The clock names of DSI_PLL_HSDIV_DISPC and DSI_PLL_HSDIV_DSI was made
dynamic based on the current value of DISPC and DSI FCLK sources. This
doesn't need to be done since we are just interested in the clock names,
and not the current clock sources for DISPC and DSI FCLKs.
Use only the generic and omap specific names for the DSI PLL's HSDIV
clocks.
Signed-off-by: Archit Taneja <archit@ti.com>
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
Now that dss_mgr_enable returns an error value, check it in all the
places dss_mgr_enable is used, and bail out properly.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
The current code uses dsi_video_mode_enable/disable functions to
enable/disable DISPC output for video mode displays. For command mode
displays we have no notion in the DISPC side of whether the panel is
enabled, except when a dss_mgr_start_update() call is made.
However, to properly maintain the DISPC state in apply.c, we need to
know if a manager used for a manual update display is currently in use.
This patch achieves that by changing dsi_video_mode_enable/disable to
dsi_enable/disable_video_output, which is called by both video and
command mode displays. For video mode displays it starts the actual
pixel stream, as it did before. For command mode displays it doesn't do
anything else than mark that the manager is currently in use.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
omap_overlay_manager struct contains enable() and disable() functions.
However, these are only meant to be used from inside omapdss, and thus
it's bad to expose the functions.
This patch adds dss_mgr_enable() and dss_mgr_disable() functions to
apply.c, which handle enabling and disabling the output.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
dss_start_update() takes currently the dss device as a parameter. Change
the parameter to ovl manager, as that is what the dss_start_update()
actually needs. Change the name of the function to
dss_mgr_start_update() to reflect the change.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
Partial update for manual update displays has never worked quite well:
* The HW has limitations on the update area, and the x and width need to
be even.
* Showing a part of a scaled overlay causes artifacts.
* Makes the management of dispc very complex
Considering the above points and the fact that partial update is not
used anywhere, this and the following patches remove the partial update
support. This will greatly simplify the following re-write of the apply
mechanism to get proper locking and additional features like fifo-merge.
This patch removes the partial update from the dsi.c.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
Partial update for manual update displays has never worked quite well:
* The HW has limitations on the update area, and the x and width need to
be even.
* Showing a part of a scaled overlay causes artifacts.
* Makes the management of dispc very complex
Considering the above points and the fact that partial update is not
used anywhere, this and the following patches remove the partial update
support. This will greatly simplify the following re-write of the apply
mechanism to get proper locking and additional features like fifo-merge.
This patch removes the partial update from the manager.c.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
We sometimes get timeout when disabling the DSI interface with video
mode. It looks like the disable will stall until the current frame has
been finished, and this can take multiple milliseconds.
wait_for_bit_change() currently uses a busyloop to wait for a bit to
change. This is used in multiple places. The problem is, we don't have
clear understanding how long particular operations can take, so the
function needs to support longer waits.
Improve wait_for_bit_change() to first busy loop for 100 times to see if
the bit changes almost right away. If the bit hasn't changed, move to a
loop with a sleep of 1ms, and poll for 500ms.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
The current code always enters ULPS for 3 lanes. This is not right, as
there could be only 2 lanes used, and on OMAP4 we have 5 lanes.
Fix the code to put all used lanes into ULPS.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
There's no longer need for the dsi_get_num_lanes_used function, so it
can be removed. The lane check in dsi_init_display() can be removed as
the validity of the config will be verified when parsing it.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
Use the new lane config in dsi_cio_enable_lane_override(). The function
parameters are also slightly changed.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
Use the new lane config in dsi_cio_wait_tx_clk_esc_reset(). This also
extends the function to support 5 lanes on OMAP4, instead of 3 lanes.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
Parse the lane configuration from the device data into internal lane
config format. This will be used in the following patches to clean up
the lane handling.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
DSI driver currently counts used lanes and number of supported lanes by
using the number of data lanes (i.e. excluding clock lane). This patch
changes this to use the number of all lanes so that the following lane
config patches are cleaner.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
Flush posted write after setting the bit to send the BTA to ensure the
BTA is sent right away, as the code in dsi_vc_send_bta_sync() waits for
an interrupt caused indirectly by sending the BTA.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
They were getting this implicitly by an include of module.h
from device.h -- but we are going to clean that up and break
that include chain, so include module.h explicitly now.
