Commit Graph

359 Commits

Author SHA1 Message Date
David S. Miller
3c08158e0e sparc: Fix /proc/kcore
/proc/kcore investigates the "System RAM" elements in /proc/iomem to
initialize it's memory tables.  Therefore we have to register them
before it tries to do so.  kcore uses device_initcall() so let's
use arch_initcall() for the registry.

Also we need ARCH_PROC_KCORE_TEXT to get the virtual addresses of
the kernel image correct.

Reported-by: David Ahern <david.ahern@oracle.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2015-03-18 19:15:28 -07:00
Andrea Arcangeli
a7b780750e mm: gup: use get_user_pages_unlocked within get_user_pages_fast
This allows the get_user_pages_fast slow path to release the mmap_sem
before blocking.

Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Reviewed-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Andres Lagar-Cavilla <andreslc@google.com>
Cc: Peter Feiner <pfeiner@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-02-11 17:06:05 -08:00
Naoya Horiguchi
61f77eda9b mm/hugetlb: reduce arch dependent code around follow_huge_*
Currently we have many duplicates in definitions around
follow_huge_addr(), follow_huge_pmd(), and follow_huge_pud(), so this
patch tries to remove the m.  The basic idea is to put the default
implementation for these functions in mm/hugetlb.c as weak symbols
(regardless of CONFIG_ARCH_WANT_GENERAL_HUGETL B), and to implement
arch-specific code only when the arch needs it.

For follow_huge_addr(), only powerpc and ia64 have their own
implementation, and in all other architectures this function just returns
ERR_PTR(-EINVAL).  So this patch sets returning ERR_PTR(-EINVAL) as
default.

As for follow_huge_(pmd|pud)(), if (pmd|pud)_huge() is implemented to
always return 0 in your architecture (like in ia64 or sparc,) it's never
called (the callsite is optimized away) no matter how implemented it is.
So in such architectures, we don't need arch-specific implementation.

In some architecture (like mips, s390 and tile,) their current
arch-specific follow_huge_(pmd|pud)() are effectively identical with the
common code, so this patch lets these architecture use the common code.

One exception is metag, where pmd_huge() could return non-zero but it
expects follow_huge_pmd() to always return NULL.  This means that we need
arch-specific implementation which returns NULL.  This behavior looks
strange to me (because non-zero pmd_huge() implies that the architecture
supports PMD-based hugepage, so follow_huge_pmd() can/should return some
relevant value,) but that's beyond this cleanup patch, so let's keep it.

Justification of non-trivial changes:
- in s390, follow_huge_pmd() checks !MACHINE_HAS_HPAGE at first, and this
  patch removes the check. This is OK because we can assume MACHINE_HAS_HPAGE
  is true when follow_huge_pmd() can be called (note that pmd_huge() has
  the same check and always returns 0 for !MACHINE_HAS_HPAGE.)
- in s390 and mips, we use HPAGE_MASK instead of PMD_MASK as done in common
  code. This patch forces these archs use PMD_MASK, but it's OK because
  they are identical in both archs.
  In s390, both of HPAGE_SHIFT and PMD_SHIFT are 20.
  In mips, HPAGE_SHIFT is defined as (PAGE_SHIFT + PAGE_SHIFT - 3) and
  PMD_SHIFT is define as (PAGE_SHIFT + PAGE_SHIFT + PTE_ORDER - 3), but
  PTE_ORDER is always 0, so these are identical.

Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Acked-by: Hugh Dickins <hughd@google.com>
Cc: James Hogan <james.hogan@imgtec.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Rik van Riel <riel@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Luiz Capitulino <lcapitulino@redhat.com>
Cc: Nishanth Aravamudan <nacc@linux.vnet.ibm.com>
Cc: Lee Schermerhorn <lee.schermerhorn@hp.com>
Cc: Steve Capper <steve.capper@linaro.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-02-11 17:06:01 -08:00
Linus Torvalds
33692f2759 vm: add VM_FAULT_SIGSEGV handling support
The core VM already knows about VM_FAULT_SIGBUS, but cannot return a
"you should SIGSEGV" error, because the SIGSEGV case was generally
handled by the caller - usually the architecture fault handler.

That results in lots of duplication - all the architecture fault
handlers end up doing very similar "look up vma, check permissions, do
retries etc" - but it generally works.  However, there are cases where
the VM actually wants to SIGSEGV, and applications _expect_ SIGSEGV.

In particular, when accessing the stack guard page, libsigsegv expects a
SIGSEGV.  And it usually got one, because the stack growth is handled by
that duplicated architecture fault handler.

However, when the generic VM layer started propagating the error return
from the stack expansion in commit fee7e49d45 ("mm: propagate error
from stack expansion even for guard page"), that now exposed the
existing VM_FAULT_SIGBUS result to user space.  And user space really
expected SIGSEGV, not SIGBUS.

To fix that case, we need to add a VM_FAULT_SIGSEGV, and teach all those
duplicate architecture fault handlers about it.  They all already have
the code to handle SIGSEGV, so it's about just tying that new return
value to the existing code, but it's all a bit annoying.

This is the mindless minimal patch to do this.  A more extensive patch
would be to try to gather up the mostly shared fault handling logic into
one generic helper routine, and long-term we really should do that
cleanup.

Just from this patch, you can generally see that most architectures just
copied (directly or indirectly) the old x86 way of doing things, but in
the meantime that original x86 model has been improved to hold the VM
semaphore for shorter times etc and to handle VM_FAULT_RETRY and other
"newer" things, so it would be a good idea to bring all those
improvements to the generic case and teach other architectures about
them too.

Reported-and-tested-by: Takashi Iwai <tiwai@suse.de>
Tested-by: Jan Engelhardt <jengelh@inai.de>
Acked-by: Heiko Carstens <heiko.carstens@de.ibm.com> # "s390 still compiles and boots"
Cc: linux-arch@vger.kernel.org
Cc: stable@vger.kernel.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-01-29 10:51:32 -08:00
Andreas Larsson
66d0f7ec9f sparc32: destroy_context() and switch_mm() needs to disable interrupts.
Load balancing can be triggered in the critical sections protected by
srmmu_context_spinlock in destroy_context() and switch_mm() and can hang
the cpu waiting for the rq lock of another cpu that in turn has called
switch_mm hangning on srmmu_context_spinlock leading to deadlock.

So, disable interrupt while taking srmmu_context_spinlock in
destroy_context() and switch_mm() so we don't deadlock.

