mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-12-28 11:05:18 +07:00
7eb3322457
982 Commits
Author | SHA1 | Message | Date | |
---|---|---|---|---|
Linus Torvalds
|
0214f46b3a |
Merge branch 'siginfo-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/ebiederm/user-namespace
Pull core signal handling updates from Eric Biederman: "It was observed that a periodic timer in combination with a sufficiently expensive fork could prevent fork from every completing. This contains the changes to remove the need for that restart. This set of changes is split into several parts: - The first part makes PIDTYPE_TGID a proper pid type instead something only for very special cases. The part starts using PIDTYPE_TGID enough so that in __send_signal where signals are actually delivered we know if the signal is being sent to a a group of processes or just a single process. - With that prep work out of the way the logic in fork is modified so that fork logically makes signals received while it is running appear to be received after the fork completes" * 'siginfo-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/ebiederm/user-namespace: (22 commits) signal: Don't send signals to tasks that don't exist signal: Don't restart fork when signals come in. fork: Have new threads join on-going signal group stops fork: Skip setting TIF_SIGPENDING in ptrace_init_task signal: Add calculate_sigpending() fork: Unconditionally exit if a fatal signal is pending fork: Move and describe why the code examines PIDNS_ADDING signal: Push pid type down into complete_signal. signal: Push pid type down into __send_signal signal: Push pid type down into send_signal signal: Pass pid type into do_send_sig_info signal: Pass pid type into send_sigio_to_task & send_sigurg_to_task signal: Pass pid type into group_send_sig_info signal: Pass pid and pid type into send_sigqueue posix-timers: Noralize good_sigevent signal: Use PIDTYPE_TGID to clearly store where file signals will be sent pid: Implement PIDTYPE_TGID pids: Move the pgrp and session pid pointers from task_struct to signal_struct kvm: Don't open code task_pid in kvm_vcpu_ioctl pids: Compute task_tgid using signal->leader_pid ... |
||
Linus Torvalds
|
7140ad3898 |
Updates for v4.19:
- Restructure of lockdep and latency tracers This is the biggest change. Joel Fernandes restructured the hooks from irqs and preemption disabling and enabling. He got rid of a lot of the preprocessor #ifdef mess that they caused. He turned both lockdep and the latency tracers to use trace events inserted in the preempt/irqs disabling paths. But unfortunately, these started to cause issues in corner cases. Thus, parts of the code was reverted back to where lockde and the latency tracers just get called directly (without using the trace events). But because the original change cleaned up the code very nicely we kept that, as well as the trace events for preempt and irqs disabling, but they are limited to not being called in NMIs. - Have trace events use SRCU for "rcu idle" calls. This was required for the preempt/irqs off trace events. But it also had to not allow them to be called in NMI context. Waiting till Paul makes an NMI safe SRCU API. - New notrace SRCU API to allow trace events to use SRCU. - Addition of mcount-nop option support - SPDX headers replacing GPL templates. - Various other fixes and clean ups. - Some fixes are marked for stable, but were not fully tested before the merge window opened. -----BEGIN PGP SIGNATURE----- iIoEABYIADIWIQRRSw7ePDh/lE+zeZMp5XQQmuv6qgUCW3ruhRQccm9zdGVkdEBn b29kbWlzLm9yZwAKCRAp5XQQmuv6qiM7AP47NhYdSnCFCRUJfrt6PovXmQtuCHt3 c3QMoGGdvzh9YAEAqcSXwh7uLhpHUp1LjMAPkXdZVwNddf4zJQ1zyxQ+EAU= =vgEr -----END PGP SIGNATURE----- Merge tag 'trace-v4.19' of git://git.kernel.org/pub/scm/linux/kernel/git/rostedt/linux-trace Pull tracing updates from Steven Rostedt: - Restructure of lockdep and latency tracers This is the biggest change. Joel Fernandes restructured the hooks from irqs and preemption disabling and enabling. He got rid of a lot of the preprocessor #ifdef mess that they caused. He turned both lockdep and the latency tracers to use trace events inserted in the preempt/irqs disabling paths. But unfortunately, these started to cause issues in corner cases. Thus, parts of the code was reverted back to where lockdep and the latency tracers just get called directly (without using the trace events). But because the original change cleaned up the code very nicely we kept that, as well as the trace events for preempt and irqs disabling, but they are limited to not being called in NMIs. - Have trace events use SRCU for "rcu idle" calls. This was required for the preempt/irqs off trace events. But it also had to not allow them to be called in NMI context. Waiting till Paul makes an NMI safe SRCU API. - New notrace SRCU API to allow trace events to use SRCU. - Addition of mcount-nop option support - SPDX headers replacing GPL templates. - Various other fixes and clean ups. - Some fixes are marked for stable, but were not fully tested before the merge window opened. * tag 'trace-v4.19' of git://git.kernel.org/pub/scm/linux/kernel/git/rostedt/linux-trace: (44 commits) tracing: Fix SPDX format headers to use C++ style comments tracing: Add SPDX License format tags to tracing files tracing: Add SPDX License format to bpf_trace.c blktrace: Add SPDX License format header s390/ftrace: Add -mfentry and -mnop-mcount support tracing: Add -mcount-nop option support tracing: Avoid calling cc-option -mrecord-mcount for every Makefile tracing: Handle CC_FLAGS_FTRACE more accurately Uprobe: Additional argument arch_uprobe to uprobe_write_opcode() Uprobes: Simplify uprobe_register() body tracepoints: Free early tracepoints after RCU is initialized uprobes: Use synchronize_rcu() not synchronize_sched() tracing: Fix synchronizing to event changes with tracepoint_synchronize_unregister() ftrace: Remove unused pointer ftrace_swapper_pid tracing: More reverting of "tracing: Centralize preemptirq tracepoints and unify their usage" tracing/irqsoff: Handle preempt_count for different configs tracing: Partial revert of "tracing: Centralize preemptirq tracepoints and unify their usage" tracing: irqsoff: Account for additional preempt_disable trace: Use rcu_dereference_raw for hooks from trace-event subsystem tracing/kprobes: Fix within_notrace_func() to check only notrace functions ... |
||
Linus Torvalds
|
958f338e96 |
Merge branch 'l1tf-final' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Merge L1 Terminal Fault fixes from Thomas Gleixner: "L1TF, aka L1 Terminal Fault, is yet another speculative hardware engineering trainwreck. It's a hardware vulnerability which allows unprivileged speculative access to data which is available in the Level 1 Data Cache when the page table entry controlling the virtual address, which is used for the access, has the Present bit cleared or other reserved bits set. If an instruction accesses a virtual address for which the relevant page table entry (PTE) has the Present bit cleared or other reserved bits set, then speculative execution ignores the invalid PTE and loads the referenced data if it is present in the Level 1 Data Cache, as if the page referenced by the address bits in the PTE was still present and accessible. While this is a purely speculative mechanism and the instruction will raise a page fault when it is retired eventually, the pure act of loading the data and making it available to other speculative instructions opens up the opportunity for side channel attacks to unprivileged malicious code, similar to the Meltdown attack. While Meltdown breaks the user space to kernel space protection, L1TF allows to attack any physical memory address in the system and the attack works across all protection domains. It allows an attack of SGX and also works from inside virtual machines because the speculation bypasses the extended page table (EPT) protection mechanism. The assoicated CVEs are: CVE-2018-3615, CVE-2018-3620, CVE-2018-3646 The mitigations provided by this pull request include: - Host side protection by inverting the upper address bits of a non present page table entry so the entry points to uncacheable memory. - Hypervisor protection by flushing L1 Data Cache on VMENTER. - SMT (HyperThreading) control knobs, which allow to 'turn off' SMT by offlining the sibling CPU threads. The knobs are available on the kernel command line and at runtime via sysfs - Control knobs for the hypervisor mitigation, related to L1D flush and SMT control. The knobs are available on the kernel command line and at runtime via sysfs - Extensive documentation about L1TF including various degrees of mitigations. Thanks to all people who have contributed to this in various ways - patches, review, testing, backporting - and the fruitful, sometimes heated, but at the end constructive