[ with contributions from Axel Lin <axel.lin@gmail.com> ]
Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
Add initial support for DSI video mode panels:
- Add a new structure omap_dss_dsi_videomode_data in the member "panel" in
omap_dss_device struct. This allows panel driver to configure dsi video_mode
specific parameters.
- Configure basic DSI video mode timing parameters: HBP, HFP, HSA, VBP, VFP, VSA,
TL and VACT.
- Configure DSI protocol engine registers for video_mode support.
- Introduce functions dsi_video_mode_enable() and dsi_video_mode_disable() which
enable/disable video mode for a given virtual channel and a given pixel format
type.
Things left for later
- Add functions to check for errors in video mode timings provided by panel.
- Configure timing registers required for command mode interleaving.
Signed-off-by: Archit Taneja <archit@ti.com>
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
dsi_vc_send_null() currently sends a long packet with data type
MIPI_DSI_NULL_PACKET and packet length 4. Modify it to send a zero
length long packet. This leads to sending only the long packet header
and no payload packets and hence the transfer completes faster.
The function can be modified later if there is a need to send null
packets of a non-zero length.
Signed-off-by: Archit Taneja <archit@ti.com>
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
Currently, DSI pixel info is only represented by the pixel size in bits using
the pixel_size parameter in omap_dss_device struct's ctrl member.
This is not sufficient information for DSI video mode usage, as two of the
supported formats(RGB666 loosely packed, and RGB888) have the same pixel
container size, but different data_type values for the video mode packet header.
Create enum "omap_dss_dsi_pixel_format" which describes the pixel data format
the panel is configured for. Create helper function dsi_get_pixel_size() which
returns the pixel size of the given pixel format.
Modify functions omapdss_default_get_recommended_bpp() and dss_use_replication()
to use dsi_get_pixel_size().
Signed-off-by: Archit Taneja <archit@ti.com>
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
Split the function dispc_set_parallel_interface_mode() into 2 separate
functions called dispc_mgr_set_io_pad_mode() and dispc_mgr_enable_stallmode().
The current function tries to set 2 different modes(io pad mode and stall mode)
based on a parameter omap_parallel_interface_mode which loosely corresponds to
the panel interface type.
This isn't correct because a) these 2 modes are independent to some extent,
b) we are currently configuring gpout0/gpout1 for DSI panels which is
unnecessary, c) a DSI Video mode panel won't get configured correctly.
Splitting the functions allows the interface driver to set these modes
independently and hence allow more flexibility.
Signed-off-by: Archit Taneja <archit@ti.com>
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
Introduce read functions which use generic Processor-to-Peripheral
transaction types. These are needed by some devices which may not support
corresponding DCS commands.
Add function dsi_vc_generic_send_read_request() which can send
a short packet with 0, 1 or 2 bytes of request data and the corresponding
generic data type.
Rename function dsi_vc_dcs_read_rx_fifo() to dsi_vc_read_rx_fifo() and modify
it to take the enum "dss_dsi_content_type" as an argument to use either DCS
or GENERIC Peripheral-to-Processor transaction types while parsing data read
from the device.
Signed-off-by: Archit Taneja <archit@ti.com>
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
Split dsi_vc_dcs_read() into the functions:
- dsi_vc_dcs_send_read_request(): This is responsible for sending the short
packet command with the read request.
- dsi_vc_dcs_read_rx_fifo(): This parses the DSI RX fifo of the given virtual
channel, identifies the type of data received, and fills a buffer with the data
provided by the panel.
Signed-off-by: Archit Taneja <archit@ti.com>
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
Remove functions dsi_vc_dcs_read_1() and dsi_vc_dcs_read_2(), these are used
when the panel is expected to return 1 and 2 bytes respecitvely. This was manily
used for debugging purposes. These functions should be implemented in the panel
driver if needed.
