The arm_pmu::handle_irq() callback has the same prototype as a generic
IRQ handler, taking the IRQ number and a void pointer argument which it
must convert to an arm_pmu pointer.
This means that all arm_pmu::handle_irq() take an IRQ number they never
use, and all must explicitly cast the void pointer to an arm_pmu
pointer.
Instead, let's change arm_pmu::handle_irq to take an arm_pmu pointer,
allowing these casts to be removed. The redundant IRQ number parameter
is also removed.
Suggested-by: Hoeun Ryu <hoeun.ryu@lge.com>
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Many source files in the tree are missing licensing information, which
makes it harder for compliance tools to determine the correct license.
By default all files without license information are under the default
license of the kernel, which is GPL version 2.
Update the files which contain no license information with the 'GPL-2.0'
SPDX license identifier. The SPDX identifier is a legally binding
shorthand, which can be used instead of the full boiler plate text.
This patch is based on work done by Thomas Gleixner and Kate Stewart and
Philippe Ombredanne.
How this work was done:
Patches were generated and checked against linux-4.14-rc6 for a subset of
the use cases:
- file had no licensing information it it.
- file was a */uapi/* one with no licensing information in it,
- file was a */uapi/* one with existing licensing information,
Further patches will be generated in subsequent months to fix up cases
where non-standard license headers were used, and references to license
had to be inferred by heuristics based on keywords.
The analysis to determine which SPDX License Identifier to be applied to
a file was done in a spreadsheet of side by side results from of the
output of two independent scanners (ScanCode & Windriver) producing SPDX
tag:value files created by Philippe Ombredanne. Philippe prepared the
base worksheet, and did an initial spot review of a few 1000 files.
The 4.13 kernel was the starting point of the analysis with 60,537 files
assessed. Kate Stewart did a file by file comparison of the scanner
results in the spreadsheet to determine which SPDX license identifier(s)
to be applied to the file. She confirmed any determination that was not
immediately clear with lawyers working with the Linux Foundation.
Criteria used to select files for SPDX license identifier tagging was:
- Files considered eligible had to be source code files.
- Make and config files were included as candidates if they contained >5
lines of source
- File already had some variant of a license header in it (even if <5
lines).
All documentation files were explicitly excluded.
The following heuristics were used to determine which SPDX license
identifiers to apply.
- when both scanners couldn't find any license traces, file was
considered to have no license information in it, and the top level
COPYING file license applied.
For non */uapi/* files that summary was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 11139
and resulted in the first patch in this series.
If that file was a */uapi/* path one, it was "GPL-2.0 WITH
Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 WITH Linux-syscall-note 930
and resulted in the second patch in this series.
- if a file had some form of licensing information in it, and was one
of the */uapi/* ones, it was denoted with the Linux-syscall-note if
any GPL family license was found in the file or had no licensing in
it (per prior point). Results summary:
SPDX license identifier # files
---------------------------------------------------|------
GPL-2.0 WITH Linux-syscall-note 270
GPL-2.0+ WITH Linux-syscall-note 169
((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21
((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17
LGPL-2.1+ WITH Linux-syscall-note 15
GPL-1.0+ WITH Linux-syscall-note 14
((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5
LGPL-2.0+ WITH Linux-syscall-note 4
LGPL-2.1 WITH Linux-syscall-note 3
((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3
((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1
and that resulted in the third patch in this series.
- when the two scanners agreed on the detected license(s), that became
the concluded license(s).
- when there was disagreement between the two scanners (one detected a
license but the other didn't, or they both detected different
licenses) a manual inspection of the file occurred.
- In most cases a manual inspection of the information in the file
resulted in a clear resolution of the license that should apply (and
which scanner probably needed to revisit its heuristics).
- When it was not immediately clear, the license identifier was
confirmed with lawyers working with the Linux Foundation.
- If there was any question as to the appropriate license identifier,
the file was flagged for further research and to be revisited later
in time.
In total, over 70 hours of logged manual review was done on the
spreadsheet to determine the SPDX license identifiers to apply to the
source files by Kate, Philippe, Thomas and, in some cases, confirmation
by lawyers working with the Linux Foundation.
Kate also obtained a third independent scan of the 4.13 code base from
FOSSology, and compared selected files where the other two scanners
disagreed against that SPDX file, to see if there was new insights. The
Windriver scanner is based on an older version of FOSSology in part, so
they are related.
Thomas did random spot checks in about 500 files from the spreadsheets
for the uapi headers and agreed with SPDX license identifier in the
files he inspected. For the non-uapi files Thomas did random spot checks
in about 15000 files.
