Remove forward declarations of various static functions located in two
driver implementation files and rearrange the corresponding definitions
accordingly.
This patch only introduces mechanical changes, namely it removes forward
declarations and moves function definitions around; it does not change any
functionality.
Signed-off-by: Arseny Solokha <asolokha@kb.kras.ru>
Signed-off-by: David S. Miller <davem@davemloft.net>
Add a test to validate the Jumbo Frame support in stmmac in single
channel and multichannel mode.
Signed-off-by: Jose Abreu <joabreu@synopsys.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
We are already doing it by default in the TX path so we can also enable
Jumbo Frame support in the RX path independently of MTU value.
Signed-off-by: Jose Abreu <joabreu@synopsys.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Maximum MTU for XGMAC cores is 16k thus the check for presence of XGMAC
shall be done first in order to assign correct value.
Signed-off-by: Jose Abreu <joabreu@synopsys.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
RAVSEL means that only RX side is available for AVB features. As we use
both TX and RX features we need to check if RAVSEL is selected and
disable AVB if only RX side is available.
Signed-off-by: Jose Abreu <joabreu@synopsys.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
When RX Watchdog is disabled its currently not possible to configure TX
coalesce settings. Let user configure it anyway.
Signed-off-by: Jose Abreu <joabreu@synopsys.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Only consider that we have an error when HW Timestamping is not enabled
as this can give false positives due to the fact the RX Timestamping in
XGMAC and GMAC cores comes from context descriptors.
Signed-off-by: Jose Abreu <joabreu@synopsys.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Implement the ARP Offload feature in XGMAC cores.
Signed-off-by: Jose Abreu <joabreu@synopsys.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Adds the selftests for L3 and L4 filters with DA/SA/DP/SP support.
Changes from v1:
- Reduce stack usage (kbuild test robot)
Signed-off-by: Jose Abreu <joabreu@synopsys.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Implement filters for Layer 3 and Layer 4 using TC Flower API. Add the
corresponding callbacks in XGMAC core.
Signed-off-by: Jose Abreu <joabreu@synopsys.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
As we can still use the remaining TC callbacks, e.g. CBS. We should not
fail in the initialization only because RX Parser is not available.
Signed-off-by: Jose Abreu <joabreu@synopsys.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Add the handling of Receive Buffer Unavailable interrupt in the DMA
handler of XGMAC cores.
Signed-off-by: Jose Abreu <joabreu@synopsys.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
We can do better than just return 1 to userspace. Lets return a proper
Linux error code.
Signed-off-by: Jose Abreu <joabreu@synopsys.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Take only FIB events that are happening in init_net into account. No other
namespaces are supported.
Signed-off-by: Jiri Pirko <jiri@mellanox.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Interrupt coalescing, tunable copybreak value, and
tx timeout.
Signed-off-by: Shannon Nelson <snelson@pensando.io>
Signed-off-by: David S. Miller <davem@davemloft.net>
Add code to manipulate through ethtool the RSS configuration
used by the NIC.
Signed-off-by: Shannon Nelson <snelson@pensando.io>
Signed-off-by: David S. Miller <davem@davemloft.net>
Add in the detailed statistics for ethtool -S that the driver
keeps as it processes packets. Display of the additional
debug statistics can be enabled through the ethtool priv-flags
feature.
Signed-off-by: Shannon Nelson <snelson@pensando.io>
Signed-off-by: David S. Miller <davem@davemloft.net>
When the netdev gets a new name from userland, pass that name
down to the NIC for internal tracking.
Signed-off-by: Shannon Nelson <snelson@pensando.io>
Signed-off-by: David S. Miller <davem@davemloft.net>
Add both the Tx and Rx queue setup and handling. The related
stats display comes later. Instead of using the generic napi
routines used by the slow-path commands, the Tx and Rx paths
are simplified and inlined in one file in order to get better
compiler optimizations.