See also commit 77b838fa1e ("[SPARC64]: destroy_context() needs to disable
interrupts.")

Signed-off-by: Andreas Larsson <andreas@gaisler.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2014-12-18 12:47:54 -05:00
Joonsoo Kim
031bc5743f mm/debug-pagealloc: make debug-pagealloc boottime configurable
Now, we have prepared to avoid using debug-pagealloc in boottime.  So
introduce new kernel-parameter to disable debug-pagealloc in boottime, and
makes related functions to be disabled in this case.

Only non-intuitive part is change of guard page functions.  Because guard
page is effective only if debug-pagealloc is enabled, turning off
according to debug-pagealloc is reasonable thing to do.

Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Dave Hansen <dave@sr71.net>
Cc: Michal Nazarewicz <mina86@mina86.com>
Cc: Jungsoo Son <jungsoo.son@lge.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-12-13 12:42:48 -08:00
David S. Miller
06090e8ed8 sparc64: Implement __get_user_pages_fast().
It is not sufficient to only implement get_user_pages_fast(), you
must also implement the atomic version __get_user_pages_fast()
otherwise you end up using the weak symbol fallback implementation
which simply returns zero.

This is dangerous, because it causes the futex code to loop forever
if transparent hugepages are supported (see get_futex_key()).

Signed-off-by: David S. Miller <davem@davemloft.net>
2014-10-24 09:59:02 -07:00
Linus Torvalds
0429fbc0bd Merge branch 'for-3.18-consistent-ops' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/percpu
Pull percpu consistent-ops changes from Tejun Heo:
 "Way back, before the current percpu allocator was implemented, static
  and dynamic percpu memory areas were allocated and handled separately
  and had their own accessors.  The distinction has been gone for many
  years now; however, the now duplicate two sets of accessors remained
  with the pointer based ones - this_cpu_*() - evolving various other
  operations over time.  During the process, we also accumulated other
  inconsistent operations.

  This pull request contains Christoph's patches to clean up the
  duplicate accessor situation.  __get_cpu_var() uses are replaced with
  with this_cpu_ptr() and __this_cpu_ptr() with raw_cpu_ptr().

  Unfortunately, the former sometimes is tricky thanks to C being a bit
  messy with the distinction between lvalues and pointers, which led to
  a rather ugly solution for cpumask_var_t involving the introduction of
  this_cpu_cpumask_var_ptr().

  This converts most of the uses but not all.  Christoph will follow up
  with the remaining conversions in this merge window and hopefully
  remove the obsolete accessors"

* 'for-3.18-consistent-ops' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/percpu: (38 commits)
  irqchip: Properly fetch the per cpu offset
  percpu: Resolve ambiguities in __get_cpu_var/cpumask_var_t -fix
  ia64: sn_nodepda cannot be assigned to after this_cpu conversion. Use __this_cpu_write.
  percpu: Resolve ambiguities in __get_cpu_var/cpumask_var_t
  Revert "powerpc: Replace __get_cpu_var uses"
  percpu: Remove __this_cpu_ptr
  clocksource: Replace __this_cpu_ptr with raw_cpu_ptr
  sparc: Replace __get_cpu_var uses
  avr32: Replace __get_cpu_var with __this_cpu_write
  blackfin: Replace __get_cpu_var uses
  tile: Use this_cpu_ptr() for hardware counters
  tile: Replace __get_cpu_var uses
  powerpc: Replace __get_cpu_var uses
  alpha: Replace __get_cpu_var
  ia64: Replace __get_cpu_var uses
  s390: cio driver &__get_cpu_var replacements
  s390: Replace __get_cpu_var uses
  mips: Replace __get_cpu_var uses
  MIPS: Replace __get_cpu_var uses in FPU emulator.
  arm: Replace __this_cpu_ptr with raw_cpu_ptr
  ...
2014-10-15 07:48:18 +02:00
David S. Miller
d195b71bad sparc64: Kill unnecessary tables and increase MAX_BANKS.
swapper_low_pmd_dir and swapper_pud_dir are actually completely
useless and unnecessary.

We just need swapper_pg_dir[].  Naturally the other page table chunks
will be allocated on an as-needed basis.  Since the kernel actually
accesses these tables in the PAGE_OFFSET view, there is not even a TLB
locality advantage of placing them in the kernel image.

Use the hard coded vmlinux.ld.S slot for swapper_pg_dir which is
naturally page aligned.

Increase MAX_BANKS to 1024 in order to handle heavily fragmented
virtual guests.

Even with this MAX_BANKS increase, the kernel is 20K+ smaller.

Signed-off-by: David S. Miller <davem@davemloft.net>
Acked-by: Bob Picco <bob.picco@oracle.com>
2014-10-05 16:53:40 -07:00
David S. Miller
bb4e6e85da sparc64: Adjust vmalloc region size based upon available virtual address bits.
In order to accomodate embedded per-cpu allocation with large numbers
of cpus and numa nodes, we have to use as much virtual address space
as possible for the vmalloc region.  Otherwise we can get things like:

PERCPU: max_distance=0x380001c10000 too large for vmalloc space 0xff00000000

So, once we select a value for PAGE_OFFSET, derive the size of the
vmalloc region based upon that.

Signed-off-by: David S. Miller <davem@davemloft.net>
Acked-by: Bob Picco <bob.picco@oracle.com>
2014-10-05 16:53:40 -07:00
David S. Miller
7c0fa0f24b sparc64: Increase MAX_PHYS_ADDRESS_BITS to 53.
Make sure, at compile time, that the kernel can properly support
whatever MAX_PHYS_ADDRESS_BITS is defined to.

On M7 chips, use a max_phys_bits value of 49.

Based upon a patch by Bob Picco.

Signed-off-by: David S. Miller <davem@davemloft.net>
Acked-by: Bob Picco <bob.picco@oracle.com>
2014-10-05 16:53:40 -07:00
David S. Miller
c06240c7f5 sparc64: Use kernel page tables for vmemmap.
For sparse memory configurations, the vmemmap array behaves terribly
and it takes up an inordinate amount of space in the BSS section of
the kernel image unconditionally.

Just build huge PMDs and look them up just like we do for TLB misses
in the vmalloc area.

Kernel BSS shrinks by about 2MB.

Signed-off-by: David S. Miller <davem@davemloft.net>
Acked-by: Bob Picco <bob.picco@oracle.com>
2014-10-05 16:53:39 -07:00
David S. Miller
0dd5b7b09e sparc64: Fix physical memory management regressions with large max_phys_bits.
If max_phys_bits needs to be > 43 (f.e. for T4 chips), things like
DEBUG_PAGEALLOC stop working because the 3-level page tables only
can cover up to 43 bits.