Signed-off-by: Archit Taneja <archit@ti.com>
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
Intoduce enum "dss_dsi_content_type" to differentiate between DCS and generic
content types.
Introduce short and long packet write functions which use generic
Processor-to-Peripheral transaction types. These are needed by some devices
which may not support corresponding DCS commands. Create common write functions
which allow code reuse between DCS and generic write functions.
Signed-off-by: Archit Taneja <archit@ti.com>
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
Create an enum for DSI operation modes, use this to set the capabilities of the
device in dsi_init_display().
Signed-off-by: Archit Taneja <archit@ti.com>
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
The enum type dsi_vc_mode is a bit misleading as L4 slave port and video port
are sources to VC rather than the mode of operation. Rename then enum type and
its members. Merge dsi_vc_config_vp() and dsi_vc_config_l4() into a single
function called dsi_vc_config_source() which takes dsi_vc_source enum as an
extra argument.
Signed-off-by: Archit Taneja <archit@ti.com>
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
MIPI DSI Transaction types and DCS commands are currently defined as
macros in dsi.c and panel-taal.c, remove these and replace them with
enum members defined in include/video/mipi_display.h.
Signed-off-by: Archit Taneja <archit@ti.com>
[tomi.valkeinen@ti.com: reformatted the commit message]
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
Rename dispc's manager related functions as follows:
- Remove prepending underscores, which were originally used to inform
that the clocks needs to be enabled. This meaning is no longer valid.
- Prepend the functions with dispc_mgr_*
- Remove "channel" from the name, e.g. dispc_enable_channel ->
dispc_mgr_enable
The idea is to group manager related functions so that it can be deduced
from the function name that it writes to manager spesific registers.
All dispc_mgr_* functions have enum omap_channel as the first parameter.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
Remove support for non-DISPC overlays and overlay managers.
The support to possibly have non-DISPC overlays and managers was made to
make it possible to use CPU and/or sDMA to update RFBI or DSI command
mode displays. It is ok to remove the support, because:
- No one has used the feature.
- Display update without DISPC is very slow, so it is debatable if the
update would even be usable.
- Removal cleans up code.
- If such a feature is needed later, it is better implemented outside
omapdss driver.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
Acked-by: Archit Taneja <archit@ti.com>
DPI and DSI were not cleaning up the clock source in error or uninit
cases. Set the clock source back to PRCM.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
dsi_mux_pads() needs to know about the DSI HW module and the DSI lanes
used. Split the function into two, enable and disable, which take
necessary arguments, and add empty implementations for both.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
Currently, there are 2 differently named platform devices generated for
the 2 DSS DSI modules. In order to use the same driver, the dsi devices
should be 2 instances of the same platform device.
Change the platform device names from "omapdss_dsi1" and "omapdss_dsi2"
to omapdss_dsi", and set the device indices to 0 and 1.
Signed-off-by: Archit Taneja <archit@ti.com>
Acked-by: Tony Lindgren <tony@atomide.com>
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
Now that the HWMOD fmwk handles the fcks of DSS modules properly, the
DSS driver no longer needs to explicitely enable/disable the fck.
This patch removes the enables/disables of fck from dispc, dsi and dss.
The clk_get(fck) is still needed there, as the modules need to know the
frequency of the clock.
For hdmi and venc this patch also removes the clk_get(fck), as they
don't need the clock at all.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
None of the DSS interface drivers check if an overlay manager is
connected to the display when the display is being enabled. This leads
to null pointer crash if the display has no manager.
This patch checks for the manager and returns an error if it is null.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
The HWMOD data for OMAP2 and 3 are currently not up to date regarding
DSS (OMAP4 HWMOD data is fine). This patch makes the DSS driver to get
the opt clocks needed for OMAP2/3 with the old clock names, thus
allowing DSS driver to use runtime PM.
The HWMOD databases should be fixes ASAP, and this patch can be reverted
after that.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
Use PM runtime and HWMOD support to handle enabling and disabling of DSS
modules.