Signed-off-by: Shannon Nelson <snelson@pensando.io>
Signed-off-by: David S. Miller <davem@davemloft.net>
Add in the basic ethtool callbacks for device information
and control.
Signed-off-by: Shannon Nelson <snelson@pensando.io>
Signed-off-by: David S. Miller <davem@davemloft.net>
Add code to handle the link status event, and wire up the
basic netdev hardware stats.
Signed-off-by: Shannon Nelson <snelson@pensando.io>
Signed-off-by: David S. Miller <davem@davemloft.net>
Add the Rx filtering and rx_mode NDO callbacks. Also add
the deferred work thread handling needed to manage the filter
requests outside of the netif_addr_lock spinlock.
Signed-off-by: Shannon Nelson <snelson@pensando.io>
Signed-off-by: David S. Miller <davem@davemloft.net>
Set up the infrastructure for managing Rx filters. We can't ask the
hardware for what filters it has, so we keep a local list of filters
that we've pushed into the HW.
Signed-off-by: Shannon Nelson <snelson@pensando.io>
Signed-off-by: David S. Miller <davem@davemloft.net>
Set up the initial NDO structure and callbacks for netdev
to use, and register the netdev. This will allow us to do
a few basic operations on the device, but no traffic yet.
Signed-off-by: Shannon Nelson <snelson@pensando.io>
Signed-off-by: David S. Miller <davem@davemloft.net>
The AdminQ is fine for sending messages and requests to the NIC,
but we also need to have events published from the NIC to the
driver. The NotifyQ handles this for us, using the same interrupt
as AdminQ.
Signed-off-by: Shannon Nelson <snelson@pensando.io>
Signed-off-by: David S. Miller <davem@davemloft.net>
Add AdminQ specific message requests and completion handling.
Signed-off-by: Shannon Nelson <snelson@pensando.io>
Signed-off-by: David S. Miller <davem@davemloft.net>
Most of the NIC configuration happens through the AdminQ message
queue. NAPI is used for basic interrupt handling and message
queue management. These routines are set up to be shared among
different types of queues when used in slow-path handling.
Signed-off-by: Shannon Nelson <snelson@pensando.io>
Signed-off-by: David S. Miller <davem@davemloft.net>
The ionic interrupt model is based on interrupt control blocks
accessed through the PCI BAR. Doorbell registers are used by
the driver to signal to the NIC that requests are waiting on
the message queues. Interrupts are used by the NIC to signal
to the driver that answers are waiting on the completion queues.
Signed-off-by: Shannon Nelson <snelson@pensando.io>
Signed-off-by: David S. Miller <davem@davemloft.net>
The LIF is the Logical Interface, which represents the external
connections. The NIC can multiplex many LIFs to a single port,
but in most setups, LIF0 is the primary control for the port.
Signed-off-by: Shannon Nelson <snelson@pensando.io>
Signed-off-by: David S. Miller <davem@davemloft.net>
The port management commands apply to the physical port
associated with the PCI device, which might be shared among
several logical interfaces.
Signed-off-by: Shannon Nelson <snelson@pensando.io>
Signed-off-by: David S. Miller <davem@davemloft.net>
The ionic device has a small set of PCI registers, including a
device control and data space, and a large set of message
commands.
Also adds new DEVLINK_INFO_VERSION_GENERIC tags for
ASIC_ID, ASIC_REV, and FW.
Signed-off-by: Shannon Nelson <snelson@pensando.io>
Signed-off-by: David S. Miller <davem@davemloft.net>
This patch adds a basic driver framework for the Pensando IONIC
network device. There is no functionality right now other than
the ability to load and unload.
Signed-off-by: Shannon Nelson <snelson@pensando.io>
Signed-off-by: David S. Miller <davem@davemloft.net>
Starting with firmware version MC10.18.0, a new counter for in flight
Tx frames is offered. Use it when bringing down the interface to
determine when all pending Tx frames have been processed by hardware
instead of sleeping a fixed amount of time.