discussions. There is work in progress to provide other forms of mitigations, which might be less horrible performance wise for a particular kind of workloads, but this is not yet ready for consumption due to their complexity and limitations" * 'l1tf-final' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (75 commits) x86/microcode: Allow late microcode loading with SMT disabled tools headers: Synchronise x86 cpufeatures.h for L1TF additions x86/mm/kmmio: Make the tracer robust against L1TF x86/mm/pat: Make set_memory_np() L1TF safe x86/speculation/l1tf: Make pmd/pud_mknotpresent() invert x86/speculation/l1tf: Invert all not present mappings cpu/hotplug: Fix SMT supported evaluation KVM: VMX: Tell the nested hypervisor to skip L1D flush on vmentry x86/speculation: Use ARCH_CAPABILITIES to skip L1D flush on vmentry x86/speculation: Simplify sysfs report of VMX L1TF vulnerability Documentation/l1tf: Remove Yonah processors from not vulnerable list x86/KVM/VMX: Don't set l1tf_flush_l1d from vmx_handle_external_intr() x86/irq: Let interrupt handlers set kvm_cpu_l1tf_flush_l1d x86: Don't include linux/irq.h from asm/hardirq.h x86/KVM/VMX: Introduce per-host-cpu analogue of l1tf_flush_l1d x86/irq: Demote irq_cpustat_t::__softirq_pending to u16 x86/KVM/VMX: Move the l1tf_flush_l1d test to vmx_l1d_flush() x86/KVM/VMX: Replace 'vmx_l1d_flush_always' with 'vmx_l1d_flush_cond' x86/KVM/VMX: Don't set l1tf_flush_l1d to true from vmx_l1d_flush() cpu/hotplug: detect SMT disabled by BIOS ... |
||
Linus Torvalds
|
13e091b6dd |
Merge branch 'x86-timers-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 timer updates from Thomas Gleixner: "Early TSC based time stamping to allow better boot time analysis. This comes with a general cleanup of the TSC calibration code which grew warts and duct taping over the years and removes 250 lines of code. Initiated and mostly implemented by Pavel with help from various folks" * 'x86-timers-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (37 commits) x86/kvmclock: Mark kvm_get_preset_lpj() as __init x86/tsc: Consolidate init code sched/clock: Disable interrupts when calling generic_sched_clock_init() timekeeping: Prevent false warning when persistent clock is not available sched/clock: Close a hole in sched_clock_init() x86/tsc: Make use of tsc_calibrate_cpu_early() x86/tsc: Split native_calibrate_cpu() into early and late parts sched/clock: Use static key for sched_clock_running sched/clock: Enable sched clock early sched/clock: Move sched clock initialization and merge with generic clock x86/tsc: Use TSC as sched clock early x86/tsc: Initialize cyc2ns when tsc frequency is determined x86/tsc: Calibrate tsc only once ARM/time: Remove read_boot_clock64() s390/time: Remove read_boot_clock64() timekeeping: Default boot time offset to local_clock() timekeeping: Replace read_boot_clock64() with read_persistent_wall_and_boot_offset() s390/time: Add read_persistent_wall_and_boot_offset() x86/xen/time: Output xen sched_clock time from 0 x86/xen/time: Initialize pv xen time in init_hypervisor_platform() ... |
||
Linus Torvalds
|
de5d1b39ea |
Merge branch 'locking-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull locking/atomics update from Thomas Gleixner: "The locking, atomics and memory model brains delivered: - A larger update to the atomics code which reworks the ordering barriers, consolidates the atomic primitives, provides the new atomic64_fetch_add_unless() primitive and cleans up the include hell. - Simplify cmpxchg() instrumentation and add instrumentation for xchg() and cmpxchg_double(). - Updates to the memory model and documentation" * 'locking-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (48 commits) locking/atomics: Rework ordering barriers locking/atomics: Instrument cmpxchg_double*() locking/atomics: Instrument xchg() locking/atomics: Simplify cmpxchg() instrumentation locking/atomics/x86: Reduce arch_cmpxchg64*() instrumentation tools/memory-model: Rename litmus tests to comply to norm7 tools/memory-model/Documentation: Fix typo, smb->smp sched/Documentation: Update wake_up() & co. memory-barrier guarantees locking/spinlock, sched/core: Clarify requirements for smp_mb__after_spinlock() sched/core: Use smp_mb() in wake_woken_function() tools/memory-model: Add informal LKMM documentation to MAINTAINERS locking/atomics/Documentation: Describe atomic_set() as a write operation tools/memory-model: Make scripts executable tools/memory-model: Remove ACCESS_ONCE() from model tools/memory-model: Remove ACCESS_ONCE() from recipes locking/memory-barriers.txt/kokr: Update Korean translation to fix broken DMA vs. MMIO ordering example MAINTAINERS: Add Daniel Lustig as an LKMM reviewer tools/memory-model: Fix ISA2+pooncelock+pooncelock+pombonce name tools/memory-model: Add litmus test for full multicopy atomicity locking/refcount: Always allow checked forms ... |
||
Thomas Gleixner
|
f2701b77bb |
Merge 4.18-rc7 into master to pick up the KVM dependcy
Signed-off-by: Thomas Gleixner <tglx@linutronix.de> |
||
Eric W. Biederman
|
088fe47ce9 |
signal: Add calculate_sigpending()
Add a function calculate_sigpending to test to see if any signals are pending for a new task immediately following fork. Signals have to happen either before or after fork. Today our practice is to push all of the signals to before the fork, but that has the downside that frequent or periodic signals can make fork take much much longer than normal or prevent fork from completing entirely. So we need move signals that we can after the fork to prevent that. This updates the code to set TIF_SIGPENDING on a new task if there are signals or other activities that have moved so that they appear to happen after the fork. As the code today restarts if it sees any such activity this won't immediately have an effect, as there will be no reason for it to set TIF_SIGPENDING immediately after the fork. Adding calculate_sigpending means the code in fork can safely be changed to not always restart if a signal is pending. The new calculate_sigpending function sets sigpending if there are pending bits in jobctl, pending signals, the freezer needs to freeze the new task or the live kernel patching framework need the new thread to take the slow path to userspace. I have verified that setting TIF_SIGPENDING does make a new process take the slow path to userspace before it executes it's first userspace instruction. I have looked at the callers of signal_wake_up and the code paths setting TIF_SIGPENDING and I don't see anything else that needs to be handled. The code probably doesn't need to set TIF_SIGPENDING for the kernel live patching as it uses a separate thread flag as well. But at this point it seems safer reuse the recalc_sigpending logic and get the kernel live patching folks to sort out their story later. V2: I have moved the test into schedule_tail where siglock can be grabbed and recalc_sigpending can be reused directly. Further as the last action of setting up a new task this guarantees that TIF_SIGPENDING will be properly set in the new process. The helper calculate_sigpending takes the siglock and uncontitionally sets TIF_SIGPENDING and let's recalc_sigpending clear TIF_SIGPENDING if it is unnecessary. This allows reusing the existing code and keeps maintenance of the conditions simple. Oleg Nesterov <oleg@redhat.com> suggested the movement and pointed out the need to take siglock if this code was going to be called while the new task is discoverable. Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com> |
||
Joel Fernandes (Google)
|
c3bc8fd637 |
tracing: Centralize preemptirq tracepoints and unify their usage