Another problem is that when we increased MAX_PHYS_ADDRESS_BITS up to
47, several statically allocated tables became enormous.

Compounding this is that we will need to support up to 49 bits of
physical addressing for M7 chips.

The two tables in question are sparc64_valid_addr_bitmap and
kpte_linear_bitmap.

The first holds a bitmap, with 1 bit for each 4MB chunk of physical
memory, indicating whether that chunk actually exists in the machine
and is valid.

The second table is a set of 2-bit values which tell how large of a
mapping (4MB, 256MB, 2GB, 16GB, respectively) we can use at each 256MB
chunk of ram in the system.

These tables are huge and take up an enormous amount of the BSS
section of the sparc64 kernel image.  Specifically, the
sparc64_valid_addr_bitmap is 4MB, and the kpte_linear_bitmap is 128K.

So let's solve the space wastage and the DEBUG_PAGEALLOC problem
at the same time, by using the kernel page tables (as designed) to
manage this information.

We have to keep using large mappings when DEBUG_PAGEALLOC is disabled,
and we do this by encoding huge PMDs and PUDs.

On a T4-2 with 256GB of ram the kernel page table takes up 16K with
DEBUG_PAGEALLOC disabled and 256MB with it enabled.  Furthermore, this
memory is dynamically allocated at run time rather than coded
statically into the kernel image.

Signed-off-by: David S. Miller <davem@davemloft.net>
Acked-by: Bob Picco <bob.picco@oracle.com>
2014-10-05 16:53:39 -07:00
David S. Miller
8c82dc0e88 sparc64: Adjust KTSB assembler to support larger physical addresses.
As currently coded the KTSB accesses in the kernel only support up to
47 bits of physical addressing.

Adjust the instruction and patching sequence in order to support
arbitrary 64 bits addresses.

Signed-off-by: David S. Miller <davem@davemloft.net>
Acked-by: Bob Picco <bob.picco@oracle.com>
2014-10-05 16:53:39 -07:00
David S. Miller
4397bed080 sparc64: Define VA hole at run time, rather than at compile time.
Now that we use 4-level page tables, we can provide up to 53-bits of
virtual address space to the user.

Adjust the VA hole based upon the capabilities of the cpu type probed.

Signed-off-by: David S. Miller <davem@davemloft.net>
Acked-by: Bob Picco <bob.picco@oracle.com>
2014-10-05 16:53:39 -07:00
David S. Miller
ac55c76814 sparc64: Switch to 4-level page tables.
This has become necessary with chips that support more than 43-bits
of physical addressing.

Based almost entirely upon a patch by Bob Picco.

Signed-off-by: David S. Miller <davem@davemloft.net>
Acked-by: Bob Picco <bob.picco@oracle.com>
2014-10-05 16:53:38 -07:00
David S. Miller
473ad7f4fb sparc64: Fix reversed start/end in flush_tlb_kernel_range()
When we have to split up a flush request into multiple pieces
(in order to avoid the firmware range) we don't specify the
arguments in the right order for the second piece.

Fix the order, or else we get hangs as the code tries to
flush "a lot" of entries and we get lockups like this:

[ 4422.981276] NMI watchdog: BUG: soft lockup - CPU#12 stuck for 23s! [expect:117032]
[ 4422.996130] Modules linked in: ipv6 loop usb_storage igb ptp sg sr_mod ehci_pci ehci_hcd pps_core n2_rng rng_core
[ 4423.016617] CPU: 12 PID: 117032 Comm: expect Not tainted 3.17.0-rc4+ #1608
[ 4423.030331] task: fff8003cc730e220 ti: fff8003d99d54000 task.ti: fff8003d99d54000
[ 4423.045282] TSTATE: 0000000011001602 TPC: 00000000004521e8 TNPC: 00000000004521ec Y: 00000000    Not tainted
[ 4423.064905] TPC: <__flush_tlb_kernel_range+0x28/0x40>
[ 4423.074964] g0: 000000000052fd10 g1: 00000001295a8000 g2: ffffff7176ffc000 g3: 0000000000002000
[ 4423.092324] g4: fff8003cc730e220 g5: fff8003dfedcc000 g6: fff8003d99d54000 g7: 0000000000000006
[ 4423.109687] o0: 0000000000000000 o1: 0000000000000000 o2: 0000000000000003 o3: 00000000f0000000
[ 4423.127058] o4: 0000000000000080 o5: 00000001295a8000 sp: fff8003d99d56d01 ret_pc: 000000000052ff54
[ 4423.145121] RPC: <__purge_vmap_area_lazy+0x314/0x3a0>
[ 4423.155185] l0: 0000000000000000 l1: 0000000000000000 l2: 0000000000a38040 l3: 0000000000000000
[ 4423.172559] l4: fff8003dae8965e0 l5: ffffffffffffffff l6: 0000000000000000 l7: 00000000f7e2b138
[ 4423.189913] i0: fff8003d99d576a0 i1: fff8003d99d576a8 i2: fff8003d99d575e8 i3: 0000000000000000
[ 4423.207284] i4: 0000000000008008 i5: fff8003d99d575c8 i6: fff8003d99d56df1 i7: 0000000000530c24
[ 4423.224640] I7: <free_vmap_area_noflush+0x64/0x80>
[ 4423.234193] Call Trace:
[ 4423.239051]  [0000000000530c24] free_vmap_area_noflush+0x64/0x80
[ 4423.251029]  [0000000000531a7c] remove_vm_area+0x5c/0x80
[ 4423.261628]  [0000000000531b80] __vunmap+0x20/0x120
[ 4423.271352]  [000000000071cf18] n_tty_close+0x18/0x40
[ 4423.281423]  [00000000007222b0] tty_ldisc_close+0x30/0x60
[ 4423.292183]  [00000000007225a4] tty_ldisc_reinit+0x24/0xa0
[ 4423.303120]  [0000000000722ab4] tty_ldisc_hangup+0xd4/0x1e0
[ 4423.314232]  [0000000000719aa0] __tty_hangup+0x280/0x3c0
[ 4423.324835]  [0000000000724cb4] pty_close+0x134/0x1a0
[ 4423.334905]  [000000000071aa24] tty_release+0x104/0x500
[ 4423.345316]  [00000000005511d0] __fput+0x90/0x1e0
[ 4423.354701]  [000000000047fa54] task_work_run+0x94/0xe0
[ 4423.365126]  [0000000000404b44] __handle_signal+0xc/0x2c

Fixes: 4ca9a23765 ("sparc64: Guard against flushing openfirmware mappings.")
Signed-off-by: David S. Miller <davem@davemloft.net>
2014-10-04 21:05:14 -07:00
bob picco
7c21d533ab sparc64: mem boot option correction
The "mem" boot option can result in many unexpected consequences. This patch
attempts to prevent boot hangs which have been experienced on T4-4 and T5-8.
Basically the boot loader allocates vmlinuz and initrd higher in available
OBP physical memory. For example, on a 2Tb T5-8 it isn't possible to boot
with mem=20G.

