix wraparound issues..")
NFSv4: Return NFS4ERR_DELAY when a layout recall fails due to igrab()
NFSv4: Return NFS4ERR_DELAY when a delegation recall fails due to igrab()
NFSv4.0: Remove transport protocol name from non-UCS client ID
NFSv4.0: Remove cl_ipaddr from non-UCS client ID
NFSv4: Fix a compiler warning when CONFIG_NFS_V4_1 is undefined
NFS: Filter cache invalidation when holding a delegation
NFS: Ignore NFS_INO_REVAL_FORCED in nfs_check_inode_attributes()
NFS: Improve caching while holding a delegation
NFS: Fix attribute revalidation
NFS: fix up nfs_setattr_update_inode
NFSv4: Ensure the inode is clean when we set a delegation
NFSv4: Ignore NFS_INO_REVAL_FORCED in nfs4_proc_access
NFSv4: Don't ask for delegated attributes when adding a hard link
NFSv4: Don't ask for delegated attributes when revalidating the inode
NFS: Pass the inode down to the getattr() callback
NFSv4: Don't request size+change attribute if they are delegated to us
...
from Chuck Lever with new trace points, miscellaneous cleanups, and
streamlining of the send and receive paths. Other than that, some
miscellaneous bugfixes.
-----BEGIN PGP SIGNATURE-----
iQIcBAABAgAGBQJbHtKUAAoJECebzXlCjuG+dfgP/2Z9PiJXlxKC2iISgkfMGmBd
MmWZYekYMtCe5raoiI720W5cGL7uBLoKnc+r57+n7bEGxV9OFwtspmKGn17P/zrY
YcBIdN7gjpqn8wrflLR4D09bGpnmaZG26jIt/v0TS+N1aFKO3gNXb0ZVSjUadlI0
UsKRbYxr8qucIENVtXhfA0eRivddadsKopAEwflUrxf+8oEaYszPFUfNXcGDpdHK
+6D2lFjr/Fn+z97Rbz/G3fMfldpYhUOpH28DOiCuKEpgamK3dYjx1WoGUANxcj3o
RsbHGZnMR6842Nj5aHus0k6Ao9bgqt6lx+jKlkvWYK+G2EfMfV9Z1gAipPY+IMbd
Zk5A4pnFpI1UG3sUlcnpaxAM/pHBs7heYGqj0hyocG8rB4V7SDZxp21Lv1fjTH/A
XHAkdiT4iSgI11J8YbmDBR1S7bAnfNm7GT24DsAkZLzh2f5Miq5m/ZMxDxQLAFCJ
3YKo2aNVjKvA/aOKDe5RMLZUhnmuhb8aMIDuQY2Ir1EK4S+7EYOiYAvqlbJrM3Ro
aLmb9BUzRRWmRydMKOeGkWiMj49lHRW6oJxvb33PDZEEqW/AlvmYEyMGfjhXzPDE
OZkvbdYrni4n5YboplxNnJyL0NJ6l5YAikV94SBWBknrnNv1psSZbDKoIgp2ghhQ
rdP842qSmDiZiXVlTr3e
=PuEk
-----END PGP SIGNATURE-----
Merge tag 'nfsd-4.18' of git://linux-nfs.org/~bfields/linux
Pull nfsd updates from Bruce Fields:
"A relatively quiet cycle for nfsd.
The largest piece is an RDMA update from Chuck Lever with new trace
points, miscellaneous cleanups, and streamlining of the send and
receive paths.