This patch detaches the preemptirq tracepoints from the tracers and keeps it separate. Advantages: * Lockdep and irqsoff event can now run in parallel since they no longer have their own calls. * This unifies the usecase of adding hooks to an irqsoff and irqson event, and a preemptoff and preempton event. 3 users of the events exist: - Lockdep - irqsoff and preemptoff tracers - irqs and preempt trace events The unification cleans up several ifdefs and makes the code in preempt tracer and irqsoff tracers simpler. It gets rid of all the horrific ifdeferry around PROVE_LOCKING and makes configuration of the different users of the tracepoints more easy and understandable. It also gets rid of the time_* function calls from the lockdep hooks used to call into the preemptirq tracer which is not needed anymore. The negative delta in lines of code in this patch is quite large too. In the patch we introduce a new CONFIG option PREEMPTIRQ_TRACEPOINTS as a single point for registering probes onto the tracepoints. With this, the web of config options for preempt/irq toggle tracepoints and its users becomes: PREEMPT_TRACER PREEMPTIRQ_EVENTS IRQSOFF_TRACER PROVE_LOCKING | | \ | | \ (selects) / \ \ (selects) / TRACE_PREEMPT_TOGGLE ----> TRACE_IRQFLAGS \ / \ (depends on) / PREEMPTIRQ_TRACEPOINTS Other than the performance tests mentioned in the previous patch, I also ran the locking API test suite. I verified that all tests cases are passing. I also injected issues by not registering lockdep probes onto the tracepoints and I see failures to confirm that the probes are indeed working. This series + lockdep probes not registered (just to inject errors): [ 0.000000] hard-irqs-on + irq-safe-A/21: ok | ok | ok | [ 0.000000] soft-irqs-on + irq-safe-A/21: ok | ok | ok | [ 0.000000] sirq-safe-A => hirqs-on/12:FAILED|FAILED| ok | [ 0.000000] sirq-safe-A => hirqs-on/21:FAILED|FAILED| ok | [ 0.000000] hard-safe-A + irqs-on/12:FAILED|FAILED| ok | [ 0.000000] soft-safe-A + irqs-on/12:FAILED|FAILED| ok | [ 0.000000] hard-safe-A + irqs-on/21:FAILED|FAILED| ok | [ 0.000000] soft-safe-A + irqs-on/21:FAILED|FAILED| ok | [ 0.000000] hard-safe-A + unsafe-B #1/123: ok | ok | ok | [ 0.000000] soft-safe-A + unsafe-B #1/123: ok | ok | ok | With this series + lockdep probes registered, all locking tests pass: [ 0.000000] hard-irqs-on + irq-safe-A/21: ok | ok | ok | [ 0.000000] soft-irqs-on + irq-safe-A/21: ok | ok | ok | [ 0.000000] sirq-safe-A => hirqs-on/12: ok | ok | ok | [ 0.000000] sirq-safe-A => hirqs-on/21: ok | ok | ok | [ 0.000000] hard-safe-A + irqs-on/12: ok | ok | ok | [ 0.000000] soft-safe-A + irqs-on/12: ok | ok | ok | [ 0.000000] hard-safe-A + irqs-on/21: ok | ok | ok | [ 0.000000] soft-safe-A + irqs-on/21: ok | ok | ok | [ 0.000000] hard-safe-A + unsafe-B #1/123: ok | ok | ok | [ 0.000000] soft-safe-A + unsafe-B #1/123: ok | ok | ok | Link: http://lkml.kernel.org/r/20180730222423.196630-4-joel@joelfernandes.org Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Namhyung Kim <namhyung@kernel.org> Signed-off-by: Joel Fernandes (Google) <joel@joelfernandes.org> Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org> |
||
Srikar Dronamraju
|
0ad4e3dfe6 |
sched/numa: Modify migrate_swap() to accept additional parameters
There are checks in migrate_swap_stop() that check if the task/CPU combination is as per migrate_swap_arg before migrating. However atleast one of the two tasks to be swapped by migrate_swap() could have migrated to a completely different CPU before updating the migrate_swap_arg. The new CPU where the task is currently running could be a different node too. If the task has migrated, numa balancer might end up placing a task in a wrong node. Instead of achieving node consolidation, it may end up spreading the load across nodes. To avoid that pass the CPUs as additional parameters. While here, place migrate_swap under CONFIG_NUMA_BALANCING. Running SPECjbb2005 on a 4 node machine and comparing bops/JVM JVMS LAST_PATCH WITH_PATCH %CHANGE 16 25377.3 25226.6 -0.59 1 72287 73326 1.437 Signed-off-by: Srikar Dronamraju <srikar@linux.vnet.ibm.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Rik van Riel <riel@surriel.com> Acked-by: Mel Gorman <mgorman@techsingularity.net> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/1529514181-9842-10-git-send-email-srikar@linux.vnet.ibm.com Signed-off-by: Ingo Molnar <mingo@kernel.org> |
||
Yun Wang
|
3d6c50c27b |
sched/debug: Show the sum wait time of a task group
Although we can rely on cpuacct to present the CPU usage of task groups, it is hard to tell how intense the competition is between these groups on CPU resources. Monitoring the wait time or sched_debug of each process could be very expensive, and there is no good way to accurately represent the conflict with these info, we need the wait time on group dimension. Thus we introduce group's wait_sum to represent the resource conflict between task groups, which is simply the sum of the wait time of the group's cfs_rq. The 'cpu.stat' is modified to show the statistic, like: nr_periods 0 nr_throttled 0 throttled_time 0 wait_sum 2035098795584 Now we can monitor the changes of wait_sum to tell how much a a task group is suffering in the fight of CPU resources. For example: (wait_sum - last_wait_sum) * 100 / (nr_cpu * period_ns) == X% means the task group paid X percentage of period on waiting for the CPU. Signed-off-by: Michael Wang <yun.wang@linux.alibaba.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/ff7dae3b-e5f9-7157-1caa-ff02c6b23dc1@linux.alibaba.com Signed-off-by: Ingo Molnar <mingo@kernel.org> |
||
Vincent Guittot
|
2e62c4743a |
sched/fair: Remove #ifdefs from scale_rt_capacity()
Reuse cpu_util_irq() that has been defined for schedutil and set irq util to 0 when !CONFIG_IRQ_TIME_ACCOUNTING. But the compiler is not able to optimize the sequence (at least with aarch64 GCC 7.2.1): free *= (max - irq); free /= max; when irq is fixed to 0 Add a new inline function scale_irq_capacity() that will scale utilization when irq is accounted. Reuse this funciton in schedutil which applies similar formula. Suggested-by: Ingo Molnar <mingo@redhat.com> Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Acked-by: Viresh Kumar <viresh.kumar@linaro.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: rjw@rjwysocki.net Link: http://lkml.kernel.org/r/1532001606-6689-1-git-send-email-vincent.guittot@linaro.org Signed-off-by: Ingo Molnar <mingo@kernel.org> |
||
Pavel Tatashin
|
5d2a4e91a5 |
sched/clock: Move sched clock initialization and merge with generic clock
sched_clock_postinit() initializes a generic clock on systems where no other clock is provided. This function may be called only after timekeeping_init(). Rename sched_clock_postinit to generic_clock_inti() and call it from sched_clock_init(). Move the call for sched_clock_init() until after time_init(). Suggested-by: Peter Zijlstra <peterz@infradead.org> Signed-off-by: Pavel Tatashin <pasha.tatashin@oracle.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: steven.sistare@oracle.com Cc: daniel.m.jordan@oracle.com Cc: linux@armlinux.org.uk Cc: schwidefsky@de.ibm.com Cc: heiko.carstens@de.ibm.com Cc: john.stultz@linaro.org Cc: sboyd@codeaurora.org Cc: hpa@zytor.com Cc: douly.fnst@cn.fujitsu.com Cc: prarit@redhat.com Cc: feng.tang@intel.com Cc: pmladek@suse.com Cc: gnomes@lxorguk.ukuu.org.uk Cc: linux-s390@vger.kernel.org Cc: boris.ostrovsky@oracle.com Cc: jgross@suse.com Cc: pbonzini@redhat.com Link: https://lkml.kernel.org/r/20180719205545.16512-23-pasha.tatashin@oracle.com |
||
Andrea Parri
|
7696f9910a |
sched/Documentation: Update wake_up() & co. memory-barrier guarantees
Both the implementation and the users' expectation [1] for the various wakeup primitives have evolved over time, but the documentation has not kept up with these changes: brings it into 2018. [1] http://lkml.kernel.org/r/20180424091510.GB4064@hirez.programming.kicks-ass.net Also applied feedback from Alan Stern. Suggested-by: Peter Zijlstra <peterz@infradead.org> Signed-off-by: Andrea Parri <andrea.parri@amarulasolutions.com> Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Akira Yokosawa <akiyks@gmail.com> Cc: Alan Stern <stern@rowland.harvard.edu> Cc: Boqun Feng <boqun.feng@gmail.com> Cc: Daniel Lustig <dlustig@nvidia.com> Cc: David Howells <dhowells@redhat.com> Cc: Jade Alglave <j.alglave@ucl.ac.uk> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Luc Maranget <luc.maranget@inria.fr> Cc: Nicholas Piggin <npiggin@gmail.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Will Deacon <will.deacon@arm.com> Cc: linux-arch@vger.kernel.org Cc: parri.andrea@gmail.com Link: http://lkml.kernel.org/r/20180716180605.16115-12-paulmck@linux.vnet.ibm.com Signed-off-by: Ingo Molnar <mingo@kernel.org> |
||
Andrea Parri
|
3d85b27037 |
locking/spinlock, sched/core: Clarify requirements for smp_mb__after_spinlock()
There are 11 interpretations of the requirements described in the header comment for smp_mb__after_spinlock(): one for each LKMM maintainer, and one currently encoded in the Cat file. Stick to the latter (until a more satisfactory solution is available). This also reworks some snippets related to the barrier to illustrate the requirements and to link them to the idioms which are relied upon at its call sites. Suggested-by: Boqun Feng <boqun.feng@gmail.com> Signed-off-by: Andrea Parri <andrea.parri@amarulasolutions.com> Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Acked-by: Peter Zijlstra <peterz@infradead.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Will Deacon <will.deacon@arm.com> Cc: akiyks@gmail.com Cc: dhowells@redhat.com Cc: j.alglave@ucl.ac.uk Cc: linux-arch@vger.kernel.org Cc: luc.maranget@inria.fr Cc: npiggin@gmail.com Cc: parri.andrea@gmail.com Cc: stern@rowland.harvard.edu Link: http://lkml.kernel.org/r/20180716180605.16115-11-paulmck@linux.vnet.ibm.com Signed-off-by: Ingo Molnar <mingo@kernel.org> |
||
Sebastian Andrzej Siewior
|
af0fffd930 |
sched/core: Remove get_cpu() from sched_fork()
get_cpu() disables preemption for the entire sched_fork() function.