In initial set of patches against 4.14-rc6, 3 files were found to have
copy/paste license identifier errors, and have been fixed to reflect the
correct identifier.
Additionally Philippe spent 10 hours this week doing a detailed manual
inspection and review of the 12,461 patched files from the initial patch
version early this week with:
- a full scancode scan run, collecting the matched texts, detected
license ids and scores
- reviewing anything where there was a license detected (about 500+
files) to ensure that the applied SPDX license was correct
- reviewing anything where there was no detection but the patch license
was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied
SPDX license was correct
This produced a worksheet with 20 files needing minor correction. This
worksheet was then exported into 3 different .csv files for the
different types of files to be modified.
These .csv files were then reviewed by Greg. Thomas wrote a script to
parse the csv files and add the proper SPDX tag to the file, in the
format that the file expected. This script was further refined by Greg
based on the output to detect more types of files automatically and to
distinguish between header and source .c files (which need different
comment types.) Finally Greg ran the script using the .csv files to
generate the patches.
Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
of_device_ids are not supposed to change at runtime. All functions
working with of_device_ids provided by <linux/of.h> work with const
of_device_ids. So mark the non-const structs as const.
Signed-off-by: Arvind Yadav <arvind.yadav.cs@gmail.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Use builtin_platform_driver() helper to simplify the code.
Signed-off-by: Geliang Tang <geliangtang@gmail.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
To enable sharing of the arm_pmu code with arm64, this patch factors it
out to drivers/perf/. A new drivers/perf directory is added for
performance monitor drivers to live under.
MAINTAINERS is updated accordingly. Files added previously without a
corresponsing MAINTAINERS update (perf_regs.c, perf_callchain.c, and
perf_event.h) are also added.
Cc: Arnaldo Carvalho de Melo <acme@kernel.org>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Linus Walleij <linus.walleij@linaro.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Russell King <linux@arm.linux.org.uk>
Cc: Will Deacon <will.deacon@arm.com>
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
[will: augmented Kconfig help slightly]
Signed-off-by: Will Deacon <will.deacon@arm.com>
Now that the core arm perf code maintains no global state and all
microarchitecture-specific PMU data can be fed in through the shared
probe function, it's possible to use it as a library and get rid of the
C file includes we have currently.
This patch factors out the ARMv6-specific portions out into the ARMv6
driver. For the moment this is always built if perf event support is
enabled, but the preprocessor guards will leave behind an empty file.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Now that the arm pmu code is limited to CPU PMUs the get_hw_events()
function is superfluous, as we'll always have a set of per-cpu
pmu_hw_events structures.
This patch removes the get_hw_events() function, replacing it with
a percpu hw_events pointer. Uses of get_hw_events are updated to use
this_cpu_ptr.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Reviewed-by: Will Deacon <will.deacon@arm.com>
Reviewed-by: Stephen Boyd <sboyd@codeaurora.org>
Signed-off-by: Will Deacon <will.deacon@arm.com>
The perf userspace tools can't handle dashes or spaces in PMU names,
which conflicts with the current naming scheme in the arm perf backend.
This prevents these PMUs from being accessed by name from the perf
tools. Additionally the ARMv6 pmus are named "v6", which does not fully
distinguish them in the sys/bus/event_source namespace.
This patch renames the PMUs consistently to a lower case form with
underscores, e.g. "armv6_1176", "armv7_cortex_a9". This is both readily
accepted by today's perf tool, and far easier to type than the
(apparently unused) convention in use previously. The OProfile name
conversion code is updated to handle this.
Due to a copy-paste error involving two "xscale1" entries, "xscale2" has
never been matched by the name OProfile name mapping. While we're
updating names, this is corrected.
Acked-by: Will Deacon <will.deacon@arm.com>
Tested-by: Christopher Covington <cov@codeaurora.org>
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
[sachin: fixed missing semicolons in armv6 backend]
Signed-off-by: Sachin Kamat <sachin.kamat@samsung.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Now that we have macros for declaring fully invalid event maps, put them
to work for all the ARMv6 PMU event maps. While this necessitates
repeating common indices, we no longer need to refer to *_UNSUPPORTED
events at all, and it makes it possible for the even maps to fit on a
single page on a reasonably sized monitor.
Acked-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
ARM has a harvard cache architecture and cannot write directly to the
I-side.
This patch removes the L1I write events from the cache map (which
previously returned *read* events in many cases).
Reported-by: Mike Williams <michael.williams@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
CONFIG_HOTPLUG is going away as an option. As a result, the __dev*
markings need to be removed.