Other than that, some miscellaneous bugfixes"
* tag 'nfsd-4.18' of git://linux-nfs.org/~bfields/linux: (26 commits)
nfsd: fix error handling in nfs4_set_delegation()
nfsd: fix potential use-after-free in nfsd4_decode_getdeviceinfo
Fix 16-byte memory leak in gssp_accept_sec_context_upcall
svcrdma: Fix incorrect return value/type in svc_rdma_post_recvs
svcrdma: Remove unused svc_rdma_op_ctxt
svcrdma: Persistently allocate and DMA-map Send buffers
svcrdma: Simplify svc_rdma_send()
svcrdma: Remove post_send_wr
svcrdma: Don't overrun the SGE array in svc_rdma_send_ctxt
svcrdma: Introduce svc_rdma_send_ctxt
svcrdma: Clean up Send SGE accounting
svcrdma: Refactor svc_rdma_dma_map_buf
svcrdma: Allocate recv_ctxt's on CPU handling Receives
svcrdma: Persistently allocate and DMA-map Receive buffers
svcrdma: Preserve Receive buffer until svc_rdma_sendto
svcrdma: Simplify svc_rdma_recv_ctxt_put
svcrdma: Remove sc_rq_depth
svcrdma: Introduce svc_rdma_recv_ctxt
svcrdma: Trace key RDMA API events
svcrdma: Trace key RPC/RDMA protocol events
...
Stable patches:
- xprtrdma: Return -ENOBUFS when no pages are available
New features:
- Add ->alloc_slot() and ->free_slot() functions
Bugfixes and cleanups:
- Add missing SPDX tags to some files
- Try to fail mount quickly if client has no RDMA devices
- Create transport IDs in the correct network namespace
- Fix max_send_wr computation
- Clean up receive tracepoints
- Refactor receive handling
- Remove unused functions
-----BEGIN PGP SIGNATURE-----
iQIzBAABCAAdFiEEnZ5MQTpR7cLU7KEp18tUv7ClQOsFAlsRiOMACgkQ18tUv7Cl
QOuIdQ//QdZmGkZ/5chQat5F4EBSY9vFc5pIz3XCIGZ5dtxABPSsxrn0kWj0UWN/
MBIYla6tLJ7j2bZ+6U/1YuF6QehpGXZYsWxtp9JLE/bXiaGt404QFrUN1dr23gyP
+k2pT6V0h7vSDoQROQT496Lh6w8xCd7RZVE3u34k0sj2+iohqybiuE+5oSDcjfQ3
ArEi80Er5gGhnLTSwkx/6eOL0T2LVGRKNXUItYksQamRqQBq4N6jWlbAxZTtr4mq
CwEi/Mv/SLBkgaN5kjQRFkU/MRNwAhYOQB59Al2Na20xkvEL91mDsh1s10ViqiVQ
d7aux1Pcft/EQdDOZA2gq4qtlt1jPl/8rVLSj2FyvkwAAHW+ltmLSfv2jgWw/+v/
pKDkPIVCxCTwK8qEOnZizh1irfX8Eih6Pu6MoOleUqaNu14yvOZDANy7bREFA4Uj
OckhiAcisahlHCzpvunPg1auQ6Ee1KSYoIZR3ARYcKcPs0L2ik/HiKDoMrYqDCtW
9NGCfDtuZ7xEwpbN+5a5QMcIyU2BRrt4/i5sPVpN0smLuG9Scm3M0PqjHlXex7jo
d27Yfk07Na9oQ8wqGAv6NkIk89RuyHSgIh5T5zf9R/71osEE+2lBiZWZaNbbRFqd
u+RaA/sX5rzL0Hi5Nz2yhTNN5PPeP4FIipk60XG0WucXfdMFAls=
=I9YU
-----END PGP SIGNATURE-----
Merge tag 'nfs-rdma-for-4.18-1' of git://git.linux-nfs.org/projects/anna/linux-nfs
NFS-over-RDMA client updates for Linux 4.18
Stable patches:
- xprtrdma: Return -ENOBUFS when no pages are available
New features:
- Add ->alloc_slot() and ->free_slot() functions
Bugfixes and cleanups:
- Add missing SPDX tags to some files
- Try to fail mount quickly if client has no RDMA devices
- Create transport IDs in the correct network namespace
- Fix max_send_wr computation
- Clean up receive tracepoints
- Refactor receive handling
- Remove unused functions
Currently, when the sendctx queue is exhausted during marshaling, the
RPC/RDMA transport places the RPC task on the delayq, which forces a
wait for HZ >> 2 before the marshal and send is retried.