This get_cpu() was introduced in commit:
|
||
Vincent Guittot
|
5fd778915a |
sched/sysctl: Remove unused sched_time_avg_ms sysctl
/proc/sys/kernel/sched_time_avg_ms entry is not used anywhere, remove it. Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Luis R. Rodriguez <mcgrof@kernel.org> Cc: Kees Cook <keescook@chromium.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Morten.Rasmussen@arm.com Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: claudio@evidence.eu.com Cc: daniel.lezcano@linaro.org Cc: dietmar.eggemann@arm.com Cc: joel@joelfernandes.org Cc: juri.lelli@redhat.com Cc: luca.abeni@santannapisa.it Cc: patrick.bellasi@arm.com Cc: quentin.perret@arm.com Cc: rjw@rjwysocki.net Cc: valentin.schneider@arm.com Cc: viresh.kumar@linaro.org Link: http://lkml.kernel.org/r/1530200714-4504-12-git-send-email-vincent.guittot@linaro.org Signed-off-by: Ingo Molnar <mingo@kernel.org> |
||
Vincent Guittot
|
bbb62c0b02 |
sched/core: Remove the rt_avg code
rt_avg is not used anywhere anymore, so we can remove all related code. Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Morten.Rasmussen@arm.com Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: claudio@evidence.eu.com Cc: daniel.lezcano@linaro.org Cc: dietmar.eggemann@arm.com Cc: joel@joelfernandes.org Cc: juri.lelli@redhat.com Cc: luca.abeni@santannapisa.it Cc: patrick.bellasi@arm.com Cc: quentin.perret@arm.com Cc: rjw@rjwysocki.net Cc: valentin.schneider@arm.com Cc: viresh.kumar@linaro.org Link: http://lkml.kernel.org/r/1530200714-4504-11-git-send-email-vincent.guittot@linaro.org Signed-off-by: Ingo Molnar <mingo@kernel.org> |
||
Vincent Guittot
|
91c27493e7 |
sched/irq: Add IRQ utilization tracking
interrupt and steal time are the only remaining activities tracked by rt_avg. Like for sched classes, we can use PELT to track their average utilization of the CPU. But unlike sched class, we don't track when entering/leaving interrupt; Instead, we take into account the time spent under interrupt context when we update rqs' clock (rq_clock_task). This also means that we have to decay the normal context time and account for interrupt time during the update. That's also important to note that because: rq_clock == rq_clock_task + interrupt time and rq_clock_task is used by a sched class to compute its utilization, the util_avg of a sched class only reflects the utilization of the time spent in normal context and not of the whole time of the CPU. The utilization of interrupt gives an more accurate level of utilization of CPU. The CPU utilization is: avg_irq + (1 - avg_irq / max capacity) * /Sum avg_rq Most of the time, avg_irq is small and neglictible so the use of the approximation CPU utilization = /Sum avg_rq was enough. Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Morten.Rasmussen@arm.com Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: claudio@evidence.eu.com Cc: daniel.lezcano@linaro.org Cc: dietmar.eggemann@arm.com Cc: joel@joelfernandes.org Cc: juri.lelli@redhat.com Cc: luca.abeni@santannapisa.it Cc: patrick.bellasi@arm.com Cc: quentin.perret@arm.com Cc: rjw@rjwysocki.net Cc: valentin.schneider@arm.com Cc: viresh.kumar@linaro.org Link: http://lkml.kernel.org/r/1530200714-4504-7-git-send-email-vincent.guittot@linaro.org Signed-off-by: Ingo Molnar <mingo@kernel.org> |
||
Peter Zijlstra
|
1cef1150ef |
kthread, sched/core: Fix kthread_parkme() (again...)
Gaurav reports that commit: |
||
Frederic Weisbecker
|
d9c0ffcabd |
sched/nohz: Skip remote tick on idle task entirely
Some people have reported that the warning in sched_tick_remote() occasionally triggers, especially in favour of some RCU-Torture pressure: WARNING: CPU: 11 PID: 906 at kernel/sched/core.c:3138 sched_tick_remote+0xb6/0xc0 Modules linked in: CPU: 11 PID: 906 Comm: kworker/u32:3 Not tainted 4.18.0-rc2+ #1 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.10.2-1 04/01/2014 Workqueue: events_unbound sched_tick_remote RIP: 0010:sched_tick_remote+0xb6/0xc0 Code: e8 0f 06 b8 00 c6 03 00 fb eb 9d 8b 43 04 85 c0 75 8d 48 8b 83 e0 0a 00 00 48 85 c0 75 81 eb 88 48 89 df e8 bc fe ff ff eb aa <0f> 0b eb +c5 66 0f 1f 44 00 00 bf 17 00 00 00 e8 b6 2e fe ff 0f b6 Call Trace: process_one_work+0x1df/0x3b0 worker_thread+0x44/0x3d0 kthread+0xf3/0x130 ? set_worker_desc+0xb0/0xb0 ? kthread_create_worker_on_cpu+0x70/0x70 ret_from_fork+0x35/0x40 This happens when the remote tick applies on an idle task. Usually the idle_cpu() check avoids that, but it is performed before we lock the runqueue and it is therefore racy. It was intended to be that way in order to prevent from useless runqueue locks since idle task tick callback is a no-op. Now if the racy check slips out of our hands and we end up remotely ticking an idle task, the empty task_tick_idle() is harmless. Still it won't pass the WARN_ON_ONCE() test that ensures rq_clock_task() is not too far from curr->se.exec_start because update_curr_idle() doesn't update the exec_start value like other scheduler policies. Hence the reported false positive. So let's have another check, while the rq is locked, to make sure we don't remote tick on an idle task. The lockless idle_cpu() still applies to avoid unecessary rq lock contention. Reported-by: Jacek Tomaka <jacekt@dug.com> Reported-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Reported-by: Anna-Maria Gleixner <anna-maria@linutronix.de> Signed-off-by: Frederic Weisbecker <frederic@kernel.org> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/1530203381-31234-1-git-send-email-frederic@kernel.org Signed-off-by: Ingo Molnar <mingo@kernel.org> |
||
Peter Zijlstra
|
ba2591a599 |
sched/smt: Update sched_smt_present at runtime
The static key sched_smt_present is only updated at boot time when SMT siblings have been detected. Booting with maxcpus=1 and bringing the siblings online after boot rebuilds the scheduling domains correctly but does not update the static key, so the SMT code is not enabled. Let the key be updated in the scheduler CPU hotplug code to fix this. Signed-off-by: Peter Zijlstra <peterz@infradead.org> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Acked-by: Ingo Molnar <mingo@kernel.org> |
||
Mark Rutland
|
0ed557aa81 |
sched/core / kcov: avoid kcov_area during task switch
During a context switch, we first switch_mm() to the next task's mm, then switch_to() that new task. This means that vmalloc'd regions which had previously been faulted in can transiently disappear in the context of the prev task. Functions instrumented by KCOV may try to access a vmalloc'd kcov_area during this window, and as the fault handling code is instrumented, this results in a recursive fault. We must avoid accessing any kcov_area during this window. We can do so with a new flag in kcov_mode, set prior to switching the mm, and cleared once the new task is live. Since task_struct::kcov_mode isn't always a specific enum kcov_mode value, this is made an unsigned int. The manipulation is hidden behind kcov_{prepare,finish}_switch() helpers, which are empty for !CONFIG_KCOV kernels. The code uses macros because I can't use static inline functions without a circular include dependency between <linux/sched.h> and <linux/kcov.h>, since the definition of task_struct uses things defined in <linux/kcov.h> Link: http://lkml.kernel.org/r/20180504135535.53744-4-mark.rutland@arm.com Signed-off-by: Mark Rutland <mark.rutland@arm.com> Acked-by: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Mathieu Desnoyers
|
d7822b1e24 |
rseq: Introduce restartable sequences system call
Expose a new system call allowing each thread to register one userspace memory area to be used as an ABI between kernel and user-space for two purposes: user-space restartable sequences and quick access to read the current CPU number value from user-space. * Restartable sequences (per-cpu atomics) Restartables sequences allow user-space to perform update operations on per-cpu data without requiring heavy-weight atomic operations. The restartable critical sections (percpu atomics) work has been started by Paul Turner and Andrew Hunter. It lets the kernel handle restart of critical sections. [1] [2] The re-implementation proposed here brings a few simplifications to the ABI which facilitates porting to other architectures and speeds up the user-space fast path. Here are benchmarks of various rseq use-cases. Test hardware: arm32: ARMv7 Processor rev 4 (v7l) "Cubietruck", 2-core x86-64: Intel E5-2630 v3@2.40GHz, 16-core, hyperthreading The following benchmarks were all performed on a single thread. * Per-CPU statistic counter increment getcpu+atomic (ns/op) rseq (ns/op) speedup arm32: 344.0 31.4 11.0 x86-64: 15.3 2.0 7.7 * LTTng-UST: write event 32-bit header, 32-bit payload into tracer per-cpu buffer getcpu+atomic (ns/op) rseq (ns/op) speedup arm32: 2502.0 2250.0 1.1 x86-64: 117.4 98.0 1.2 * liburcu percpu: lock-unlock pair, dereference, read/compare word getcpu+atomic (ns/op) rseq (ns/op) speedup arm32: 751.0 128.5 5.8 x86-64: 53.4 28.6 1.9 * jemalloc memory allocator adapted to use rseq Using rseq with per-cpu memory pools in jemalloc at Facebook (based on rseq 2016 implementation): The production workload response-time has 1-2% gain avg. latency, and the P99 overall latency drops by 2-3%. * Reading the current CPU number Speeding up reading the current CPU number on which the caller thread is running is done by keeping the current CPU number up do date within the cpu_id field of the memory area registered by the thread. This is done by making scheduler preemption set the TIF_NOTIFY_RESUME flag on the current thread. Upon return to user-space, a notify-resume handler updates the current CPU value within the registered user-space memory area. User-space can then read the current CPU number directly from memory. Keeping the current cpu id in a memory area shared between kernel and user-space is an improvement over current mechanisms available to read the current CPU number, which has the following benefits over alternative approaches: - 35x speedup on ARM vs system call through glibc - 20x speedup