Signed-off-by: Ioana Radulescu <ruxandra.radulescu@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Recent firmware versions expose more DPNI counters.
Export relevant ones via ethtool -S.
Signed-off-by: Ioana Radulescu <ruxandra.radulescu@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
As we prepare to read more pages from the DPNI stat counters,
reorganize the code a bit to make it easier to extend.
Signed-off-by: Ioana Radulescu <ruxandra.radulescu@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Jeff Kirsher says:
====================
100GbE Intel Wired LAN Driver Updates 2019-09-03
This series contains updates to ice driver only.
Anirudh adds the ability for the driver to handle EMP resets correctly
by adding the logic to the existing ice_reset_subtask().
Jeb fixes up the logic to properly free up the resources for a switch
rule whether or not it was successful in the removal.
Brett fixes up the reporting of ITR values to let the user know odd ITR
values are not allowed. Fixes the driver to only disable VLAN pruning
on VLAN deletion when the VLAN being deleted is the last VLAN on the VF
VSI.
Chinh updates the driver to determine the TSA value from the priority
value when in CEE mode.
Bruce aligns the driver with the hardware specification by ensuring that
a PF reset is done as part of the unload logic. Also update the driver
unloading field, based on the latest hardware specification, which
allows us to remove an unnecessary endian conversion. Moves #defines
based on their need in the code.
Jesse adds the current state of auto-negotiation in the link up message.
In addition, adds additional information to inform the user of an issue
with the topology/configuration of the link.
Usha updates the driver to allow the maximum TCs that the firmware
supports, rather than hard coding to a set value.
Dave updates the DCB initialization flow to handle the case of an actual
error during DCB init. Updated the driver to report the current stats,
even when the netdev is down, which aligns with our other drivers.
Mitch fixes the VF reset code flows to ensure that it properly calls
ice_dis_vsi_txq() to notify the firmware that the VF is being reset.
Michal fixes the driver so the DCB is not enabled when the SW LLDP is
activated, which was causing a communication issue with other NICs. The
problem lies in that DCB was being enabled without checking the number
of TCs.
====================
Signed-off-by: David S. Miller <davem@davemloft.net>
Abstract:
--------
Mellanox ConnetX devices supports packet matching, packet modification and
redirection. These functionalities are also referred to as flow-steering.
To configure a steering rule, the rule is written to the device owned
memory, this memory is accessed and cached by the device when processing
a packet.
Steering rules are constructed from multiple steering entries (STE).
Rules are configured using the Firmware command interface. The Firmware
processes the given driver command and translates them to STEs, then
writes them to the device memory in the current steering tables.
This process is slow due to the architecture of the command interface and
the processing complexity of each rule.
The highlight of this patchset is to cut the middle man (The firmware) and
do steering rules programming into device directly from the driver, with
no firmware intervention whatsoever.
Motivation:
-----------
Software (driver managed) steering allows for high rule insertion rates
compared to the FW steering described above, this is achieved by using
internal RDMA writes to the device owned memory instead of the slow
command interface to program steering rules.
Software (driver managed) steering, doesn't depend on new FW
for new steering functionality, new implementations can be done in the
driver skipping the FW layer.
Performance:
------------
The insertion rate on a single core using the new approach allows
programming ~300K rules per sec. (Done via direct raw test to the new mlx5
sw steering layer, without any kernel layer involved).
Test: TC L2 rules
33K/s with Software steering (this patchset).
5K/s with FW and current driver.
This will improve OVS based solution performance.
Architecture and implementation details:
----------------------------------------
Software steering will be dynamically selected via devlink device
parameter. Example:
$ devlink dev param show pci/0000:06:00.0 name flow_steering_mode
pci/0000:06:00.0:
name flow_steering_mode type driver-specific
values:
cmode runtime value smfs
mlx5 software steering module a.k.a (DR - Direct Rule) is implemented
and contained in mlx5/core/steering directory and controlled by
MLX5_SW_STEERING kconfig flag.
mlx5 core steering layer (fs_core) already provides a shim layer for
implementing different steering mechanisms, software steering will
leverage that as seen at the end of this series.