With this change, the transport now places such an RPC task on the
pending queue, and wakes it just as soon as more sendctxs become
available. This typically takes less than a millisecond, and the
write_space waking mechanism is less deadlock-prone.
Moreover, the waiting RPC task is holding the transport's write
lock, which blocks the transport from sending RPCs. Therefore faster
recovery from sendctx queue exhaustion is desirable.
Cf. commit 5804891455d5 ("xprtrdma: ->send_request returns -EAGAIN
when there are no free MRs").
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
Clean up: Move #include <trace/events/rpcrdma.h> into source files,
similar to how it is done with trace/events/sunrpc.h.
Server-side trace points will be part of the rpcrdma subsystem,
just like the client-side trace points.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: J. Bruce Fields <bfields@redhat.com>
Clean up: The only call site is in the same file as the function's
definition.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
Clean up: There is only one remaining call site for this helper.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
Clean up. There is only one call-site for this helper, and it can be
simplified by using list_first_entry_or_null().
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
Clean up: These functions are no longer used.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
Receive completion and Reply handling are done by a BOUND
workqueue, meaning they run on only one CPU.
Posting receives is currently done in the send_request path, which
on large systems is typically done on a different CPU than the one
handling Receive completions. This results in movement of
Receive-related cachelines between the sending and receiving CPUs.
More importantly, it means that currently Receives are posted while
the transport's write lock is held, which is unnecessary and costly.
Finally, allocation of Receive buffers is performed on-demand in
the Receive completion handler. This helps guarantee that they are
allocated on the same NUMA node as the CPU that handles Receive
completions.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
For clarity, report the posting and completion of Receive CQEs.
Also, the wc->byte_len field contains garbage if wc->status is
non-zero, and the vendor error field contains garbage if wc->status
is zero. For readability, don't save those fields in those cases.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
For FRWR, the computation of max_send_wr is split between
frwr_op_open and rpcrdma_ep_create, which makes it difficult to tell
that the max_send_wr result is currently incorrect if frwr_op_open
has to reduce the credit limit to accommodate a small max_qp_wr.
This is a problem now that extra WRs are needed for backchannel
operations and a drain CQE.
So, refactor the computation so that it is all done in ->ro_open,
and fix the FRWR version of this computation so that it
accommodates HCAs with small max_qp_wr correctly.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
Set up RPC/RDMA transport in mount.nfs's network namespace. This
passes the correct namespace information to the RDMA core, similar
to how RPC sockets are created (see xs_create_sock).
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
rdma_resolve_addr(3) says:
> This call is used to map a given destination IP address to a
> usable RDMA address. The IP to RDMA address mapping is done
> using the local routing tables, or via ARP.
If this can't be done, there's no local device that can be used
to establish an RDMA-capable network path to the remote. In this
case, the RDMA CM very quickly posts an RDMA_CM_EVENT_ADDR_ERROR
upcall.
Currently rpcrdma_conn_upcall() converts RDMA_CM_EVENT_ADDR_ERROR
to EHOSTUNREACH. mount.nfs seems to want to retry EHOSTUNREACH
forever, thinking that this is a temporary situation. This makes
mount.nfs appear to hang if I try to mount with proto=rdma through,
say, a conventional Ethernet device.
If the admin has specified proto=rdma along with a server IP address
that requires a network path that does not support RDMA, instead
let's fail with a permanent error. -EPROTONOSUPPORT is returned when
NFSv4 or one of its minor versions is not supported.
-EPROTO is not (currently) retried by mount.nfs.
There are potentially other similar cases where -EPROTO is an
appropriate return code.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Tested-by: Olga Kornievskaia <kolga@netapp.com>
Tested-by: Anna Schumaker <Anna.Schumaker@netapp.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
The ro_release_mr methods check whether mr->mr_list is empty.