on x86 compared to calling glibc, which calls vdso executing a "lsl" instruction, - 14x speedup on x86 compared to inlined "lsl" instruction, - Unlike vdso approaches, this cpu_id value can be read from an inline assembly, which makes it a useful building block for restartable sequences. - The approach of reading the cpu id through memory mapping shared between kernel and user-space is portable (e.g. ARM), which is not the case for the lsl-based x86 vdso. On x86, yet another possible approach would be to use the gs segment selector to point to user-space per-cpu data. This approach performs similarly to the cpu id cache, but it has two disadvantages: it is not portable, and it is incompatible with existing applications already using the gs segment selector for other purposes. Benchmarking various approaches for reading the current CPU number: ARMv7 Processor rev 4 (v7l) Machine model: Cubietruck - Baseline (empty loop): 8.4 ns - Read CPU from rseq cpu_id: 16.7 ns - Read CPU from rseq cpu_id (lazy register): 19.8 ns - glibc 2.19-0ubuntu6.6 getcpu: 301.8 ns - getcpu system call: 234.9 ns x86-64 Intel(R) Xeon(R) CPU E5-2630 v3 @ 2.40GHz: - Baseline (empty loop): 0.8 ns - Read CPU from rseq cpu_id: 0.8 ns - Read CPU from rseq cpu_id (lazy register): 0.8 ns - Read using gs segment selector: 0.8 ns - "lsl" inline assembly: 13.0 ns - glibc 2.19-0ubuntu6 getcpu: 16.6 ns - getcpu system call: 53.9 ns - Speed (benchmark taken on v8 of patchset) Running 10 runs of hackbench -l 100000 seems to indicate, contrary to expectations, that enabling CONFIG_RSEQ slightly accelerates the scheduler: Configuration: 2 sockets * 8-core Intel(R) Xeon(R) CPU E5-2630 v3 @ 2.40GHz (directly on hardware, hyperthreading disabled in BIOS, energy saving disabled in BIOS, turboboost disabled in BIOS, cpuidle.off=1 kernel parameter), with a Linux v4.6 defconfig+localyesconfig, restartable sequences series applied. * CONFIG_RSEQ=n avg.: 41.37 s std.dev.: 0.36 s * CONFIG_RSEQ=y avg.: 40.46 s std.dev.: 0.33 s - Size On x86-64, between CONFIG_RSEQ=n/y, the text size increase of vmlinux is 567 bytes, and the data size increase of vmlinux is 5696 bytes. [1] https://lwn.net/Articles/650333/ [2] http://www.linuxplumbersconf.org/2013/ocw/system/presentations/1695/original/LPC%20-%20PerCpu%20Atomics.pdf Signed-off-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Joel Fernandes <joelaf@google.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Dave Watson <davejwatson@fb.com> Cc: Will Deacon <will.deacon@arm.com> Cc: Andi Kleen <andi@firstfloor.org> Cc: "H . Peter Anvin" <hpa@zytor.com> Cc: Chris Lameter <cl@linux.com> Cc: Russell King <linux@arm.linux.org.uk> Cc: Andrew Hunter <ahh@google.com> Cc: Michael Kerrisk <mtk.manpages@gmail.com> Cc: "Paul E . McKenney" <paulmck@linux.vnet.ibm.com> Cc: Paul Turner <pjt@google.com> Cc: Boqun Feng <boqun.feng@gmail.com> Cc: Josh Triplett <josh@joshtriplett.org> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Ben Maurer <bmaurer@fb.com> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: linux-api@vger.kernel.org Cc: Andy Lutomirski <luto@amacapital.net> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Link: http://lkml.kernel.org/r/20151027235635.16059.11630.stgit@pjt-glaptop.roam.corp.google.com Link: http://lkml.kernel.org/r/20150624222609.6116.86035.stgit@kitami.mtv.corp.google.com Link: https://lkml.kernel.org/r/20180602124408.8430-3-mathieu.desnoyers@efficios.com |
||
Linus Torvalds
|
f7f4e7fc6c |
Merge branch 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull scheduler updates from Ingo Molnar: - power-aware scheduling improvements (Patrick Bellasi) - NUMA balancing improvements (Mel Gorman) - vCPU scheduling fixes (Rohit Jain) * 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: sched/fair: Update util_est before updating schedutil sched/cpufreq: Modify aggregate utilization to always include blocked FAIR utilization sched/deadline/Documentation: Add overrun signal and GRUB-PA documentation sched/core: Distinguish between idle_cpu() calls based on desired effect, introduce available_idle_cpu() sched/wait: Include <linux/wait.h> in <linux/swait.h> sched/numa: Stagger NUMA balancing scan periods for new threads sched/core: Don't schedule threads on pre-empted vCPUs sched/fair: Avoid calling sync_entity_load_avg() unnecessarily sched/fair: Rearrange select_task_rq_fair() to optimize it |
||
Linus Torvalds
|
4057adafb3 |
Merge branch 'core-rcu-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull RCU updates from Ingo Molnar: - updates to the handling of expedited grace periods - updates to reduce lock contention in the rcu_node combining tree [ These are in preparation for the consolidation of RCU-bh, RCU-preempt, and RCU-sched into a single flavor, which was requested by Linus in response to a security flaw whose root cause included confusion between the multiple flavors of RCU ] - torture-test updates that save their users some time and effort - miscellaneous fixes * 'core-rcu-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (44 commits) rcu/x86: Provide early rcu_cpu_starting() callback torture: Make kvm-find-errors.sh find build warnings rcutorture: Abbreviate kvm.sh summary lines rcutorture: Print end-of-test state in kvm.sh summary rcutorture: Print end-of-test state torture: Fold parse-torture.sh into parse-console.sh torture: Add a script to edit output from failed runs rcu: Update list of rcu_future_grace_period() trace events rcu: Drop early GP request check from rcu_gp_kthread() rcu: Simplify and inline cpu_needs_another_gp() rcu: The rcu_gp_cleanup() function does not need cpu_needs_another_gp() rcu: Make rcu_start_this_gp() check for out-of-range requests rcu: Add funnel locking to rcu_start_this_gp() rcu: Make rcu_start_future_gp() caller select grace period rcu: Inline rcu_start_gp_advanced() into rcu_start_future_gp() rcu: Clear request other than RCU_GP_FLAG_INIT at GP end rcu: Cleanup, don't put ->completed into an int rcu: Switch __rcu_process_callbacks() to rcu_accelerate_cbs() rcu: Avoid __call_rcu_core() root rcu_node ->lock acquisition rcu: Make rcu_migrate_callbacks wake GP kthread when needed ... |
||
Paul Burton
|
7af443ee16 |
sched/core: Require cpu_active() in select_task_rq(), for user tasks
select_task_rq() is used in a few paths to select the CPU upon which a thread should be run - for example it is used by try_to_wake_up() & by fork or exec balancing. As-is it allows use of any online CPU that is present in the task's cpus_allowed mask. This presents a problem because there is a period whilst CPUs are brought online where a CPU is marked online, but is not yet fully initialized - ie. the period where CPUHP_AP_ONLINE_IDLE <= state < CPUHP_ONLINE. Usually we don't run any user tasks during this window, but there are corner cases where this can happen. An example observed is: - Some user task A, running on CPU X, forks to create task B. - sched_fork() calls __set_task_cpu() with cpu=X, setting task B's task_struct::cpu field to X. - CPU X is offlined. - Task A, currently somewhere between the __set_task_cpu() in copy_process() and the call to wake_up_new_task(), is migrated to CPU Y by migrate_tasks() when CPU X is offlined. - CPU X is onlined, but still in the CPUHP_AP_ONLINE_IDLE state. The scheduler is now active on CPU X, but there are no user tasks on the runqueue. - Task A runs on CPU Y & reaches wake_up_new_task(). This calls select_task_rq() with cpu=X, taken from task B's task_struct, and select_task_rq() allows CPU X to be returned. - Task A enqueues task B on CPU X's runqueue, via activate_task() & enqueue_task(). - CPU X now has a user task on its runqueue before it has reached the CPUHP_ONLINE state. In most cases, the user tasks that schedule on the newly onlined CPU have no idea that anything went wrong, but one case observed to be problematic is if the task goes on to invoke the sched_setaffinity syscall. The newly onlined CPU reaches the CPUHP_AP_ONLINE_IDLE state before the CPU that brought it online calls stop_machine_unpark(). This means that for a portion of the window of time between CPUHP_AP_ONLINE_IDLE & CPUHP_ONLINE the newly onlined CPU's struct cpu_stopper has its enabled field set to false. If a user thread is executed on the CPU during this window and it invokes sched_setaffinity with a CPU mask that does not include the CPU it's running on, then when __set_cpus_allowed_ptr() calls stop_one_cpu() intending to invoke migration_cpu_stop() and perform the actual migration away from the CPU it will simply return -ENOENT rather than calling migration_cpu_stop(). We then return from the sched_setaffinity syscall back to the user task that is now running on a CPU which it just asked not to run on, and which is not present in its cpus_allowed mask. This patch resolves the problem by having select_task_rq() enforce that user tasks run on CPUs that are active - the same requirement that select_fallback_rq() already enforces. This should ensure that newly onlined CPUs reach the CPUHP_AP_ACTIVE state before being able to schedule user tasks, and also implies that bringup_wait_for_ap() will have called stop_machine_unpark() which resolves the sched_setaffinity issue above. I haven't yet investigated them, but it may be of interest to review whether any of the actions performed by hotplug states between CPUHP_AP_ONLINE_IDLE & CPUHP_AP_ACTIVE could have similar unintended effects on user tasks that might schedule before they are reached, which might widen the scope of the problem from just affecting the behaviour of sched_setaffinity. Signed-off-by: Paul Burton <paul.burton@mips.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/20180526154648.11635-2-paul.burton@mips.com Signed-off-by: Ingo Molnar <mingo@kernel.org> |
||
Peter Zijlstra
|
175f0e25ab |
sched/core: Fix rules for running on online && !active CPUs
As already enforced by the WARN() in __set_cpus_allowed_ptr(), the rules
for running on an online && !active CPU are stricter than just being a
kthread, you need to be a per-cpu kthread.