When Software Steering for a specific steering domain
(NIC/RDMA/Vport/ESwitch, etc ..) is supported, it will cause rules
targeting this domain to be created using SW steering instead of FW.
The implementation includes:
Domain - The steering domain is the object that all other object resides
in. It holds the memory allocator, send engine, locks and other shared
data needed by lower objects such as table, matcher, rule, action.
Each domain can contain multiple tables. Domain is equivalent to
namespaces e.g (NIC/RDMA/Vport/ESwitch, etc ..) as implemented
currently in mlx5_core fs_core (flow steering core).
Table - Table objects are used for holding multiple matchers, each table
has a level used to prevent processing loops. Packets are being
directed to this table once it is set as the root table, this is done
by fs_core using a FW command. A packet is being processed inside the
table matcher by matcher until a successful hit, otherwise the packet
will perform the default action.
Matcher - Matchers objects are used to specify the fields mask for
matching when processing a packet. A matcher belongs to a table, each
matcher can hold multiple rules, each rule with different matching
values corresponding to the matcher mask. Each matcher has a priority
used for rule processing order inside the table.
Action - Action objects are created to specify different steering actions
such as count, reformat (encapsulate, decapsulate, ...), modify
header, forward to table and many other actions. When creating a rule
a sequence of actions can be provided to be executed on a successful
match.
Rule - Rule objects are used to specify a specific match on packets as
well as the actions that should be executed. A rule belongs to a
matcher.
STE - This layer is used to hold the specific STE format for the device
and to convert the requested rule to STEs. Each rule is constructed of
an STE chain, Multiple rules construct a steering graph. Each node in
the graph is a hash table containing multiple STEs. The index of each
STE in the hash table is being calculated using a CRC32 hash function.
Memory pool - Used for managing and caching device owned memory for rule
insertion. The memory is being allocated using DM (device memory) API.
Communication with device - layer for standard RDMA operation using RC QP
to configure the device steering.
Command utility - This module holds all of the FW commands that are
required for SW steering to function.
Patch planning and files:
-------------------------
1) First patch, adds the support to Add flow steering actions to fs_cmd
shim layer.
2) Next 12 patch will add a file per each Software steering
functionality/module as described above. (See patches with title: DR, *)
3) Add CONFIG_MLX5_SW_STEERING for software steering support and enable
build with the new files
4) Next two patches will add the support for software steering in mlx5
steering shim layer
net/mlx5: Add API to set the namespace steering mode
net/mlx5: Add direct rule fs_cmd implementation
5) Last two patches will add the new devlink parameter to select mlx5
steering mode, will be valid only for switchdev mode for now.
Two modes are supported:
1. DMFS - Device managed flow steering
2. SMFS - Software/Driver managed flow steering.
In the DMFS mode, the HW steering entities are created through the
FW. In the SMFS mode this entities are created though the driver
directly.
The driver will use the devlink steering mode only if the steering
domain supports it, for now SMFS will manages only the switchdev
eswitch steering domain.