Therefore, be sure to always use list_del_init when removing an MR
linked into a list using that field. Otherwise, when recovering from
transport failures or device removal, list corruption can result, or
MRs can get mapped or unmapped an odd number of times, resulting in
IOMMU-related failures.
In general this fix is appropriate back to v4.8. However, code
changes since then make it impossible to apply this patch directly
to stable kernels. The fix would have to be applied by hand or
reworked for kernels earlier than v4.16.
Backport guidance -- there are several cases:
- When creating an MR, initialize mr_list so that using list_empty
on an as-yet-unused MR is safe.
- When an MR is being handled by the remote invalidation path,
ensure that mr_list is reinitialized when it is removed from
rl_registered.
- When an MR is being handled by rpcrdma_destroy_mrs, it is removed
from mr_all, but it may still be on an rl_registered list. In
that case, the MR needs to be removed from that list before being
released.
- Other cases are covered by using list_del_init in rpcrdma_mr_pop.
Fixes: 9d6b040978 ('xprtrdma: Place registered MWs on a ... ')
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
Michal Kalderon has found some corner cases around device unload
with active NFS mounts that I didn't have the imagination to test
when xprtrdma device removal was added last year.
- The ULP device removal handler is responsible for deallocating
the PD. That wasn't clear to me initially, and my own testing
suggested it was not necessary, but that is incorrect.
- The transport destruction path can no longer assume that there
is a valid ID.
- When destroying a transport, ensure that ib_free_cq() is not
invoked on a CQ that was already released.
Reported-by: Michal Kalderon <Michal.Kalderon@cavium.com>
Fixes: bebd031866 ("xprtrdma: Support unplugging an HCA from ...")
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Cc: stable@vger.kernel.org # v4.12+
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
Refactor: Both rpcrdma_create_req call sites have to allocate the
buffer where the transport header is built, so just move that
allocation into rpcrdma_create_req.
This buffer is a fixed size. There's no needed information available
in call_allocate that is not also available when the transport is
created.
The original purpose for allocating these buffers on demand was to
reduce the possibility that an allocation failure during transport
creation will hork the mount operation during low memory scenarios.
Some relief for this rare possibility is coming up in the next few
patches.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
With FRWR, the client transport can perform memory registration and
post a Send with just a single ib_post_send.
This reduces contention between the send_request path and the Send
Completion handlers, and reduces the overhead of registering a chunk
that has multiple segments.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
Create fewer MRs on average. Many workloads don't need as many as
32 MRs, and the transport can now quickly restock the MR free list.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
Currently, when the MR free list is exhausted during marshaling, the
RPC/RDMA transport places the RPC task on the delayq, which forces a
wait for HZ >> 2 before the marshal and send is retried.
With this change, the transport now places such an RPC task on the
pending queue, and wakes it just as soon as more MRs have been
created. Creating more MRs typically takes less than a millisecond,
and this waking mechanism is less deadlock-prone.
Moreover, the waiting RPC task is holding the transport's write
lock, which blocks the transport from sending RPCs. Therefore faster
recovery from MR exhaustion is desirable.
This is the same mechanism that the TCP transport utilizes when
handling write buffer space exhaustion.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
Clean up: The generic rq_connect_cookie is sufficient to detect RPC
Call retransmission.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
Clean up: We need to check only that the value does not exceed the
range of the u8 field it's going into.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
Michal Kalderon reports a BUG that occurs just after device removal:
[ 169.112490] rpcrdma: removing device qedr0 for 192.168.110.146:20049
[ 169.143909] BUG: unable to handle kernel NULL pointer dereference at 0000000000000010
[ 169.181837] IP: rpcrdma_dma_unmap_regbuf+0xa/0x60 [rpcrdma]
The RPC/RDMA client transport attempts to allocate some resources
on demand. Registered buffers are one such resource. These are
allocated (or re-allocated) by xprt_rdma_allocate to hold RPC Call
and Reply messages. A hardware resource is associated with each of
these buffers, as they can be used for a Send or Receive Work
Request.