If you're not strictly per-CPU, you have better CPUs to run on and
don't need the partially booted one to get your work done.
The exception is to allow smpboot threads to bootstrap the CPU itself
and get kernel 'services' initialized before we allow userspace on it.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Tejun Heo <tj@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Fixes:
|
||
Ingo Molnar
|
13a553199f |
Merge branch 'for-mingo' of git://git.kernel.org/pub/scm/linux/kernel/git/paulmck/linux-rcu into core/rcu
- Updates to the handling of expedited grace periods, perhaps most notably parallelizing their initialization. Other changes include fixes from Boqun Feng. - Miscellaneous fixes. These include an nvme fix from Nitzan Carmi that I am carrying because it depends on a new SRCU function cleanup_srcu_struct_quiesced(). This branch also includes fixes from Byungchul Park and Yury Norov. - Updates to reduce lock contention in the rcu_node combining tree. These are in preparation for the consolidation of RCU-bh, RCU-preempt, and RCU-sched into a single flavor, which was requested by Linus Torvalds in response to a security flaw whose root cause included confusion between the multiple flavors of RCU. - Torture-test updates that save their users some time and effort. Conflicts: drivers/nvme/host/core.c Signed-off-by: Ingo Molnar <mingo@kernel.org> |
||
Paul E. McKenney
|
c3442697c2 |
softirq: Eliminate unused cond_resched_softirq() macro
The cond_resched_softirq() macro is not used anywhere in mainline, so this commit simplifies the kernel by eliminating it. Suggested-by: Eric Dumazet <edumazet@google.com> Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Ingo Molnar <mingo@redhat.com> Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Eric Dumazet <edumazet@google.com> Tested-by: Nicholas Piggin <npiggin@gmail.com> |
||
Rohit Jain
|
943d355d7f |
sched/core: Distinguish between idle_cpu() calls based on desired effect, introduce available_idle_cpu()
In the following commit:
|
||
Mel Gorman
|
1378447598 |
sched/numa: Stagger NUMA balancing scan periods for new threads
Threads share an address space and each can change the protections of the same address space to trap NUMA faults. This is redundant and potentially counter-productive as any thread doing the update will suffice. Potentially only one thread is required but that thread may be idle or it may not have any locality concerns and pick an unsuitable scan rate. This patch uses independent scan period but they are staggered based on the number of address space users when the thread is created. The intent is that threads will avoid scanning at the same time and have a chance to adapt their scan rate later if necessary. This reduces the total scan activity early in the lifetime of the threads. The different in headline performance across a range of machines and workloads is marginal but the system CPU usage is reduced as well as overall scan activity. The following is the time reported by NAS Parallel Benchmark using unbound openmp threads and a D size class: 4.17.0-rc1 4.17.0-rc1 vanilla stagger-v1r1 Time bt.D 442.77 ( 0.00%) 419.70 ( 5.21%) Time cg.D 171.90 ( 0.00%) 180.85 ( -5.21%) Time ep.D 33.10 ( 0.00%) 32.90 ( 0.60%) Time is.D 9.59 ( 0.00%) 9.42 ( 1.77%) Time lu.D 306.75 ( 0.00%) 304.65 ( 0.68%) Time mg.D 54.56 ( 0.00%) 52.38 ( 4.00%) Time sp.D 1020.03 ( 0.00%) 903.77 ( 11.40%) Time ua.D 400.58 ( 0.00%) 386.49 ( 3.52%) Note it's not a universal win but we have no prior knowledge of which thread matters but the number of threads created often exceeds the size of the node when the threads are not bound. However, there is a reducation of overall system CPU usage: 4.17.0-rc1 4.17.0-rc1 vanilla stagger-v1r1 sys-time-bt.D 48.78 ( 0.00%) 48.22 ( 1.15%) sys-time-cg.D 25.31 ( 0.00%) 26.63 ( -5.22%) sys-time-ep.D 1.65 ( 0.00%) 0.62 ( 62.42%) sys-time-is.D 40.05 ( 0.00%) 24.45 ( 38.95%) sys-time-lu.D 37.55 ( 0.00%) 29.02 ( 22.72%) sys-time-mg.D 47.52 ( 0.00%) 34.92 ( 26.52%) sys-time-sp.D 119.01 ( 0.00%) 109.05 ( 8.37%) sys-time-ua.D 51.52 ( 0.00%) 45.13 ( 12.40%) NUMA scan activity is also reduced: NUMA alloc local 1042828 1342670 NUMA base PTE updates 140481138 93577468 NUMA huge PMD updates 272171 180766 NUMA page range updates 279832690 186129660 NUMA hint faults 1395972 1193897 NUMA hint local faults 877925 855053 NUMA hint local percent 62 71 NUMA pages migrated 12057909 9158023 Similar observations are made for other thread-intensive workloads. System CPU usage is lower even though the headline gains in performance tend to be small. For example, specjbb 2005 shows almost no difference in performance but scan activity is reduced by a third on a 4-socket box. I didn't find a workload (thread intensive or otherwise) that suffered badly. Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Matt Fleming <matt@codeblueprint.co.uk> Cc: Mike Galbraith <efault@gmx.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: linux-kernel@vger.kernel.org Link: http://lkml.kernel.org/r/20180504154109.mvrha2qo5wdl65vr@techsingularity.net Signed-off-by: Ingo Molnar <mingo@kernel.org> |
||
Ingo Molnar
|
dfd5c3ea64 |
Linux 4.17-rc5
-----BEGIN PGP SIGNATURE----- iQFSBAABCAA8FiEEq68RxlopcLEwq+PEeb4+QwBBGIYFAlr4xw8eHHRvcnZhbGRz QGxpbnV4LWZvdW5kYXRpb24ub3JnAAoJEHm+PkMAQRiGNYoH/1d5zyMpVJVUKZ0K LuEctCGby1PjSvSOhmMuxFVagFAqfBJXmwWTeohLfLG48r/Yk0AsZQ5HH13/8baj k/T8UgUvKZKustndCRp+joQ3Pa1ZpcIFaWRvB8pKFCefJ/F/Lj4B4X1HYI7vLq0K /ZBXUdy3ry0lcVuypnaARYAb2O7l/nyZIjZ3FhiuyymWe7Jpo+G7VK922LOMSX/y VYFZCWa8nxN+yFhO0ao9X5k7ggIiUrEBtbfNrk19VtAn0hx+OYKW2KfJK/eHNey/ CKrOT+KAxU8VU29AEIbYzlL3yrQmULcEoIDiqJ/6m5m6JwsEbP6EqQHs0TiuQFpq A0MO9rw= =yjUP -----END PGP SIGNATURE----- Merge tag 'v4.17-rc5' into sched/core, to pick up fixes and dependencies Signed-off-by: Ingo Molnar <mingo@kernel.org> |
||
Peter Zijlstra
|
7281c8dec8 |
sched/core: Fix possible Spectre-v1 indexing for sched_prio_to_weight[]
> kernel/sched/core.c:6921 cpu_weight_nice_write_s64() warn: potential spectre issue 'sched_prio_to_weight' Userspace controls @nice, so sanitize the value before using it to index an array. Reported-by: Dan Carpenter <dan.carpenter@oracle.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: <stable@kernel.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mike Galbraith <efault@gmx.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: linux-kernel@vger.kernel.org Signed-off-by: Ingo Molnar <mingo@kernel.org> |
||
Rohit Jain
|
247f2f6f3c |
sched/core: Don't schedule threads on pre-empted vCPUs
In paravirt configurations today, spinlocks figure out whether a vCPU is running to determine whether or not spinlock should bother spinning. We can use the same logic to prioritize CPUs when scheduling threads. If a vCPU has been pre-empted, it will incur the extra cost of VMENTER and the time it actually spends to be running on the host CPU. If we had other vCPUs which were actually running on the host CPU and idle we should schedule threads there. Performance numbers: Note: With patch is referred to as Paravirt in the following and without patch is referred to as Base. 1) When only 1 VM is running: a) Hackbench test on KVM 8 vCPUs, 10,000 loops (lower is better): +-------+-----------------+----------------+ |Number |Paravirt |Base | |of +---------+-------+-------+--------+ |Threads|Average |Std Dev|Average| Std Dev| +-------+---------+-------+-------+--------+ |1 |1.817 |0.076 |1.721 | 0.067 | |2 |3.467 |0.120 |3.468 | 0.074 | |4 |6.266 |0.035 |6.314 | 0.068 | |8 |11.437 |0.105 |11.418 | 0.132 | |16 |21.862 |0.167 |22.161 | 0.129 | |25 |33.341 |0.326 |33.692 | 0.147 | +-------+---------+-------+-------+--------+ 2) When two VMs are running with same CPU affinities: a) tbench test on VM 8 cpus Base: VM1: Throughput 220.59 MB/sec 1 clients 1 procs max_latency=12.872 ms Throughput 448.716 MB/sec 2 clients 2 procs max_latency=7.555 ms Throughput 861.009 MB/sec 4 clients 4 procs max_latency=49.501 ms Throughput 1261.81 MB/sec 7 clients 7 procs max_latency=76.990 ms VM2: Throughput 219.937 MB/sec 1 clients 1 procs max_latency=12.517 ms Throughput 470.99 MB/sec 2 clients 2 procs max_latency=12.419 ms Throughput 841.299 MB/sec 4 clients 4 procs max_latency=37.043 ms Throughput 1240.78 MB/sec 7 clients 7 procs max_latency=77.489 ms Paravirt: VM1: Throughput 222.572 MB/sec 1 clients 1 procs max_latency=7.057 ms