User command examples:
- Set SMFS flow steering mode::
$ devlink dev param set pci/0000:06:00.0 name flow_steering_mode value "smfs" cmode runtime
- Read device flow steering mode::
$ devlink dev param show pci/0000:06:00.0 name flow_steering_mode
pci/0000:06:00.0:
name flow_steering_mode type driver-specific
values:
cmode runtime value smfs
-----BEGIN PGP SIGNATURE-----
iQEzBAABCAAdFiEEGhZs6bAKwk/OTgTpSD+KveBX+j4FAl1uxPAACgkQSD+KveBX
+j5AkggAymoYqG2G+s8cLa4vQFySaD1Td3VzzWglp7PlpDBE3UcSoMAMg/gIDU1D
8F04PeCsJ6snt1ICk56vPNyAEHWfWeBUd56+QK5lEJBuwozyFvBh6HP81Bnr6T/n
n6uTx45ljAFQPTHJjEOLBPSzEXecLu07+mvpzSoW0F3ehfGbELhL1IkVobr/RELx
z4xZW9uM2vm5ylheWvjf4V1S/SvokgJazW9+4fh//rl8tfXgun5IfPoS0hqKie1/
h5sjcMSYkYR4gLVqrhKmBYHmHVl/h0TYROckW8iC/+XX7ailSo9uPG7lPa6cm+GE
7Bajlbz4oD/K5RWoByo+q+dmyjeVhQ==
=M9bS
-----END PGP SIGNATURE-----
Merge tag 'mlx5-updates-2019-09-01-v2' of git://git.kernel.org/pub/scm/linux/kernel/git/saeed/linux
Saeed Mahameed says:
====================
mlx5-updates-2019-09-01 (Software steering support)
Abstract:
--------
Mellanox ConnetX devices supports packet matching, packet modification and
redirection. These functionalities are also referred to as flow-steering.
To configure a steering rule, the rule is written to the device owned
memory, this memory is accessed and cached by the device when processing
a packet.
Steering rules are constructed from multiple steering entries (STE).
Rules are configured using the Firmware command interface. The Firmware
processes the given driver command and translates them to STEs, then
writes them to the device memory in the current steering tables.
This process is slow due to the architecture of the command interface and
the processing complexity of each rule.
The highlight of this patchset is to cut the middle man (The firmware) and
do steering rules programming into device directly from the driver, with
no firmware intervention whatsoever.
Motivation:
-----------
Software (driver managed) steering allows for high rule insertion rates
compared to the FW steering described above, this is achieved by using
internal RDMA writes to the device owned memory instead of the slow
command interface to program steering rules.
Software (driver managed) steering, doesn't depend on new FW
for new steering functionality, new implementations can be done in the
driver skipping the FW layer.
Performance:
------------
The insertion rate on a single core using the new approach allows
programming ~300K rules per sec. (Done via direct raw test to the new mlx5
sw steering layer, without any kernel layer involved).
Test: TC L2 rules
33K/s with Software steering (this patchset).
5K/s with FW and current driver.
This will improve OVS based solution performance.
Architecture and implementation details:
----------------------------------------
Software steering will be dynamically selected via devlink device
parameter. Example:
$ devlink dev param show pci/0000:06:00.0 name flow_steering_mode
pci/0000:06:00.0:
name flow_steering_mode type driver-specific
values:
cmode runtime value smfs
mlx5 software steering module a.k.a (DR - Direct Rule) is implemented
and contained in mlx5/core/steering directory and controlled by
MLX5_SW_STEERING kconfig flag.
mlx5 core steering layer (fs_core) already provides a shim layer for
implementing different steering mechanisms, software steering will
leverage that as seen at the end of this series.
When Software Steering for a specific steering domain
(NIC/RDMA/Vport/ESwitch, etc ..) is supported, it will cause rules
targeting this domain to be created using SW steering instead of FW.
The implementation includes:
Domain - The steering domain is the object that all other object resides
in. It holds the memory allocator, send engine, locks and other shared
data needed by lower objects such as table, matcher, rule, action.
Each domain can contain multiple tables. Domain is equivalent to
namespaces e.g (NIC/RDMA/Vport/ESwitch, etc ..) as implemented
currently in mlx5_core fs_core (flow steering core).
Table - Table objects are used for holding multiple matchers, each table
has a level used to prevent processing loops. Packets are being
directed to this table once it is set as the root table, this is done
by fs_core using a FW command. A packet is being processed inside the
table matcher by matcher until a successful hit, otherwise the packet
will perform the default action.