The patch utilizes memblock to avoid reserved regions and trim memory which
is only free. Other improvements are possible for a multi-node machine.

This is a snippet of the boot log with mem=20G on T5-8 with the patch applied:
MEMBLOCK configuration:	<- before memory reduction
 memory size = 0x1ffad6ce000 reserved size = 0xa1adf44
 memory.cnt  = 0xb
 memory[0x0]    [0x00000030400000-0x00003fdde47fff], 0x3fada48000 bytes
 memory[0x1]    [0x00003fdde4e000-0x00003fdde4ffff], 0x2000 bytes
 memory[0x2]    [0x00080000000000-0x00083fffffffff], 0x4000000000 bytes
 memory[0x3]    [0x00100000000000-0x00103fffffffff], 0x4000000000 bytes
 memory[0x4]    [0x00180000000000-0x00183fffffffff], 0x4000000000 bytes
 memory[0x5]    [0x00200000000000-0x00203fffffffff], 0x4000000000 bytes
 memory[0x6]    [0x00280000000000-0x00283fffffffff], 0x4000000000 bytes
 memory[0x7]    [0x00300000000000-0x00303fffffffff], 0x4000000000 bytes
 memory[0x8]    [0x00380000000000-0x00383fffc71fff], 0x3fffc72000 bytes
 memory[0x9]    [0x00383fffc92000-0x00383fffca1fff], 0x10000 bytes
 memory[0xa]    [0x00383fffcb4000-0x00383fffcb5fff], 0x2000 bytes
 reserved.cnt  = 0x2
 reserved[0x0]  [0x00380000000000-0x0038000117e7f8], 0x117e7f9 bytes
 reserved[0x1]  [0x00380004000000-0x0038000d02f74a], 0x902f74b bytes
...
MEMBLOCK configuration:	<- after reduction of memory
 memory size = 0x50a1adf44 reserved size = 0xa1adf44
 memory.cnt  = 0x4
 memory[0x0]    [0x00380000000000-0x0038000117e7f8], 0x117e7f9 bytes
 memory[0x1]    [0x00380004000000-0x0038050d01d74a], 0x50901d74b bytes
 memory[0x2]    [0x00383fffc92000-0x00383fffca1fff], 0x10000 bytes
 memory[0x3]    [0x00383fffcb4000-0x00383fffcb5fff], 0x2000 bytes
 reserved.cnt  = 0x2
 reserved[0x0]  [0x00380000000000-0x0038000117e7f8], 0x117e7f9 bytes
 reserved[0x1]  [0x00380004000000-0x0038000d02f74a], 0x902f74b bytes
...
Early memory node ranges
  node   7: [mem 0x380000000000-0x38000117dfff]
  node   7: [mem 0x380004000000-0x380f0d01bfff]
  node   7: [mem 0x383fffc92000-0x383fffca1fff]
  node   7: [mem 0x383fffcb4000-0x383fffcb5fff]
Could not find start_pfn for node 0
Could not find start_pfn for node 1
Could not find start_pfn for node 2
Could not find start_pfn for node 3
Could not find start_pfn for node 4
Could not find start_pfn for node 5
Could not find start_pfn for node 6
.

The patch was tested on T4-1, T5-8 and Jalap?no.

Cc: sparclinux@vger.kernel.org
Signed-off-by: Bob Picco <bob.picco@oracle.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2014-09-16 18:23:11 -07:00
bob picco
3dee9df548 sparc64: find_node adjustment
We have seen an issue with guest boot into LDOM that causes early boot failures
because of no matching rules for node identitity of the memory. I analyzed this
on my T4 and concluded there might not be a solution. I saw the issue in
mainline too when booting into the control/primary domain - with guests
configured.  Note, this could be a firmware bug on some older machines.

I'll provide a full explanation of the issues below. Should we not find a
matching BEST latency group for a real address (RA) then we will assume node 0.
On the T4-2 here with the information provided I can't see an alternative.

Technically the LDOM shown below should match the MBLOCK to the
favorable latency group. However other factors must be considered too. Were
the memory controllers configured "fine" grained interleave or "coarse"
grain interleaved -  T4. Also should a "group" MD node be considered a NUMA
node?

There has to be at least one Machine Description (MD) "group" and hence one
NUMA node. The group can have one or more latency groups (lg) - more than one
memory controller. The current code chooses the smallest latency as the most
favorable per group. The latency and lg information is in MLGROUP below.
MBLOCK is the base and size of the RAs for the machine as fetched from OBP
/memory "available" property. My machine has one MBLOCK but more would be
possible - with holes?

For a T4-2 the following information has been gathered:
with LDOM guest
MEMBLOCK configuration:
 memory size = 0x27f870000
 memory.cnt  = 0x3
 memory[0x0]    [0x00000020400000-0x0000029fc67fff], 0x27f868000 bytes
 memory[0x1]    [0x0000029fd8a000-0x0000029fd8bfff], 0x2000 bytes
 memory[0x2]    [0x0000029fd92000-0x0000029fd97fff], 0x6000 bytes
 reserved.cnt  = 0x2
 reserved[0x0]  [0x00000020800000-0x000000216c15c0], 0xec15c1 bytes
 reserved[0x1]  [0x00000024800000-0x0000002c180c1e], 0x7980c1f bytes
MBLOCK[0]: base[20000000] size[280000000] offset[0]
(note: "base" and "size" reported in "MBLOCK" encompass the "memory[X]" values)
(note: (RA + offset) & mask = val is the formula to detect a match for the
memory controller. should there be no match for find_node node, a return
value of -1 resulted for the node - BAD)