If a device is removed from under an NFS/RDMA mount, the transport
layer is responsible for releasing all hardware resources before
the device can be finally unplugged. A BUG results when the NFS
mount hasn't yet seen much activity: the transport tries to release
resources that haven't yet been allocated.
rpcrdma_free_regbuf() already checks for this case, so just move
that check to cover the DEVICE_REMOVAL case as well.
Reported-by: Michal Kalderon <Michal.Kalderon@cavium.com>
Fixes: bebd031866 ("xprtrdma: Support unplugging an HCA ...")
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Tested-by: Michal Kalderon <Michal.Kalderon@cavium.com>
Cc: stable@vger.kernel.org # v4.12+
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
Commit 16f906d66c ("xprtrdma: Reduce required number of send
SGEs") introduced the rpcrdma_ia::ri_max_send_sges field. This fixes
a problem where xprtrdma would not work if the device's max_sge
capability was small (low single digits).
At least RPCRDMA_MIN_SEND_SGES are needed for the inline parts of
each RPC. ri_max_send_sges is set to this value:
ia->ri_max_send_sges = max_sge - RPCRDMA_MIN_SEND_SGES;
Then when marshaling each RPC, rpcrdma_args_inline uses that value
to determine whether the device has enough Send SGEs to convey an
NFS WRITE payload inline, or whether instead a Read chunk is
required.
More recently, commit ae72950abf ("xprtrdma: Add data structure to
manage RDMA Send arguments") used the ri_max_send_sges value to
calculate the size of an array, but that commit erroneously assumed
ri_max_send_sges contains a value similar to the device's max_sge,
and not one that was reduced by the minimum SGE count.
This assumption results in the calculated size of the sendctx's
Send SGE array to be too small. When the array is used to marshal
an RPC, the code can write Send SGEs into the following sendctx
element in that array, corrupting it. When the device's max_sge is
large, this issue is entirely harmless; but it results in an oops
in the provider's post_send method, if dev.attrs.max_sge is small.
So let's straighten this out: ri_max_send_sges will now contain a
value with the same meaning as dev.attrs.max_sge, which makes
the code easier to understand, and enables rpcrdma_sendctx_create
to calculate the size of the SGE array correctly.
Reported-by: Michal Kalderon <Michal.Kalderon@cavium.com>
Fixes: 16f906d66c ("xprtrdma: Reduce required number of send SGEs")
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Tested-by: Michal Kalderon <Michal.Kalderon@cavium.com>
Cc: stable@vger.kernel.org # v4.10+
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
Fix kernel-doc warnings in net/sunrpc/xprtrdma/ .
net/sunrpc/xprtrdma/verbs.c:1575: warning: No description found for parameter 'count'
net/sunrpc/xprtrdma/verbs.c:1575: warning: Excess function parameter 'min_reqs' description in 'rpcrdma_ep_post_extra_recv'
net/sunrpc/xprtrdma/backchannel.c:288: warning: No description found for parameter 'r_xprt'
net/sunrpc/xprtrdma/backchannel.c:288: warning: Excess function parameter 'xprt' description in 'rpcrdma_bc_receive_call'
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
Clean up: Code review suggested that a common bit of code can be
placed into a helper function, and this gives us fewer places to
stick an "I DMA unmapped something" trace point.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
Clean up: struct rpcrdma_mw was named after Memory Windows, but
xprtrdma no longer supports a Memory Window registration mode.
Rename rpcrdma_mw and its fields to reduce confusion and make
the code more sensible to read.
Renaming "mw" was suggested by Tom Talpey, the author of the
original xprtrdma implementation. It's a good idea, but I haven't
done this until now because it's a huge diffstat for no benefit
other than code readability.
However, I'm about to introduce static trace points that expose
a few of xprtrdma's internal data structures. They should make sense
in the trace report, and it's reasonable to treat trace points as a
kernel API contract which might be difficult to change later.