Throughput 485.993 MB/sec 2 clients 2 procs max_latency=26.049 ms Throughput 947.095 MB/sec 4 clients 4 procs max_latency=45.338 ms Throughput 1364.26 MB/sec 7 clients 7 procs max_latency=145.124 ms VM2: Throughput 224.128 MB/sec 1 clients 1 procs max_latency=4.564 ms Throughput 501.878 MB/sec 2 clients 2 procs max_latency=11.061 ms Throughput 965.455 MB/sec 4 clients 4 procs max_latency=45.370 ms Throughput 1359.08 MB/sec 7 clients 7 procs max_latency=168.053 ms b) Hackbench with 4 fd 1,000,000 loops +-------+--------------------------------------+----------------------------------------+ |Number |Paravirt |Base | |of +----------+--------+---------+--------+----------+--------+---------+----------+ |Threads|Average1 |Std Dev1|Average2 | Std Dev|Average1 |Std Dev1|Average2 | Std Dev 2| +-------+----------+--------+---------+--------+----------+--------+---------+----------+ | 1 | 3.748 | 0.620 | 3.576 | 0.432 | 4.006 | 0.395 | 3.446 | 0.787 | +-------+----------+--------+---------+--------+----------+--------+---------+----------+ Note that this test was run just to show the interference effect over-subscription can have in baseline c) schbench results with 2 message groups on 8 vCPU VMs +-----------+-------+---------------+--------------+------------+ | | | Paravirt | Base | | +-----------+-------+-------+-------+-------+------+------------+ | |Threads| VM1 | VM2 | VM1 | VM2 |%Improvement| +-----------+-------+-------+-------+-------+------+------------+ |50.0000th | 1 | 52 | 53 | 58 | 54 | +6.25% | |75.0000th | 1 | 69 | 61 | 83 | 59 | +8.45% | |90.0000th | 1 | 80 | 80 | 89 | 83 | +6.98% | |95.0000th | 1 | 83 | 83 | 93 | 87 | +7.78% | |*99.0000th | 1 | 92 | 94 | 99 | 97 | +5.10% | |99.5000th | 1 | 95 | 100 | 102 | 103 | +4.88% | |99.9000th | 1 | 107 | 123 | 105 | 203 | +25.32% | +-----------+-------+-------+-------+-------+------+------------+ |50.0000th | 2 | 56 | 62 | 67 | 59 | +6.35% | |75.0000th | 2 | 69 | 75 | 80 | 71 | +4.64% | |90.0000th | 2 | 80 | 82 | 90 | 81 | +5.26% | |95.0000th | 2 | 85 | 87 | 97 | 91 | +8.51% | |*99.0000th | 2 | 98 | 99 | 107 | 109 | +8.79% | |99.5000th | 2 | 107 | 105 | 109 | 116 | +5.78% | |99.9000th | 2 | 9968 | 609 | 875 | 3116 | -165.02% | +-----------+-------+-------+-------+-------+------+------------+ |50.0000th | 4 | 78 | 77 | 78 | 79 | +1.27% | |75.0000th | 4 | 98 | 106 | 100 | 104 | 0.00% | |90.0000th | 4 | 987 | 1001 | 995 | 1015 | +1.09% | |95.0000th | 4 | 4136 | 5368 | 5752 | 5192 | +13.16% | |*99.0000th | 4 | 11632 | 11344 | 11024| 10736| -5.59% | |99.5000th | 4 | 12624 | 13040 | 12720| 12144| -3.22% | |99.9000th | 4 | 13168 | 18912 | 14992| 17824| +2.24% | +-----------+-------+-------+-------+-------+------+------------+ Note: Improvement is measured for (VM1+VM2) Signed-off-by: Rohit Jain <rohit.k.jain@oracle.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: dhaval.giani@oracle.com Cc: matt@codeblueprint.co.uk Cc: steven.sistare@oracle.com Cc: subhra.mazumdar@oracle.com Link: http://lkml.kernel.org/r/1525294330-7759-1-git-send-email-rohit.k.jain@oracle.com Signed-off-by: Ingo Molnar <mingo@kernel.org> |
||
Peter Zijlstra
|
b5bf9a90bb |
sched/core: Introduce set_special_state()
Gaurav reported a perceived problem with TASK_PARKED, which turned out to be a broken wait-loop pattern in __kthread_parkme(), but the reported issue can (and does) in fact happen for states that do not do condition based sleeps. When the 'current->state = TASK_RUNNING' store of a previous (concurrent) try_to_wake_up() collides with the setting of a 'special' sleep state, we can loose the sleep state. Normal condition based wait-loops are immune to this problem, but for sleep states that are not condition based are subject to this problem. There already is a fix for TASK_DEAD. Abstract that and also apply it to TASK_STOPPED and TASK_TRACED, both of which are also without condition based wait-loop. Reported-by: Gaurav Kohli <gkohli@codeaurora.org> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Oleg Nesterov <oleg@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Ingo Molnar <mingo@kernel.org> |
||
Peter Zijlstra
|
85f1abe001 |
kthread, sched/wait: Fix kthread_parkme() completion issue
Even with the wait-loop fixed, there is a further issue with kthread_parkme(). Upon hotplug, when we do takedown_cpu(), smpboot_park_threads() can return before all those threads are in fact blocked, due to the placement of the complete() in __kthread_parkme(). When that happens, sched_cpu_dying() -> migrate_tasks() can end up migrating such a still runnable task onto another CPU. Normally the task will have hit schedule() and gone to sleep by the time we do kthread_unpark(), which will then do __kthread_bind() to re-bind the task to the correct CPU. However, when we loose the initial TASK_PARKED store to the concurrent wakeup issue described previously, do the complete(), get migrated, it is possible to either: - observe kthread_unpark()'s clearing of SHOULD_PARK and terminate the park and set TASK_RUNNING, or - __kthread_bind()'s wait_task_inactive() to observe the competing TASK_RUNNING store. Either way the WARN() in __kthread_bind() will trigger and fail to correctly set the CPU affinity. Fix this by only issuing the complete() when the kthread has scheduled out. This does away with all the icky 'still running' nonsense. The alternative is to promote TASK_PARKED to a special state, this guarantees wait_task_inactive() cannot observe a 'stale' TASK_RUNNING and we'll end up doing the right thing, but this preserves the whole icky business of potentially migating the still runnable thing. Reported-by: Gaurav Kohli <gkohli@codeaurora.org> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Ingo Molnar <mingo@kernel.org> |
||
Linus Torvalds
|
71b8ebbf3d |
Merge branch 'sched-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull scheduler fixes from Thomas Gleixner: "A few scheduler fixes: - Prevent a bogus warning vs. runqueue clock update flags in do_sched_rt_period_timer() - Simplify the helper functions which handle requests for skipping the runqueue clock updat. - Do not unlock the tunables mutex in the error path of the cpu frequency scheduler utils. Its not held. - Enforce proper alignement for 'struct util_est' in sched_avg to prevent a misalignment fault on IA64" * 'sched-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: sched/core: Force proper alignment of 'struct util_est' sched/core: Simplify helpers for rq clock update skip requests sched/rt: Fix rq->clock_update_flags < RQCF_ACT_SKIP warning sched/cpufreq/schedutil: Fix error path mutex unlock |
||
Mark Rutland
|
3eda69c92d |
kernel/fork.c: detect early free of a live mm
KASAN splats indicate that in some cases we free a live mm, then continue to access it, with potentially disastrous results. This is likely due to a mismatched mmdrop() somewhere in the kernel, but so far the culprit remains elusive. Let's have __mmdrop() verify that the mm isn't live for the current task, similar to the existing check for init_mm. This way, we can catch this class of issue earlier, and without requiring KASAN. Currently, idle_task_exit() leaves active_mm stale after it switches to init_mm. This isn't harmful, but will trigger the new assertions, so we must adjust idle_task_exit() to update active_mm. Link: http://lkml.kernel.org/r/20180312140103.19235-1-mark.rutland@arm.com Signed-off-by: Mark Rutland <mark.rutland@arm.com> Reviewed-by: Andrew Morton <akpm@linux-foundation.org> Cc: Ingo Molnar <mingo@kernel.org> Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rik van Riel <riel@redhat.com> Cc: Will Deacon <will.deacon@arm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Davidlohr Bueso
|
adcc8da885 |
sched/core: Simplify helpers for rq clock update skip requests
By renaming the functions we can get rid of the skip parameter and have better code redability. It makes zero sense to have things such as: rq_clock_skip_update(rq, false) When the skip request is in fact not going to happen. Ever. Rename things such that we end up with: rq_clock_skip_update(rq) rq_clock_cancel_skipupdate(rq) Signed-off-by: Davidlohr Bueso <dbueso@suse.de> Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mike Galbraith <efault@gmx.de> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: linux-kernel@vger.kernel.org Cc: matt@codeblueprint.co.uk Cc: rostedt@goodmis.org Link: http://lkml.kernel.org/r/20180404161539.nhadkff2aats74jh@linux-n805 Signed-off-by: Ingo Molnar <mingo@kernel.org> |