There is one group. It has these forward links
MLGROUP[1]: node[545] latency[1f7e8] match[200000000] mask[200000000]
MLGROUP[2]: node[54d] latency[2de60] match[0] mask[200000000]
NUMA NODE[0]: node[545] mask[200000000] val[200000000] (latency[1f7e8])
(note: "val" is the best lg's (smallest latency) "match")

no LDOM guest - bare metal
MEMBLOCK configuration:
 memory size = 0xfdf2d0000
 memory.cnt  = 0x3
 memory[0x0]    [0x00000020400000-0x00000fff6adfff], 0xfdf2ae000 bytes
 memory[0x1]    [0x00000fff6d2000-0x00000fff6e7fff], 0x16000 bytes
 memory[0x2]    [0x00000fff766000-0x00000fff771fff], 0xc000 bytes
 reserved.cnt  = 0x2
 reserved[0x0]  [0x00000020800000-0x00000021a04580], 0x1204581 bytes
 reserved[0x1]  [0x00000024800000-0x0000002c7d29fc], 0x7fd29fd bytes
MBLOCK[0]: base[20000000] size[fe0000000] offset[0]

there are two groups
group node[16d5]
MLGROUP[0]: node[1765] latency[1f7e8] match[0] mask[200000000]
MLGROUP[3]: node[177d] latency[2de60] match[200000000] mask[200000000]
NUMA NODE[0]: node[1765] mask[200000000] val[0] (latency[1f7e8])
group node[171d]
MLGROUP[2]: node[1775] latency[2de60] match[0] mask[200000000]
MLGROUP[1]: node[176d] latency[1f7e8] match[200000000] mask[200000000]
NUMA NODE[1]: node[176d] mask[200000000] val[200000000] (latency[1f7e8])
(note: for this two "group" bare metal machine, 1/2 memory is in group one's
lg and 1/2 memory is in group two's lg).

Cc: sparclinux@vger.kernel.org
Signed-off-by: Bob Picco <bob.picco@oracle.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2014-09-16 17:55:09 -07:00
bob picco
4ccb927289 sparc64: sun4v TLB error power off events
We've witnessed a few TLB events causing the machine to power off because
of prom_halt. In one case it was some nfs related area during rmmod. Another
was an mmapper of /dev/mem. A more recent one is an ITLB issue with
a bad pagesize which could be a hardware bug. Bugs happen but we should
attempt to not power off the machine and/or hang it when possible.

This is a DTLB error from an mmapper of /dev/mem:
[root@sparcie ~]# SUN4V-DTLB: Error at TPC[fffff80100903e6c], tl 1
SUN4V-DTLB: TPC<0xfffff80100903e6c>
SUN4V-DTLB: O7[fffff801081979d0]
SUN4V-DTLB: O7<0xfffff801081979d0>
SUN4V-DTLB: vaddr[fffff80100000000] ctx[1250] pte[98000000000f0610] error[2]
.

This is recent mainline for ITLB:
[ 3708.179864] SUN4V-ITLB: TPC<0xfffffc010071cefc>
[ 3708.188866] SUN4V-ITLB: O7[fffffc010071cee8]
[ 3708.197377] SUN4V-ITLB: O7<0xfffffc010071cee8>
[ 3708.206539] SUN4V-ITLB: vaddr[e0003] ctx[1a3c] pte[2900000dcc800eeb] error[4]
.

Normally sun4v_itlb_error_report() and sun4v_dtlb_error_report() would call
prom_halt() and drop us to OF command prompt "ok". This isn't the case for
LDOMs and the machine powers off.

For the HV reported error of HV_ENORADDR for HV HV_MMU_MAP_ADDR_TRAP we cause
a SIGBUS error by qualifying it within do_sparc64_fault() for fault code mask
of FAULT_CODE_BAD_RA. This is done when trap level (%tl) is less or equal
one("1"). Otherwise, for %tl > 1,  we proceed eventually to die_if_kernel().

The logic of this patch was partially inspired by David Miller's feedback.

Power off of large sparc64 machines is painful. Plus die_if_kernel provides
more context. A reset sequence isn't a brief period on large sparc64 but
better than power-off/power-on sequence.

Cc: sparclinux@vger.kernel.org
Signed-off-by: Bob Picco <bob.picco@oracle.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2014-09-16 17:46:44 -07:00
Christoph Lameter
494fc42170 sparc: Replace __get_cpu_var uses
__get_cpu_var() is used for multiple purposes in the kernel source. One of
them is address calculation via the form &__get_cpu_var(x).  This calculates
the address for the instance of the percpu variable of the current processor
based on an offset.

Other use cases are for storing and retrieving data from the current
processors percpu area.  __get_cpu_var() can be used as an lvalue when
writing data or on the right side of an assignment.

__get_cpu_var() is defined as :

#define __get_cpu_var(var) (*this_cpu_ptr(&(var)))

__get_cpu_var() always only does an address determination. However, store
and retrieve operations could use a segment prefix (or global register on
other platforms) to avoid the address calculation.

this_cpu_write() and this_cpu_read() can directly take an offset into a
percpu area and use optimized assembly code to read and write per cpu
variables.

This patch converts __get_cpu_var into either an explicit address
calculation using this_cpu_ptr() or into a use of this_cpu operations that
use the offset.  Thereby address calculations are avoided and less registers
are used when code is generated.

At the end of the patch set all uses of __get_cpu_var have been removed so
the macro is removed too.

The patch set includes passes over all arches as well. Once these operations
are used throughout then specialized macros can be defined in non -x86
arches as well in order to optimize per cpu access by f.e.  using a global
register that may be set to the per cpu base.

Transformations done to __get_cpu_var()

1. Determine the address of the percpu instance of the current processor.

	DEFINE_PER_CPU(int, y);
	int *x = &__get_cpu_var(y);

    Converts to

	int *x = this_cpu_ptr(&y);

2. Same as #1 but this time an array structure is involved.

	DEFINE_PER_CPU(int, y[20]);
	int *x = __get_cpu_var(y);

    Converts to

	int *x = this_cpu_ptr(y);

3. Retrieve the content of the current processors instance of a per cpu
variable.

	DEFINE_PER_CPU(int, y);
	int x = __get_cpu_var(y)

   Converts to

	int x = __this_cpu_read(y);

4. Retrieve the content of a percpu struct

	DEFINE_PER_CPU(struct mystruct, y);
	struct mystruct x = __get_cpu_var(y);

   Converts to

	memcpy(&x, this_cpu_ptr(&y), sizeof(x));

5. Assignment to a per cpu variable

	DEFINE_PER_CPU(int, y)
	__get_cpu_var(y) = x;

   Converts to

	__this_cpu_write(y, x);

6. Increment/Decrement etc of a per cpu variable

	DEFINE_PER_CPU(int, y);
	__get_cpu_var(y)++

   Converts to

	__this_cpu_inc(y)

Cc: sparclinux@vger.kernel.org
Acked-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Christoph Lameter <cl@linux.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
2014-08-26 13:45:55 -04:00
David S. Miller
5b6ff9df05 sparc64: Fix up merge thinko.
Signed-off-by: David S. Miller <davem@davemloft.net>
2014-08-05 19:09:19 -07:00
David S. Miller
e9011d0866 Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/sparc
Conflicts:
	arch/sparc/mm/init_64.c

Conflict was simple non-overlapping additions.