This change removes the use of __devinit, __devexit_p, __devinitdata,
and __devexit from these drivers.
Based on patches originally written by Bill Pemberton, but redone by me
in order to handle some of the coding style issues better, by hand.
Cc: Bill Pemberton <wfp5p@virginia.edu>
Cc: Russell King <linux@arm.linux.org.uk>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
The arm_pmu functions have wildly varied parameters which can often be
derived from struct perf_event.
This patch changes the arm_pmu function prototypes so that struct
perf_event pointers are passed in preference to fields that can be
derived from the event.
Signed-off-by: Sudeep KarkadaNagesha <Sudeep.KarkadaNagesha@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Supporting multiple, heterogeneous CPU PMUs requires us to allocate the
arm_pmu structures dynamically as the devices are probed.
This patch removes the static structure definitions for each CPU PMU
type and instead passes pointers to the PMU-specific init functions.
Signed-off-by: Sudeep KarkadaNagesha <Sudeep.KarkadaNagesha@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
The CPU PMU code is tightly coupled with generic ARM PMU handling code.
This makes it cumbersome when trying to add support for other ARM PMUs
(e.g. interconnect, L2 cache controller, bus) as the generic parts of
the code are not readily reusable.
This patch cleans up perf_event.c so that reusable code is exposed via
header files to other potential PMU drivers. The CPU code is
consistently named to identify it as such and also to prepare for moving
it into a separate file.
Signed-off-by: Will Deacon <will.deacon@arm.com>
The CPU PMU is probed using the current cpuid information as part of the
early_initcall initialising the architecture perf backend. For
architectures without NMI (such as ARM), this does not need to be
performed early and can be deferred to the driver probe callback. This
also allows us to probe the devicetree in preference to parsing the
current cpuid, which may be invalid on a big.LITTLE multi-cluster
system.
This patch defers the PMU probing and uses the devicetree information
when available.
Signed-off-by: Will Deacon <will.deacon@arm.com>
In order to provide PMU name strings compatible with the OProfile
user ABI, an enumeration of all PMUs is currently used by perf to
identify each PMU uniquely. Unfortunately, this does not scale well
in the presence of multiple PMUs and creates a single, global namespace
across all PMUs in the system.
This patch removes the enumeration and instead uses the name string
for the PMU to map onto the OProfile variant. perf_pmu_name is
implemented for CPU PMUs, which is all that OProfile cares about anyway.
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
We always need to pass the last sample period to
perf_sample_data_init(), otherwise the event distribution will be
wrong. Thus, modifiyng the function interface with the required period
as argument. So basically a pattern like this:
perf_sample_data_init(&data, ~0ULL);
data.period = event->hw.last_period;
will now be like that:
perf_sample_data_init(&data, ~0ULL, event->hw.last_period);
Avoids unininitialized data.period and simplifies code.
Signed-off-by: Robert Richter <robert.richter@amd.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/r/1333390758-10893-3-git-send-email-robert.richter@amd.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The PMU IRQ handlers in perf assume that if a counter has overflowed
then perf must be responsible. In the paranoid world of crazy hardware,
this could be false, so check that we do have a valid event before
attempting to dereference NULL in the interrupt path.
Cc: <stable@vger.kernel.org>
Signed-off-by: Ming Lei <tom.leiming@gmail.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
On ARM, the PMU does not stop counting after an overflow and therefore
IRQ latency affects the new counter value read by the kernel. This is
significant for non-sampling runs where it is possible for the new value
to overtake the previous one, causing the delta to be out by up to
max_period events.
Commit a737823d ("ARM: 6835/1: perf: ensure overflows aren't missed due
to IRQ latency") attempted to fix this problem by allowing interrupt
handlers to pass an overflow flag to the event update function, causing
the overflow calculation to assume that the counter passed through zero
when going from prev to new. Unfortunately, this doesn't work when
overflow occurs on the perf_task_tick path because we have the flag
cleared and end up computing a large negative delta.
This patch removes the overflow flag from armpmu_event_update and
instead limits the sample_period to half of the max_period for
non-sampling profiling runs.
Cc: <stable@vger.kernel.org>
Signed-off-by: Ming Lei <ming.lei@canonical.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
Commit 8f622422 ("perf events: Add generic front-end and back-end
stalled cycle event definitions") added two new ABI events for counting
stalled cycles.
This patch adds support for these new events to the ARM perf
implementation.
Cc: Jamie Iles <jamie@jamieiles.com>
Cc: Jean Pihet <j-pihet@ti.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Currently struct cpu_hw_events stores data on events running on a
PMU associated with a CPU. As this data is general enough to be used
for system PMUs, this name is a misnomer, and may cause confusion when
it is used for system PMUs.