Matcher - Matchers objects are used to specify the fields mask for
matching when processing a packet. A matcher belongs to a table, each
matcher can hold multiple rules, each rule with different matching
values corresponding to the matcher mask. Each matcher has a priority
used for rule processing order inside the table.
Action - Action objects are created to specify different steering actions
such as count, reformat (encapsulate, decapsulate, ...), modify
header, forward to table and many other actions. When creating a rule
a sequence of actions can be provided to be executed on a successful
match.
Rule - Rule objects are used to specify a specific match on packets as
well as the actions that should be executed. A rule belongs to a
matcher.
STE - This layer is used to hold the specific STE format for the device
and to convert the requested rule to STEs. Each rule is constructed of
an STE chain, Multiple rules construct a steering graph. Each node in
the graph is a hash table containing multiple STEs. The index of each
STE in the hash table is being calculated using a CRC32 hash function.
Memory pool - Used for managing and caching device owned memory for rule
insertion. The memory is being allocated using DM (device memory) API.
Communication with device - layer for standard RDMA operation using RC QP
to configure the device steering.
Command utility - This module holds all of the FW commands that are
required for SW steering to function.
Patch planning and files:
-------------------------
1) First patch, adds the support to Add flow steering actions to fs_cmd
shim layer.
2) Next 12 patch will add a file per each Software steering
functionality/module as described above. (See patches with title: DR, *)
3) Add CONFIG_MLX5_SW_STEERING for software steering support and enable
build with the new files
4) Next two patches will add the support for software steering in mlx5
steering shim layer
net/mlx5: Add API to set the namespace steering mode
net/mlx5: Add direct rule fs_cmd implementation
5) Last two patches will add the new devlink parameter to select mlx5
steering mode, will be valid only for switchdev mode for now.
Two modes are supported:
1. DMFS - Device managed flow steering
2. SMFS - Software/Driver managed flow steering.
In the DMFS mode, the HW steering entities are created through the
FW. In the SMFS mode this entities are created though the driver
directly.
The driver will use the devlink steering mode only if the steering
domain supports it, for now SMFS will manages only the switchdev
eswitch steering domain.
User command examples:
- Set SMFS flow steering mode::
$ devlink dev param set pci/0000:06:00.0 name flow_steering_mode value "smfs" cmode runtime
- Read device flow steering mode::
$ devlink dev param show pci/0000:06:00.0 name flow_steering_mode
pci/0000:06:00.0:
name flow_steering_mode type driver-specific
values:
cmode runtime value smfs
====================
Signed-off-by: David S. Miller <davem@davemloft.net>
Currently if the VF adds a VLAN, VLAN pruning will be enabled for that VSI.
Also, when a VLAN gets deleted it will disable VLAN pruning even if other
VLAN(s) exists for the VF. Fix this by only disabling VLAN pruning on the
VF VSI when removing the last VF (i.e. vf->num_vlan == 0).
Signed-off-by: Brett Creeley <brett.creeley@intel.com>
Tested-by: Andrew Bowers <andrewx.bowers@intel.com>
Signed-off-by: Jeff Kirsher <jeffrey.t.kirsher@intel.com>
Remove code that enables DCB in initialization when SW LLDP is
activated. DCB flag is set or reset before in ice_init_pf_dcb
based on number of TCs. So there is not need to overwrite it.
Setting DCB without checking number of TCs can cause communication
problems with other cards. Host card sends packet with VLAN priority
tag, but client card doesn't strip this tag and ping doesn't work.
Signed-off-by: Michal Swiatkowski <michal.swiatkowski@intel.com>
Signed-off-by: Tony Nguyen <anthony.l.nguyen@intel.com>
Tested-by: Andrew Bowers <andrewx.bowers@intel.com>
Signed-off-by: Jeff Kirsher <jeffrey.t.kirsher@intel.com>
There is currently a check in get_ndo_stats that
returns before updating stats if the VSI is down
or there are no Tx or Rx queues. This causes the
netdev to report zero stats with the netdev is down.