Signed-off-by: David S. Miller <davem@davemloft.net>
2014-08-05 18:57:18 -07:00
David S. Miller
4ca9a23765 sparc64: Guard against flushing openfirmware mappings.
Based almost entirely upon a patch by Christopher Alexander Tobias
Schulze.

In commit db64fe0225 ("mm: rewrite vmap
layer") lazy VMAP tlb flushing was added to the vmalloc layer.  This
causes problems on sparc64.

Sparc64 has two VMAP mapped regions and they are not contiguous with
eachother.  First we have the malloc mapping area, then another
unrelated region, then the vmalloc region.

This "another unrelated region" is where the firmware is mapped.

If the lazy TLB flushing logic in the vmalloc code triggers after
we've had both a module unload and a vfree or similar, it will pass an
address range that goes from somewhere inside the malloc region to
somewhere inside the vmalloc region, and thus covering the
openfirmware area entirely.

The sparc64 kernel learns about openfirmware's dynamic mappings in
this region early in the boot, and then services TLB misses in this
area.  But openfirmware has some locked TLB entries which are not
mentioned in those dynamic mappings and we should thus not disturb
them.

These huge lazy TLB flush ranges causes those openfirmware locked TLB
entries to be removed, resulting in all kinds of problems including
hard hangs and crashes during reboot/reset.

Besides causing problems like this, such huge TLB flush ranges are
also incredibly inefficient.  A plea has been made with the author of
the VMAP lazy TLB flushing code, but for now we'll put a safety guard
into our flush_tlb_kernel_range() implementation.

Since the implementation has become non-trivial, stop defining it as a
macro and instead make it a function in a C source file.

Signed-off-by: David S. Miller <davem@davemloft.net>
2014-08-04 20:16:00 -07:00
David S. Miller
18f3813252 sparc64: Do not insert non-valid PTEs into the TSB hash table.
The assumption was that update_mmu_cache() (and the equivalent for PMDs) would
only be called when the PTE being installed will be accessible by the user.

This is not true for code paths originating from remove_migration_pte().

There are dire consequences for placing a non-valid PTE into the TSB.  The TLB
miss frramework assumes thatwhen a TSB entry matches we can just load it into
the TLB and return from the TLB miss trap.

So if a non-valid PTE is in there, we will deadlock taking the TLB miss over
and over, never satisfying the miss.

Just exit early from update_mmu_cache() and friends in this situation.

Based upon a report and patch from Christopher Alexander Tobias Schulze.

Signed-off-by: David S. Miller <davem@davemloft.net>
2014-08-04 16:34:01 -07:00
bob picco
f6d4fb5cc0 sparc64 - add mem to iomem resource
This patch adds sparc RAM to /proc/iomem. It also identifies the
code, data and bss regions of the kernel.

Signed-off-by: Bob Picco <bob.picco@oracle.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2014-07-21 21:37:05 -07:00
Linus Torvalds
c4222e4635 Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/sparc-next
Pull sparc fixes from David Miller:
 "Sparc sparse fixes from Sam Ravnborg"

* git://git.kernel.org/pub/scm/linux/kernel/git/davem/sparc-next: (67 commits)
  sparc64: fix sparse warnings in int_64.c
  sparc64: fix sparse warning in ftrace.c
  sparc64: fix sparse warning in kprobes.c
  sparc64: fix sparse warning in kgdb_64.c
  sparc64: fix sparse warnings in compat_audit.c
  sparc64: fix sparse warnings in init_64.c
  sparc64: fix sparse warnings in aes_glue.c
  sparc: fix sparse warnings in smp_32.c + smp_64.c
  sparc64: fix sparse warnings in perf_event.c
  sparc64: fix sparse warnings in kprobes.c
  sparc64: fix sparse warning in tsb.c
  sparc64: clean up compat_sigset_t.seta handling
  sparc64: fix sparse "Should it be static?" warnings in signal32.c
  sparc64: fix sparse warnings in sys_sparc32.c
  sparc64: fix sparse warning in pci.c
  sparc64: fix sparse warnings in smp_64.c
  sparc64: fix sparse warning in prom_64.c
  sparc64: fix sparse warning in btext.c
  sparc64: fix sparse warnings in sys_sparc_64.c + unaligned_64.c
  sparc64: fix sparse warning in process_64.c
  ...

Conflicts:
	arch/sparc/include/asm/pgtable_64.h
2014-06-19 07:50:07 -10:00
Naoya Horiguchi
c177c81e09 hugetlb: restrict hugepage_migration_support() to x86_64
Currently hugepage migration is available for all archs which support
pmd-level hugepage, but testing is done only for x86_64 and there're
bugs for other archs.  So to avoid breaking such archs, this patch
limits the availability strictly to x86_64 until developers of other
archs get interested in enabling this feature.

Simply disabling hugepage migration on non-x86_64 archs is not enough to
fix the reported problem where sys_move_pages() hits the BUG_ON() in
follow_page(FOLL_GET), so let's fix this by checking if hugepage
migration is supported in vma_migratable().

Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Reported-by: Michael Ellerman <mpe@ellerman.id.au>
Tested-by: Michael Ellerman <mpe@ellerman.id.au>
Acked-by: Hugh Dickins <hughd@google.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Russell King <rmk@arm.linux.org.uk>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: James Hogan <james.hogan@imgtec.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: David Miller <davem@davemloft.net>
Cc: <stable@vger.kernel.org>	[3.12+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-06-04 16:53:51 -07:00
Sam Ravnborg
48d372164d sparc64: fix sparse warnings in int_64.c
Fix following warnings:
init_64.c:798:5: warning: symbol 'numa_cpu_lookup_table' was not declared. Should it be static?
init_64.c:799:11: warning: symbol 'numa_cpumask_lookup_table' was not declared. Should it be static?