Additionally, 'armpmu' is commonly used as a parameter name for an
instance of struct arm_pmu. The name is also used for a global instance
which represents the CPU's PMU.
As cpu_hw_events is now not tied to CPU PMUs, it is renamed to
pmu_hw_events, with instances of it renamed similarly. As the global
'armpmu' is CPU-specfic, it is renamed to cpu_pmu. This should make it
clearer which code is generic, and which is coupled with the CPU.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Reviewed-by: Will Deacon <will.deacon@arm.com>
Reviewed-by: Jamie Iles <jamie@jamieiles.com>
Reviewed-by: Ashwin Chaugule <ashwinc@codeaurora.org>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Currently mapping an event type to a hardware configuration value
depends on the data being pointed to from struct arm_pmu. These fields
(cache_map, event_map, raw_event_mask) are currently specific to CPU
PMUs, and do not serve the general case well.
This patch replaces the event map pointers on struct arm_pmu with a new
'map_event' function pointer. Small shim functions are used to reuse
the existing common code.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Reviewed-by: Will Deacon <will.deacon@arm.com>
Reviewed-by: Jamie Iles <jamie@jamieiles.com>
Reviewed-by: Ashwin Chaugule <ashwinc@codeaurora.org>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Currently, a single lock serialises access to CPU PMU registers. This
global locking is unnecessary as PMU registers are local to the CPU
they monitor.
This patch replaces the global lock with a per-CPU lock. As the lock is
in struct cpu_hw_events, PMUs providing a single cpu_hw_events instance
can be locked globally.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Reviewed-by: Will Deacon <will.deacon@arm.com>
Reviewed-by: Jamie Iles <jamie@jamieiles.com>
Reviewed-by: Ashwin Chaugule <ashwinc@codeaurora.org>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Currently, pmu_hw_events::active_mask is used to keep track of which
events are active in hardware. As we can stop counters and their
interrupts, this is unnecessary.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Reviewed-by: Will Deacon <will.deacon@arm.com>
Reviewed-by: Jamie Iles <jamie@jamieiles.com>
Reviewed-by: Ashwin Chaugule <ashwinc@codeaurora.org>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Now that the ARMv7 PMU backend indexes event counters from zero, follow
suit and do the same for ARMv6 and Xscale.
Acked-by: Jamie Iles <jamie@jamieiles.com>
Reviewed-by: Jean Pihet <j-pihet@ti.com>
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
This patch removes const qualifiers from instances of struct arm_pmu,
and functions initialising them, in preparation for generalising
arm_pmu usage to system (AKA uncore) PMUs.
This will allow for dynamically modifiable structures (locks,
struct pmu) to be added as members of struct arm_pmu.
Acked-by: Jamie Iles <jamie@jamieiles.com>
Reviewed-by: Jean Pihet <j-pihet@ti.com>
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Add a NODE level to the generic cache events which is used to measure
local vs remote memory accesses. Like all other cache events, an
ACCESS is HIT+MISS, if there is no way to distinguish between reads
and writes do reads only etc..
The below needs filling out for !x86 (which I filled out with
unsupported events).
I'm fairly sure ARM can leave it like that since it doesn't strike me as
an architecture that even has NUMA support. SH might have something since
it does appear to have some NUMA bits.
Sparc64, PowerPC and MIPS certainly want a good look there since they
clearly are NUMA capable.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: David Miller <davem@davemloft.net>
Cc: Anton Blanchard <anton@samba.org>
Cc: David Daney <ddaney@caviumnetworks.com>
Cc: Deng-Cheng Zhu <dengcheng.zhu@gmail.com>
Cc: Paul Mundt <lethal@linux-sh.org>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Robert Richter <robert.richter@amd.com>
Cc: Stephane Eranian <eranian@google.com>
Link: http://lkml.kernel.org/r/1303508226.4865.8.camel@laptop
Signed-off-by: Ingo Molnar <mingo@elte.hu>
The nmi parameter indicated if we could do wakeups from the current
context, if not, we would set some state and self-IPI and let the
resulting interrupt do the wakeup.
For the various event classes:
- hardware: nmi=0; PMI is in fact an NMI or we run irq_work_run from
the PMI-tail (ARM etc.)
- tracepoint: nmi=0; since tracepoint could be from NMI context.
- software: nmi=[0,1]; some, like the schedule thing cannot
perform wakeups, and hence need 0.