Remove the check so that the behavior of reporting
stats is the same as it was in IXGBE.
Signed-off-by: Dave Ertman <david.m.ertman@intel.com>
Tested-by: Andrew Bowers <andrewx.bowers@intel.com>
Signed-off-by: Jeff Kirsher <jeffrey.t.kirsher@intel.com>
The call to ice_dis_vsi_txq() acts as the notification to the firmware
that the VF is being reset. Because of this, we need to make this call
every time we reset, regardless of whatever else we do to stop the Tx
queues.
Without this change, VF resets would fail to complete on interfaces that
were up and running.
Signed-off-by: Mitch Williams <mitch.a.williams@intel.com>
Tested-by: Andrew Bowers <andrewx.bowers@intel.com>
Signed-off-by: Jeff Kirsher <jeffrey.t.kirsher@intel.com>
In the init path for DCB, the call to ice_init_dcb()
can return a non-zero value for either an actual
error, or due to the FW lldp engine being stopped.
We are currently treating all non-zero values only as
an indication that the FW LLDP engine is stopped.
Check for an actual error in the DCB init flow.
Signed-off-by: Dave Ertman <david.m.ertman@intel.com>
Tested-by: Andrew Bowers <andrewx.bowers@intel.com>
Signed-off-by: Jeff Kirsher <jeffrey.t.kirsher@intel.com>
This patch limits the max TCs set by the driver to the value provided by
the firmware as per the capabilities of the device. Otherwise, hard coding
to 8 TC max would fail the device configurations with more than 4 ports.
Signed-off-by: Usha Ketineni <usha.k.ketineni@intel.com>
Signed-off-by: Tony Nguyen <anthony.l.nguyen@intel.com>
Tested-by: Andrew Bowers <andrewx.bowers@intel.com>
Signed-off-by: Jeff Kirsher <jeffrey.t.kirsher@intel.com>
Conventionally, if the #defines/other are not needed by other header
files being included, #includes are done first followed by #defines
and other stuff. Move the #defines before the #includes to follow this
convention.
Suggested by: Bruce Allan <bruce.w.allan@intel.com>
Signed-off-by: Tony Nguyen <anthony.l.nguyen@intel.com>
Tested-by: Andrew Bowers <andrewx.bowers@intel.com>
Signed-off-by: Jeff Kirsher <jeffrey.t.kirsher@intel.com>
The driver needs to inform the user if there is an issue
with the topology / configuration of the link.
Signed-off-by: Jesse Brandeburg <jesse.brandeburg@intel.com>
Tested-by: Andrew Bowers <andrewx.bowers@intel.com>
Signed-off-by: Jeff Kirsher <jeffrey.t.kirsher@intel.com>
Print the state of auto-negotiation when printing the Link
up message. Adds new text to the "NIC Link is up" line like
Autoneg: <True | False>
Signed-off-by: Jesse Brandeburg <jesse.brandeburg@intel.com>
Tested-by: Andrew Bowers <andrewx.bowers@intel.com>
Signed-off-by: Jeff Kirsher <jeffrey.t.kirsher@intel.com>
According to recent specification versions, the field in the Queue Shutdown
AdminQ command consisting of the "driver unloading" indication is not a 4
byte field (it is byte.bit 16.0). Change it to a byte and remove the
unnecessary endian conversion.
Signed-off-by: Bruce Allan <bruce.w.allan@intel.com>
Tested-by: Andrew Bowers <andrewx.bowers@intel.com>
Signed-off-by: Jeff Kirsher <jeffrey.t.kirsher@intel.com>
According to the specification, a PF Reset must be done as part of the
driver unload flow.
Signed-off-by: Bruce Allan <bruce.w.allan@intel.com>
Tested-by: Andrew Bowers <andrewx.bowers@intel.com>
Signed-off-by: Jeff Kirsher <jeffrey.t.kirsher@intel.com>