The warnings were present with an allnoconfig
Fix so the variables are only declared if CONFIG_NEED_MULTIPLE_NODES is defined.

Signed-off-by: Sam Ravnborg <sam@ravnborg.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
2014-05-18 19:01:35 -07:00
Sam Ravnborg
59dec13b27 sparc64: fix sparse warnings in init_64.c
Fix following warnings:
init_64.c:191:10: warning: symbol 'dcpage_flushes' was not declared. Should it be static?
init_64.c:193:10: warning: symbol 'dcpage_flushes_xcall' was not declared. Should it be static?

Add extern declaration to asm/setup.h and drop local declaration in smp_64.h

Signed-off-by: Sam Ravnborg <sam@ravnborg.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
2014-05-18 19:01:34 -07:00
Sam Ravnborg
8c7260c0d9 sparc64: fix sparse warning in tsb.c
Fix following warning:
tsb.c:290:5: warning: symbol 'sysctl_tsb_ratio' was not declared. Should it be static?

Add extern declaration in asm/setup.h and remove local declaration
in kernel/sysctl.c

Signed-off-by: Sam Ravnborg <sam@ravnborg.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
2014-05-18 19:01:32 -07:00
Sam Ravnborg
8df52620e6 sparc64: fix sparse warnings in sys_sparc_64.c + unaligned_64.c
Fix following warnings:
kernel/sys_sparc_64.c:643:17: warning: symbol 'sys_kern_features' was not declared. Should it be static?
kernel/unaligned_64.c:297:17: warning: symbol 'kernel_unaligned_trap' was not declared. Should it be static?
kernel/unaligned_64.c:387:5: warning: symbol 'handle_popc' was not declared. Should it be static?
kernel/unaligned_64.c:428:5: warning: symbol 'handle_ldf_stq' was not declared. Should it be static?
kernel/unaligned_64.c:553:6: warning: symbol 'handle_ld_nf' was not declared. Should it be static?
kernel/unaligned_64.c:579:6: warning: symbol 'handle_lddfmna' was not declared. Should it be static?
kernel/unaligned_64.c:643:6: warning: symbol 'handle_stdfmna' was not declared. Should it be static?

Functions that are only used in kernel/ - add prototypes in kernel.h
Functions used outside kernel/ - add prototype in asm/setup.h
Removed local prototypes

One of the local prototypes had wrong signature (return void - not int).

Signed-off-by: Sam Ravnborg <sam@ravnborg.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
2014-05-18 19:01:30 -07:00
Sam Ravnborg
2e74a74f27 sparc: drop use of extern for prototypes in arch/sparc/*
Drop the remaining uses of extern for prototypes in .h files
in the sparc specific part of the kernel tree.

Signed-off-by: Sam Ravnborg <sam@ravnborg.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
2014-05-18 19:01:29 -07:00
Sam Ravnborg
1918660b90 sparc32: fix sparse warning in io-unit.c
Fix following warning:
io-unit.c:56:13: warning: incorrect type in assignment (different address spaces)

The page table for the io unit resides in __iomem.
Fix up all users of the io unit page table.
Introduce sbus helers for all read/write operations.

Signed-off-by: Sam Ravnborg <sam@ravnborg.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
2014-05-18 19:01:26 -07:00
Sam Ravnborg
f977ea49ae sparc32: fix sparse warning in iommu.c
Fix following warning:
iommu.c:69:21: warning: incorrect type in assignment (different address spaces)

iommu_struct.regs is __iomem - fix up all users.
Introduce sbus operations for all read/write operations.

Signed-off-by: Sam Ravnborg <sam@ravnborg.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
2014-05-18 19:01:26 -07:00
David S. Miller
b18eb2d779 sparc64: Fix huge TSB mapping on pre-UltraSPARC-III cpus.
Access to the TSB hash tables during TLB misses requires that there be
an atomic 128-bit quad load available so that we fetch a matching TAG
and DATA field at the same time.

On cpus prior to UltraSPARC-III only virtual address based quad loads
are available.  UltraSPARC-III and later provide physical address
based variants which are easier to use.

When we only have virtual address based quad loads available this
means that we have to lock the TSB into the TLB at a fixed virtual
address on each cpu when it runs that process.  We can't just access
the PAGE_OFFSET based aliased mapping of these TSBs because we cannot
take a recursive TLB miss inside of the TLB miss handler without
risking running out of hardware trap levels (some trap combinations
can be deep, such as those generated by register window spill and fill
traps).

Without huge pages it's working perfectly fine, but when the huge TSB
got added another chunk of fixed virtual address space was not
allocated for this second TSB mapping.

So we were mapping both the 8K and 4MB TSBs to the same exact virtual
address, causing multiple TLB matches which gives undefined behavior.

Signed-off-by: David S. Miller <davem@davemloft.net>
2014-05-08 14:59:07 -07:00
David S. Miller
e5c460f46a sparc64: Don't bark so loudly about 32-bit tasks generating 64-bit fault addresses.
This was found using Dave Jone's trinity tool.

When a user process which is 32-bit performs a load or a store, the
cpu chops off the top 32-bits of the effective address before
translating it.

This is because we run 32-bit tasks with the PSTATE_AM (address
masking) bit set.

We can't run the kernel with that bit set, so when the kernel accesses
userspace no address masking occurs.

Since a 32-bit process will have no mappings in that region we will
properly fault, so we don't try to handle this using access_ok(),
which can safely just be a NOP on sparc64.

Real faults from 32-bit processes should never generate such addresses
so a bug check was added long ago, and it barks in the logs if this
happens.

But it also barks when a kernel user access causes this condition, and
that _can_ happen.  For example, if a pointer passed into a system call
is "0xfffffffc" and the kernel access 4 bytes offset from that pointer.

Just handle such faults normally via the exception entries.

Signed-off-by: David S. Miller <davem@davemloft.net>
2014-05-06 21:27:37 -07:00
David S. Miller
0eef331a3d sparc64: Use 'ILOG2_4MB' instead of constant '22'.
Signed-off-by: David S. Miller <davem@davemloft.net>
2014-05-03 22:52:50 -07:00
David S. Miller
70ffc6ebae sparc64: Fix top-level fault handling bugs.
Make get_user_insn() able to cope with huge PMDs.

Next, make do_fault_siginfo() more robust when get_user_insn() can't
actually fetch the instruction.  In particular, use the MMU announced
fault address when that happens, instead of calling
compute_effective_address() and computing garbage.

