The functions where internally already only using the structure, so we
need to just flip the interface.
v2: rebase
Signed-off-by: Daniele Ceraolo Spurio <daniele.ceraolospurio@intel.com>
Cc: Imre Deak <imre.deak@intel.com>
Reviewed-by: Chris Wilson <chris@chris-wilson.co.uk>
Acked-by: Imre Deak <imre.deak@intel.com>
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Link: https://patchwork.freedesktop.org/patch/msgid/20190613232156.34940-7-daniele.ceraolospurio@intel.com
Currently, the subslice_mask runtime parameter is stored as an
array of subslices per slice. Expand the subslice mask array to
better match what is presented to userspace through the
I915_QUERY_TOPOLOGY_INFO ioctl. The index into this array is
then calculated:
slice * subslice stride + subslice index / 8
v2: fix spacing in set_sseu_info args
use set_sseu_info to initialize sseu data when building
device status in debugfs
rename variables in intel_engine_types.h to avoid checkpatch
warnings
v3: update headers in intel_sseu.h
v4: add const to some sseu_dev_info variables
use sseu->eu_stride for EU stride calculations
v5: address review comments from Tvrtko and Daniele
v6: remove extra space in intel_sseu_get_subslices
return the correct subslice enable in for_each_instdone
add GEM_BUG_ON to ensure user doesn't pass invalid ss_mask size
use printk formatted string for subslice mask
v7: remove string.h header and rebase
Cc: Daniele Ceraolo Spurio <daniele.ceraolospurio@intel.com>
Cc: Lionel Landwerlin <lionel.g.landwerlin@intel.com>
Acked-by: Lionel Landwerlin <lionel.g.landwerlin@intel.com>
Reviewed-by: Daniele Ceraolo Spurio <daniele.ceraolospurio@intel.com>
Signed-off-by: Stuart Summers <stuart.summers@intel.com>
Signed-off-by: Manasi Navare <manasi.d.navare@intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20190524154022.13575-6-stuart.summers@intel.com
After realising we need to sample RING_START to detect context switches
from preemption events that do not allow for the seqno to advance, we
can also realise that the seqno itself is just a distance along the ring
and so can be replaced by sampling RING_HEAD.
v2: Bonus comment for the mystery separate CS_STALL before MI_USER_INTERRUPT
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Mika Kuoppala <mika.kuoppala@linux.intel.com>
Reviewed-by: Mika Kuoppala <mika.kuoppala@linux.intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20190508080704.24223-1-chris@chris-wilson.co.uk
Given sufficient preemption, we may see a busy system that doesn't
advance seqno while performing work across multiple contexts, and given
sufficient pathology not even notice a change in ACTHD. What does change
between the preempting contexts is their RING, so take note of that and
treat a change in the ring address as being an indication of forward
progress.
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Mika Kuoppala <mika.kuoppala@linux.intel.com>
Reviewed-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20190501114541.10077-1-chris@chris-wilson.co.uk
In the current scheme, on submitting a request we take a single global
GEM wakeref, which trickles down to wake up all GT power domains. This
is undesirable as we would like to be able to localise our power
management to the available power domains and to remove the global GEM
operations from the heart of the driver. (The intent there is to push
global GEM decisions to the boundary as used by the GEM user interface.)
Now during request construction, each request is responsible via its
logical context to acquire a wakeref on each power domain it intends to
utilize. Currently, each request takes a wakeref on the engine(s) and
the engines themselves take a chipset wakeref. This gives us a
transition on each engine which we can extend if we want to insert more
powermangement control (such as soft rc6). The global GEM operations
that currently require a struct_mutex are reduced to listening to pm
events from the chipset GT wakeref. As we reduce the struct_mutex
requirement, these listeners should evaporate.
Perhaps the biggest immediate change is that this removes the
struct_mutex requirement around GT power management, allowing us greater
flexibility in request construction. Another important knock-on effect,
is that by tracking engine usage, we can insert a switch back to the
kernel context on that engine immediately, avoiding any extra delay or
inserting global synchronisation barriers. This makes tracking when an
engine and its associated contexts are idle much easier -- important for
when we forgo our assumed execution ordering and need idle barriers to
unpin used contexts. In the process, it means we remove a large chunk of
code whose only purpose was to switch back to the kernel context.
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Cc: Imre Deak <imre.deak@intel.com>
Reviewed-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20190424200717.1686-5-chris@chris-wilson.co.uk
Start partitioning off the code that talks to the hardware (GT) from the
uapi layers and move the device facing code under gt/
One casualty is s/intel_ringbuffer.h/intel_engine.h/ with the plan to
subdivide that header and body further (and split out the submission
code from the ringbuffer and logical context handling). This patch aims
to be simple motion so git can fixup inflight patches with little mess.
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Acked-by: Joonas Lahtinen <joonas.lahtinen@linux.intel.com>
Acked-by: Jani Nikula <jani.nikula@intel.com>
Acked-by: Rodrigo Vivi <rodrigo.vivi@intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20190424174839.7141-1-chris@chris-wilson.co.uk