||
Linus Torvalds
|
642e7fd233 |
Merge branch 'syscalls-next' of git://git.kernel.org/pub/scm/linux/kernel/git/brodo/linux
Pull removal of in-kernel calls to syscalls from Dominik Brodowski: "System calls are interaction points between userspace and the kernel. Therefore, system call functions such as sys_xyzzy() or compat_sys_xyzzy() should only be called from userspace via the syscall table, but not from elsewhere in the kernel. At least on 64-bit x86, it will likely be a hard requirement from v4.17 onwards to not call system call functions in the kernel: It is better to use use a different calling convention for system calls there, where struct pt_regs is decoded on-the-fly in a syscall wrapper which then hands processing over to the actual syscall function. This means that only those parameters which are actually needed for a specific syscall are passed on during syscall entry, instead of filling in six CPU registers with random user space content all the time (which may cause serious trouble down the call chain). Those x86-specific patches will be pushed through the x86 tree in the near future. Moreover, rules on how data may be accessed may differ between kernel data and user data. This is another reason why calling sys_xyzzy() is generally a bad idea, and -- at most -- acceptable in arch-specific code. This patchset removes all in-kernel calls to syscall functions in the kernel with the exception of arch/. On top of this, it cleans up the three places where many syscalls are referenced or prototyped, namely kernel/sys_ni.c, include/linux/syscalls.h and include/linux/compat.h" * 'syscalls-next' of git://git.kernel.org/pub/scm/linux/kernel/git/brodo/linux: (109 commits) bpf: whitelist all syscalls for error injection kernel/sys_ni: remove {sys_,sys_compat} from cond_syscall definitions kernel/sys_ni: sort cond_syscall() entries syscalls/x86: auto-create compat_sys_*() prototypes syscalls: sort syscall prototypes in include/linux/compat.h net: remove compat_sys_*() prototypes from net/compat.h syscalls: sort syscall prototypes in include/linux/syscalls.h kexec: move sys_kexec_load() prototype to syscalls.h x86/sigreturn: use SYSCALL_DEFINE0 x86: fix sys_sigreturn() return type to be long, not unsigned long x86/ioport: add ksys_ioperm() helper; remove in-kernel calls to sys_ioperm() mm: add ksys_readahead() helper; remove in-kernel calls to sys_readahead() mm: add ksys_mmap_pgoff() helper; remove in-kernel calls to sys_mmap_pgoff() mm: add ksys_fadvise64_64() helper; remove in-kernel call to sys_fadvise64_64() fs: add ksys_fallocate() wrapper; remove in-kernel calls to sys_fallocate() fs: add ksys_p{read,write}64() helpers; remove in-kernel calls to syscalls fs: add ksys_truncate() wrapper; remove in-kernel calls to sys_truncate() fs: add ksys_sync_file_range helper(); remove in-kernel calls to syscall kernel: add ksys_setsid() helper; remove in-kernel call to sys_setsid() kernel: add ksys_unshare() helper; remove in-kernel calls to sys_unshare() ... |
||
Dominik Brodowski
|
7d4dd4f159 |
sched: add do_sched_yield() helper; remove in-kernel call to sched_yield()
Using the sched-internal do_sched_yield() helper allows us to get rid of the sched-internal call to the sys_sched_yield() syscall. This patch is part of a series which removes in-kernel calls to syscalls. On this basis, the syscall entry path can be streamlined. For details, see http://lkml.kernel.org/r/20180325162527.GA17492@light.dominikbrodowski.net Cc: Ingo Molnar <mingo@redhat.com> Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: Dominik Brodowski <linux@dominikbrodowski.net> |
||
Davidlohr Bueso
|
b720342849 |
sched/core: Update preempt_notifier_key to modern API
No changes in refcount semantics, use DEFINE_STATIC_KEY_FALSE() for initialization and replace: static_key_slow_inc|dec() => static_branch_inc|dec() static_key_false() => static_branch_unlikely() Signed-off-by: Davidlohr Bueso <dbueso@suse.de> Cc: Davidlohr Bueso <dave@stgolabs.net> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: akpm@linux-foundation.org Link: http://lkml.kernel.org/r/20180326210929.5244-4-dave@stgolabs.net Signed-off-by: Ingo Molnar <mingo@kernel.org> |
||
Ingo Molnar
|
10c18c44a6 |
Merge branch 'linus' into sched/core, to pick up fixes
Signed-off-by: Ingo Molnar <mingo@kernel.org> |
||
Linus Torvalds
|
1b5f3ba415 |
Merge branch 'for-4.16-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup
Pull cgroup fixes from Tejun Heo: "Two commits to fix the following subtle cgroup2 behavior bugs: - cpu.max was rejecting config when it shouldn't - thread mode enable was allowed when it shouldn't" * 'for-4.16-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup: cgroup: fix rule checking for threaded mode switching sched, cgroup: Don't reject lower cpu.max on ancestors |
||
Peter Zijlstra
|
00357f5ec5 |
sched/nohz: Clean up nohz enter/exit
The primary observation is that nohz enter/exit is always from the current CPU, therefore NOHZ_TICK_STOPPED does not in fact need to be an atomic. Secondary is that we appear to have 2 nearly identical hooks in the nohz enter code, set_cpu_sd_state_idle() and nohz_balance_enter_idle(). Fold the whole set_cpu_sd_state thing into nohz_balance_{enter,exit}_idle. Removes an atomic op from both enter and exit paths. Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mike Galbraith <efault@gmx.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: linux-kernel@vger.kernel.org Signed-off-by: Ingo Molnar <mingo@kernel.org> |
||
Peter Zijlstra
|
e022e0d38a |
sched/fair: Update blocked load from NEWIDLE
Since we already iterate CPUs looking for work on NEWIDLE, use this iteration to age the blocked load. If the domain for which this is done completely spand the idle set, we can push the ILB based aging forward. Suggested-by: Brendan Jackman <brendan.jackman@arm.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: linux-kernel@vger.kernel.org Signed-off-by: Ingo Molnar <mingo@kernel.org> |
||
Peter Zijlstra
|
b7031a02ec |
sched/fair: Add NOHZ_STATS_KICK
Split the NOHZ idle balancer into doing two separate actions: - update blocked load statistic - actually load-balance Since the latter requires the former, ensure this happens. For now always tag both bits at the same time. Prepares for a future where we can toggle only the STATS bit. Suggested-by: Vincent Guittot <vincent.guittot@linaro.org> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mike Galbraith <efault@gmx.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: linux-kernel@vger.kernel.org Signed-off-by: Ingo Molnar <mingo@kernel.org> |
||
Peter Zijlstra
|
a22e47a4e3 |
sched/core: Convert nohz_flags to atomic_t
Using atomic_t allows us to use the more flexible bitops provided there. Also its smaller. Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mike Galbraith <efault@gmx.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: linux-kernel@vger.kernel.org Signed-off-by: Ingo Molnar <mingo@kernel.org> |
||
Ingo Molnar
|
14a7405b2e |
sched/core: Undefine tracepoint creation at the end of core.c
Make it easier to concatenate all the scheduler .c files for single-module compilation. Cc: Peter Zijlstra <peterz@infradead.org> Cc: Mike Galbraith <efault@gmx.de> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: linux-kernel@vger.kernel.org Signed-off-by: Ingo Molnar <mingo@kernel.org> |
||
Ingo Molnar
|
325ea10c08 |
sched/headers: Simplify and clean up header usage in the scheduler
Do the following cleanups and simplifications: - sched/sched.h already includes <asm/paravirt.h>, so no need to include it in sched/core.c again. - order the <linux/sched/*.h> headers alphabetically - add all <linux/sched/*.h> headers to kernel/sched/sched.h - remove all unnecessary includes from the .c files that are already included in kernel/sched/sched.h. Finally, make all scheduler .c files use a single common header: #include "sched.h" ... which now contains a union of the relied upon headers. This makes the various .c files easier to read and easier to handle. Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mike Galbraith <efault@gmx.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: linux-kernel@vger.kernel.org Signed-off-by: Ingo Molnar <mingo@kernel.org> |