Each DSS module will have get and put functions which can be used to
enable and disable that module. The functions use pm_runtime and hwmod
opt-clocks to enable the hardware.
Acked-by: Kevin Hilman <khilman@ti.com>
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
Both dss.c and dsi.c had a probe function, which was almost a dummy one,
calling dss_init() and dsi_init().
Remove the init functions by moving the initialization code into probe
functions.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
The DMA FIFO threshold registers and burst size registers have changed
for OMAP4. The current code only handles OMAP2/3 case, and so the
values are a bit off for OMAP4. A summary of the differences between
OMAP2/3 and OMAP4:
Burst size:
OMAP2/3: 4 x 32 bits / 8 x 32 bits / 16 x 32 bits
OMAP4: 2 x 128 bits / 4 x 128 bits / 8 x 128 bits
Threshold size:
OMAP2/3: in bytes (8 bit units)
OMAP4: in 128bit units
This patch fixes the issue by creating two new helper functions in
dss_features: dss_feat_get_buffer_size_unit() and
dss_feat_get_burst_size_unit(). These return (in bytes) the unit size
for threshold registers and unit size for burst size register,
respectively, and are used to calculate correct values.
For the threshold size the usage is straightforward. However, the burst
size register has different multipliers for OMAP2/3 and OMAP4. This
patch solves the problem by defining the multipliers for the burst size
as 2x, 4x and 8x, which fit fine for the OMAP4 burst size definition
(i.e. burst size unit for OMAP4 is 128bits), but requires a slight twist
on OMAP2/3 by defining the burst size unit as 64bit.
As the driver in practice always uses the maximum burst size, and no use
case currently exists where we would want to use a smaller burst size,
this patch changes the driver to hardcode the burst size when
initializing DISPC. This makes the threshold configuration code somewhat
simpler.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
When the panel driver calls omapdss_dsi_display_disable() it is possible
that there are still some unsent packets in the TX fifo.
Add dsi_sync_vc() calls in the beginning of
omapdss_dsi_display_disable() to make sure the TX fifos are empty.
This allows us to remove the msleep(10) hack from panel-taal.c
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
LANEx_ULPS_SIG2 bits are left on after entering ULPS. This doesn't cause
any problems currently, as DSI HW is reset when it is enabled. However,
if the reset is not done, operation fails if the bits are still set.
So reset the bits after entering ULPS to ensure operation even without
HW reset.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
Using empty macros for performance measurement functions when DSS DEBUG
is not enabled causes an unused variable warning.
Change the empty macros to empty inline functions to remove the
warning.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
The line buffer sizes vary across DSI modules, create a function
dsi_get_line_buf_size() using DSI_GNQ register to get the size of
line buffer used for the DISPC video port data.
Signed-off-by: Archit Taneja <archit@ti.com>
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
On OMAP3, the DSI module has 2 data lanes. On OMAP4, DSI1 has 4 data lanes
and DSI2 has 2 data lanes. Introduce function dsi_get_num_data_lanes() which
returns the number of data lanes on the dsi interface, introduce function
dsi_get_num_data_lanes_dssdev() which returns the number of data lanes used by
the omap_dss_device connected to the lanes.
Use the DSI_GNQ register on OMAP4 to get the number of data lanes, modify
dsi.c to use the number of lanes and the extra data lanes on DSI1.
Signed-off-by: Archit Taneja <archit@ti.com>
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
In the previous DSI driver design, a private workqueue was needed to prevent a
deadlock as explained in the commit : 0f16aa0ae6
. In the current design, the workqueue is only used for queueing delayed work in
the case where we don't get a FRAMEDONE interrupt for 250 milliseconds. It is
safe to remove the private workqueue amd use the system workqueue instead to
schedule the delayed work with the new design where the deadlock can't occur.
Signed-off-by: Archit Taneja <archit@ti.com>
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
dsi_dump_clocks() prints lck and pck rates for the DISPC channel which it is
connected to. Remove this since it is already printed by dispc_dump_clocks()
in debugfs.
Signed-off-by: Archit Taneja <archit@ti.com>
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>