Signed-off-by: David S. Miller <davem@davemloft.net>
2014-05-03 22:41:19 -07:00
David S. Miller
04df419de3 sparc64: Fix bugs in get_user_pages_fast() wrt. THP.
The large PMD path needs to check _PAGE_VALID not _PAGE_PRESENT, to
decide if it needs to bail and return 0.

pmd_large() should therefore just check _PAGE_PMD_HUGE.

Calls to gup_huge_pmd() are guarded with a check of pmd_large(), so we
just need to add a valid bit check.

Signed-off-by: David S. Miller <davem@davemloft.net>
2014-05-03 22:32:37 -07:00
David S. Miller
51e5ef1bb7 sparc64: Fix huge PMD invalidation.
On sparc64 "present" and "valid" are seperate PTE bits, this allows us to
naturally distinguish between the user explicitly asking for PROT_NONE
with mprotect() and other situations.

However we weren't handling this properly in the huge PMD paths.

First of all, the page table walker in the TSB miss path only checks
for _PAGE_PMD_HUGE.  So the generic pmdp_invalidate() would clear
_PAGE_PRESENT but the TLB miss paths would still load it into the TLB
as a valid huge PMD.

Fix this by clearing the valid bit in pmdp_invalidate(), and also
checking the valid bit in USER_PGTABLE_CHECK_PMD_HUGE using "brgez"
since _PAGE_VALID is bit 63 in both the sun4u and sun4v pte layouts.

Signed-off-by: David S. Miller <davem@davemloft.net>
2014-05-03 22:31:52 -07:00
David S. Miller
5b1e94fa43 sparc64: Fix executable bit testing in set_pmd_at() paths.
This code was mistakenly using the exec bit from the PMD in all
cases, even when the PMD isn't a huge PMD.

If it's not a huge PMD, test the exec bit in the individual ptes down
in tlb_batch_pmd_scan().

Signed-off-by: David S. Miller <davem@davemloft.net>
2014-05-03 22:30:36 -07:00
Sam Ravnborg
9edfae3f69 sparc32: fix sparse warnings in unaligned_32.c
Fix following warnings:
unaligned_32.c:146:15: warning: symbol 'safe_compute_effective_address' was not declared. Should it be static?
unaligned_32.c:235:17: warning: symbol 'kernel_unaligned_trap' was not declared. Should it be static?
unaligned_32.c:319:17: warning: symbol 'user_unaligned_trap' was not declared. Should it be static?

Add proper declarations in kernel.h + setup.h

Signed-off-by: Sam Ravnborg <sam@ravnborg.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
2014-04-29 01:12:26 -04:00
Sam Ravnborg
8885ec7ca9 sparc32: fix sparse warning in devices.c
Fix following warning:
devices.c:114:13: warning: symbol 'device_scan' was not declared. Should it be static?

Add prototype to asm/setup.h

Signed-off-by: Sam Ravnborg <sam@ravnborg.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
2014-04-29 01:12:26 -04:00
Sam Ravnborg
d191723fee sparc32: fix sparse warnings in setup_32.c
Fix following warnings:
setup_32.c:106:15: warning: symbol 'cmdline_memory_size' was not declared. Should it be static?
setup_32.c:270:16: warning: symbol 'fake_swapper_regs' was not declared. Should it be static?
setup_32.c:368:55: warning: Using plain integer as NULL pointer

Add missing declaration of cmdline_memory_size and remove the local one in init_32.c
fake_swapper_regs was only used locally - so defined static.
When replacing 0 with NULL also add a few spaces around operators

Signed-off-by: Sam Ravnborg <sam@ravnborg.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
2014-04-29 01:12:25 -04:00
Sam Ravnborg
a2b0aa9463 sparc32: fix sparse "Should it be static?" in mm/
Fix following warnings:
srmmu.c:870:13: warning: symbol 'srmmu_paging_init' was not declared. Should it be static?
iommu.c:430:13: warning: symbol 'ld_mmu_iommu' was not declared. Should it be static?
leon_mm.c:21:5: warning: symbol 'srmmu_swprobe_trace' was not declared. Should it be static?

Add proper prototypes or define static to fix them.

Signed-off-by: Sam Ravnborg <sam@ravnborg.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
2014-04-29 01:12:25 -04:00
Sam Ravnborg
e8c29c839b sparc32: fix sparse warnings in srmmu.c
Fix following warnings:
srmmu.c:78:5: warning: symbol 'flush_page_for_dma_global' was not declared. Should it be static?
srmmu.c:85:5: warning: symbol 'viking_mxcc_present' was not declared. Should it be static?
srmmu.c:103:6: warning: symbol 'srmmu_nocache_bitmap' was not declared. Should it be static?
srmmu.c:176:24: warning: Using plain integer as NULL pointer
srmmu.c:731:46: warning: Using plain integer as NULL pointer
srmmu.c:731:46: warning: Using plain integer as NULL pointer
srmmu.c:731:46: warning: Using plain integer as NULL pointer
srmmu.c:870:13: warning: symbol 'srmmu_paging_init' was not declared. Should it be static?

Add proper prototypes in mm_32.h and drop local prototype in init_32.c
Replace 0 with NULL

Signed-off-by: Sam Ravnborg <sam@ravnborg.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
2014-04-29 01:12:25 -04:00
Sam Ravnborg
4c9660f796 sparc32: fix sparse warning in init_32.c
Fix following warning:
init_32.c:112:22: warning: symbol 'bootmem_init' was not declared. Should it be static?

Fix by adding a proper prototype in pgtable_32.h and drop
the local prototype in srmmu.c

Signed-off-by: Sam Ravnborg <sam@ravnborg.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
2014-04-29 01:12:24 -04:00
Sam Ravnborg
e1b2f13488 sparc32: fix sparse warning in fault_32.c
Fix following warning:
fault_32.c:38:24: error: symbol 'unhandled_fault' redeclared with different type - different modifiers

When this warning was fixed several new warnings popped up - fix them too.

Signed-off-by: Sam Ravnborg <sam@ravnborg.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
2014-04-29 01:12:24 -04:00
Sam Ravnborg
ddb7417ea9 sparc32: rename mm/srmmu.h to mm/mm_32.h
This file will be used for more than just srmmu stuff, so the old name was misleading.

Signed-off-by: Sam Ravnborg <sam@ravnborg.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
2014-04-29 01:12:24 -04:00