As one can see, there is very little nmi=1 usage, and the down-side of
not using it is that on some platforms some software events can have a
jiffy delay in wakeup (when arch_irq_work_raise isn't implemented).
The up-side however is that we can remove the nmi parameter and save a
bunch of conditionals in fast paths.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Michael Cree <mcree@orcon.net.nz>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Deng-Cheng Zhu <dengcheng.zhu@gmail.com>
Cc: Anton Blanchard <anton@samba.org>
Cc: Eric B Munson <emunson@mgebm.net>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Paul Mundt <lethal@linux-sh.org>
Cc: David S. Miller <davem@davemloft.net>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Jason Wessel <jason.wessel@windriver.com>
Cc: Don Zickus <dzickus@redhat.com>
Link: http://lkml.kernel.org/n/tip-agjev8eu666tvknpb3iaj0fg@git.kernel.org
Signed-off-by: Ingo Molnar <mingo@elte.hu>
If a counter overflows during a perf stat profiling run it may overtake
the last known value of the counter:
0 prev new 0xffffffff
|----------|-------|----------------------|
In this case, the number of events that have occurred is
(0xffffffff - prev) + new. Unfortunately, the event update code will
not realise an overflow has occurred and will instead report the event
delta as (new - prev) which may be considerably smaller than the real
count.
This patch adds an extra argument to armpmu_event_update which indicates
whether or not an overflow has occurred. If an overflow has occurred
then we use the maximum period of the counter to calculate the elapsed
events.
Acked-by: Jamie Iles <jamie@jamieiles.com>
Reported-by: Ashwin Chaugule <ashwinc@codeaurora.org>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
Introduce a CPU_V6K configuration option for platforms to select if they
have a V6K CPU core. This allows us to identify whether we need to
support ARMv6 CPUs without the V6K SMP extensions at build time.
Currently CPU_V6K is just an alias for CPU_V6, and all places which
reference CPU_V6 are replaced by (CPU_V6 || CPU_V6K).
Select CPU_V6K from platforms which are known to be V6K-only.
Acked-by: Tony Lindgren <tony@atomide.com>
Tested-by: Sourav Poddar <sourav.poddar@ti.com>
Tested-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
For kernels built with PREEMPT_RT, critical sections protected
by standard spinlocks are preemptible. This is not acceptable
on perf as (a) we may be scheduled onto a different CPU whilst
reading/writing banked PMU registers and (b) the latency when
reading the PMU registers becomes unpredictable.
This patch upgrades the pmu_lock spinlock to a raw_spinlock
instead.
Reported-by: Jamie Iles <jamie@jamieiles.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
Russell reported a number of warnings coming from sparse when
checking the ARM perf_event.c files:
| perf_event.c seems to also have problems too:
|
| CHECK arch/arm/kernel/perf_event.c
| arch/arm/kernel/perf_event.c:37:1: warning: symbol 'pmu_lock' was not declared. Should it be static?
| arch/arm/kernel/perf_event.c:70:1: warning: symbol 'cpu_hw_events' was not declared. Should it be static?
| arch/arm/kernel/perf_event.c:1006:1: warning: symbol 'armv6pmu_enable_event' was not declared. Should it be static?
| arch/arm/kernel/perf_event.c:1113:1: warning: symbol 'armv6pmu_stop' was not declared. Should it be static?
| arch/arm/kernel/perf_event.c:1956:6: warning: symbol 'armv7pmu_enable_event' was not declared. Should it be static?
| arch/arm/kernel/perf_event.c:3072:14: warning: incorrect type in argument 1 (different address spaces)
| arch/arm/kernel/perf_event.c:3072:14: expected void const volatile [noderef] <asn:1>*<noident>
| arch/arm/kernel/perf_event.c:3072:14: got struct frame_tail *tail
| arch/arm/kernel/perf_event.c:3074:49: warning: incorrect type in argument 2 (different address spaces)
| arch/arm/kernel/perf_event.c:3074:49: expected void const [noderef] <asn:1>*from
| arch/arm/kernel/perf_event.c:3074:49: got struct frame_tail *tail
This patch resolves these issues so we can live in silence
again.
Reported-by: Russell King <rmk+kernel@arm.linux.org.uk>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
The ARM perf_event.c file contains all PMU backends and, as new PMUs
are introduced, will continue to grow.
This patch follows the example of x86 and splits the PMU implementations
into separate files which are then #included back into the main
file. Compile-time guards are added to each PMU file to avoid compiling
in code that is not relevant for the version of the architecture which
we are targetting.
Acked-by: Jean Pihet <j-pihet@ti.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>