Commit Graph

1504 Commits

Author SHA1 Message Date
Junaid Shahid
7c390d350f kvm: x86: Add fast CR3 switch code path
When using shadow paging, a CR3 switch in the guest results in a VM Exit.
In the common case, that VM exit doesn't require much processing by KVM.
However, it does acquire the MMU lock, which can start showing signs of
contention under some workloads even on a 2 VCPU VM when the guest is
using KPTI. Therefore, we add a fast path that avoids acquiring the MMU
lock in the most common cases e.g. when switching back and forth between
the kernel and user mode CR3s used by KPTI with no guest page table
changes in between.

For now, this fast path is implemented only for 64-bit guests and hosts
to avoid the handling of PDPTEs, but it can be extended later to 32-bit
guests and/or hosts as well.

Signed-off-by: Junaid Shahid <junaids@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-08-06 17:58:51 +02:00
Jim Mattson
8fcc4b5923 kvm: nVMX: Introduce KVM_CAP_NESTED_STATE
For nested virtualization L0 KVM is managing a bit of state for L2 guests,
this state can not be captured through the currently available IOCTLs. In
fact the state captured through all of these IOCTLs is usually a mix of L1
and L2 state. It is also dependent on whether the L2 guest was running at
the moment when the process was interrupted to save its state.

With this capability, there are two new vcpu ioctls: KVM_GET_NESTED_STATE
and KVM_SET_NESTED_STATE. These can be used for saving and restoring a VM
that is in VMX operation.

Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: x86@kernel.org
Cc: kvm@vger.kernel.org
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Jim Mattson <jmattson@google.com>
[karahmed@ - rename structs and functions and make them ready for AMD and
             address previous comments.
           - handle nested.smm state.
           - rebase & a bit of refactoring.
           - Merge 7/8 and 8/8 into one patch. ]
Signed-off-by: KarimAllah Ahmed <karahmed@amazon.de>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-08-06 17:58:30 +02:00
Paolo Bonzini
7f7f1ba33c KVM: x86: do not load vmcs12 pages while still in SMM
If the vCPU enters system management mode while running a nested guest,
RSM starts processing the vmentry while still in SMM.  In that case,
however, the pages pointed to by the vmcs12 might be incorrectly
loaded from SMRAM.  To avoid this, delay the handling of the pages
until just before the next vmentry.  This is done with a new request
and a new entry in kvm_x86_ops, which we will be able to reuse for
nested VMX state migration.

Extracted from a patch by Jim Mattson and KarimAllah Ahmed.

Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-08-06 17:57:58 +02:00
Paolo Bonzini
44883f01fe KVM: x86: ensure all MSRs can always be KVM_GET/SET_MSR'd
Some of the MSRs returned by GET_MSR_INDEX_LIST currently cannot be sent back
to KVM_GET_MSR and/or KVM_SET_MSR; either they can never be sent back, or you
they are only accepted under special conditions.  This makes the API a pain to
use.

To avoid this pain, this patch makes it so that the result of the get-list
ioctl can always be used for host-initiated get and set.  Since we don't have
a separate way to check for read-only MSRs, this means some Hyper-V MSRs are
ignored when written.  Arguably they should not even be in the result of
GET_MSR_INDEX_LIST, but I am leaving there in case userspace is using the
outcome of GET_MSR_INDEX_LIST to derive the support for the corresponding
Hyper-V feature.

Cc: stable@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-08-06 17:32:01 +02:00
Linus Torvalds
47f7dc4b84 Miscellaneous bugfixes, plus a small patchlet related to Spectre v2.
-----BEGIN PGP SIGNATURE-----
 Version: GnuPG v2.0.22 (GNU/Linux)
 
 iQEcBAABAgAGBQJbTwvXAAoJEL/70l94x66D068H/0lNKsk33AHZGsVOr3qZJNpE
 6NI746ZXurRNNZ6d64hVIBDfTI4P3lurjQmb9/GUSwvoHW0S2zMug0F59TKYQ3EO
 kcX+b9LRmBkUq2h2R8XXTVkmaZ1SqwvXVVzx80T2cXAD3J3kuX6Yj+z1RO7MrXWI
 ZChA3ZT/eqsGEzle+yu/YExAgbv+7xzuBNBaas7QvJE8CHZzPKYjVBEY6DAWx53L
 LMq8C3NsHpJhXD6Rcq9DIyrktbDSi+xRBbYsJrhSEe0MfzmgBkkysl86uImQWZxk
 /2uHUVz+85IYy3C+ZbagmlSmHm1Civb6VyVNu9K3nRxooVtmmgudsA9VYJRRVx4=
 =M0K/
 -----END PGP SIGNATURE-----

Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm

Pull kvm fixes from Paolo Bonzini:
 "Miscellaneous bugfixes, plus a small patchlet related to Spectre v2"

* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm:
  kvmclock: fix TSC calibration for nested guests
  KVM: VMX: Mark VMXArea with revision_id of physical CPU even when eVMCS enabled
  KVM: irqfd: fix race between EPOLLHUP and irq_bypass_register_consumer
  KVM/Eventfd: Avoid crash when assign and deassign specific eventfd in parallel.
  x86/kvmclock: set pvti_cpu0_va after enabling kvmclock
  x86/kvm/Kconfig: Ensure CRYPTO_DEV_CCP_DD state at minimum matches KVM_AMD
  kvm: nVMX: Restore exit qual for VM-entry failure due to MSR loading
  x86/kvm/vmx: don't read current->thread.{fs,gs}base of legacy tasks
  KVM: VMX: support MSR_IA32_ARCH_CAPABILITIES as a feature MSR
2018-07-18 11:08:44 -07:00
Paolo Bonzini
cd28325249 KVM: VMX: support MSR_IA32_ARCH_CAPABILITIES as a feature MSR
This lets userspace read the MSR_IA32_ARCH_CAPABILITIES and check that all
requested features are available on the host.

Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-07-15 16:26:19 +02:00
Marcelo Tosatti
273ba45796 KVM: x86: fix typo at kvm_arch_hardware_setup comment
Fix typo in sentence about min value calculation.

Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-06-14 17:42:47 +02:00
Linus Torvalds
b08fc5277a - Error path bug fix for overflow tests (Dan)
- Additional struct_size() conversions (Matthew, Kees)
 - Explicitly reported overflow fixes (Silvio, Kees)
 - Add missing kvcalloc() function (Kees)
 - Treewide conversions of allocators to use either 2-factor argument
   variant when available, or array_size() and array3_size() as needed (Kees)
 -----BEGIN PGP SIGNATURE-----
 Comment: Kees Cook <kees@outflux.net>
 
 iQJKBAABCgA0FiEEpcP2jyKd1g9yPm4TiXL039xtwCYFAlsgVtMWHGtlZXNjb29r
 QGNocm9taXVtLm9yZwAKCRCJcvTf3G3AJhsJEACLYe2EbwLFJz7emOT1KUGK5R1b
 oVxJog0893WyMqgk9XBlA2lvTBRBYzR3tzsadfYo87L3VOBzazUv0YZaweJb65sF
 bAvxW3nY06brhKKwTRed1PrMa1iG9R63WISnNAuZAq7+79mN6YgW4G6YSAEF9lW7
 oPJoPw93YxcI8JcG+dA8BC9w7pJFKooZH4gvLUSUNl5XKr8Ru5YnWcV8F+8M4vZI
 EJtXFmdlmxAledUPxTSCIojO8m/tNOjYTreBJt9K1DXKY6UcgAdhk75TRLEsp38P
 fPvMigYQpBDnYz2pi9ourTgvZLkffK1OBZ46PPt8BgUZVf70D6CBg10vK47KO6N2
 zreloxkMTrz5XohyjfNjYFRkyyuwV2sSVrRJqF4dpyJ4NJQRjvyywxIP4Myifwlb
 ONipCM1EjvQjaEUbdcqKgvlooMdhcyxfshqJWjHzXB6BL22uPzq5jHXXugz8/ol8
 tOSM2FuJ2sBLQso+szhisxtMd11PihzIZK9BfxEG3du+/hlI+2XgN7hnmlXuA2k3
 BUW6BSDhab41HNd6pp50bDJnL0uKPWyFC6hqSNZw+GOIb46jfFcQqnCB3VZGCwj3
 LH53Be1XlUrttc/NrtkvVhm4bdxtfsp4F7nsPFNDuHvYNkalAVoC3An0BzOibtkh
 AtfvEeaPHaOyD8/h2Q==
 =zUUp
 -----END PGP SIGNATURE-----

Merge tag 'overflow-v4.18-rc1-part2' of git://git.kernel.org/pub/scm/linux/kernel/git/kees/linux

Pull more overflow updates from Kees Cook:
 "The rest of the overflow changes for v4.18-rc1.