While I'm churning things up, two additional changes:
- rename variables unhelpfully called "r" to "mr", to improve code
clarity, and
- rename the MR-related helper functions using the form
"rpcrdma_mr_<verb>", to be consistent with other areas of the
code.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
Clean up: Over time, the industry has adopted the term "frwr"
instead of "frmr". The term "frwr" is now more widely recognized.
For the past couple of years I've attempted to add new code using
"frwr" , but there still remains plenty of older code that still
uses "frmr". Replace all usage of "frmr" to avoid confusion.
While we're churning code, rename variables unhelpfully called "f"
to "frwr", to improve code clarity.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
Save more space in struct rpcrdma_xprt by removing the redundant
"addr" field from struct rpcrdma_create_data_internal. Wherever
we have rpcrdma_xprt, we also have the rpc_xprt, which has a
sockaddr_storage field with the same content.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
This makes the address strings available for debugging messages in
earlier stages of transport set up.
The first benefit is to get rid of the single-use rep_remote_addr
field, saving 128+ bytes in struct rpcrdma_ep.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
Clean up.
Commit b5f0afbea4 ("xprtrdma: Per-connection pad optimization")
should have removed this.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
Refactoring change: Remote Invalidation is particular to the memory
registration mode that is use. Use a callout instead of a generic
function to handle Remote Invalidation.
This gets rid of the 8-byte flags field in struct rpcrdma_mw, of
which only a single bit flag has been allocated.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
The backchannel code uses rpcrdma_recv_buffer_put to add new reps
to the free rep list. This also decrements rb_recv_count, which
spoofs the receive overrun logic in rpcrdma_buffer_get_rep.
Commit 9b06688bc3 ("xprtrdma: Fix additional uses of
spin_lock_irqsave(rb_lock)") replaced the original open-coded
list_add with a call to rpcrdma_recv_buffer_put(), but then a year
later, commit 05c974669e ("xprtrdma: Fix receive buffer
accounting") added rep accounting to rpcrdma_recv_buffer_put.
It was an oversight to let the backchannel continue to use this
function.
The fix this, let's combine the "add to free list" logic with
rpcrdma_create_rep.
Also, do not allocate RPCRDMA_MAX_BC_REQUESTS rpcrdma_reps in
rpcrdma_buffer_create and then allocate additional rpcrdma_reps in
rpcrdma_bc_setup_reps. Allocating the extra reps during backchannel
set-up is sufficient.
Fixes: 05c974669e ("xprtrdma: Fix receive buffer accounting")
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
Commit d8f532d20e ("xprtrdma: Invoke rpcrdma_reply_handler
directly from RECV completion") introduced a performance regression
for NFS I/O small enough to not need memory registration. In multi-
threaded benchmarks that generate primarily small I/O requests,
IOPS throughput is reduced by nearly a third. This patch restores
the previous level of throughput.
Because workqueues are typically BOUND (in particular ib_comp_wq,
nfsiod_workqueue, and rpciod_workqueue), NFS/RDMA workloads tend
to aggregate on the CPU that is handling Receive completions.
The usual approach to addressing this problem is to create a QP
and CQ for each CPU, and then schedule transactions on the QP
for the CPU where you want the transaction to complete. The
transaction then does not require an extra context switch during
completion to end up on the same CPU where the transaction was
started.
This approach doesn't work for the Linux NFS/RDMA client because
currently the Linux NFS client does not support multiple connections
per client-server pair, and the RDMA core API does not make it
straightforward for ULPs to determine which CPU is responsible for
handling Receive completions for a CQ.
So for the moment, record the CPU number in the rpcrdma_req before
the transport sends each RPC Call. Then during Receive completion,
queue the RPC completion on that same CPU.
Additionally, move all RPC completion processing to the deferred
handler so that even RPCs with simple small replies complete on
the CPU that sent the corresponding RPC Call.
Fixes: d8f532d20e ("xprtrdma: Invoke rpcrdma_reply_handler ...")
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
Credit work contributed by Oracle engineers since 2014.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>