  This includes the explicit overflow fixes from Silvio, further
  struct_size() conversions from Matthew, and a bug fix from Dan.

  But the bulk of it is the treewide conversions to use either the
  2-factor argument allocators (e.g. kmalloc(a * b, ...) into
  kmalloc_array(a, b, ...) or the array_size() macros (e.g. vmalloc(a *
  b) into vmalloc(array_size(a, b)).

  Coccinelle was fighting me on several fronts, so I've done a bunch of
  manual whitespace updates in the patches as well.

  Summary:

   - Error path bug fix for overflow tests (Dan)

   - Additional struct_size() conversions (Matthew, Kees)

   - Explicitly reported overflow fixes (Silvio, Kees)

   - Add missing kvcalloc() function (Kees)

   - Treewide conversions of allocators to use either 2-factor argument
     variant when available, or array_size() and array3_size() as needed
     (Kees)"

* tag 'overflow-v4.18-rc1-part2' of git://git.kernel.org/pub/scm/linux/kernel/git/kees/linux: (26 commits)
  treewide: Use array_size in f2fs_kvzalloc()
  treewide: Use array_size() in f2fs_kzalloc()
  treewide: Use array_size() in f2fs_kmalloc()
  treewide: Use array_size() in sock_kmalloc()
  treewide: Use array_size() in kvzalloc_node()
  treewide: Use array_size() in vzalloc_node()
  treewide: Use array_size() in vzalloc()
  treewide: Use array_size() in vmalloc()
  treewide: devm_kzalloc() -> devm_kcalloc()
  treewide: devm_kmalloc() -> devm_kmalloc_array()
  treewide: kvzalloc() -> kvcalloc()
  treewide: kvmalloc() -> kvmalloc_array()
  treewide: kzalloc_node() -> kcalloc_node()
  treewide: kzalloc() -> kcalloc()
  treewide: kmalloc() -> kmalloc_array()
  mm: Introduce kvcalloc()
  video: uvesafb: Fix integer overflow in allocation
  UBIFS: Fix potential integer overflow in allocation
  leds: Use struct_size() in allocation
  Convert intel uncore to struct_size
  ...
2018-06-12 18:28:00 -07:00
Kees Cook
778e1cdd81 treewide: kvzalloc() -> kvcalloc()
The kvzalloc() function has a 2-factor argument form, kvcalloc(). This
patch replaces cases of:

        kvzalloc(a * b, gfp)

with:
        kvcalloc(a * b, gfp)

as well as handling cases of:

        kvzalloc(a * b * c, gfp)

with:

        kvzalloc(array3_size(a, b, c), gfp)

as it's slightly less ugly than:

        kvcalloc(array_size(a, b), c, gfp)

This does, however, attempt to ignore constant size factors like:

        kvzalloc(4 * 1024, gfp)

though any constants defined via macros get caught up in the conversion.

Any factors with a sizeof() of "unsigned char", "char", and "u8" were
dropped, since they're redundant.

The Coccinelle script used for this was:

// Fix redundant parens around sizeof().
@@
type TYPE;
expression THING, E;
@@

(
  kvzalloc(
-	(sizeof(TYPE)) * E
+	sizeof(TYPE) * E
  , ...)
|
  kvzalloc(
-	(sizeof(THING)) * E
+	sizeof(THING) * E
  , ...)
)

// Drop single-byte sizes and redundant parens.
@@
expression COUNT;
typedef u8;
typedef __u8;
@@

(
  kvzalloc(
-	sizeof(u8) * (COUNT)
+	COUNT
  , ...)
|
  kvzalloc(
-	sizeof(__u8) * (COUNT)
+	COUNT
  , ...)
|
  kvzalloc(
-	sizeof(char) * (COUNT)
+	COUNT
  , ...)
|
  kvzalloc(
-	sizeof(unsigned char) * (COUNT)
+	COUNT
  , ...)
|
  kvzalloc(
-	sizeof(u8) * COUNT
+	COUNT
  , ...)
|
  kvzalloc(
-	sizeof(__u8) * COUNT
+	COUNT
  , ...)
|
  kvzalloc(
-	sizeof(char) * COUNT
+	COUNT
  , ...)
|
  kvzalloc(
-	sizeof(unsigned char) * COUNT
+	COUNT
  , ...)
)

// 2-factor product with sizeof(type/expression) and identifier or constant.
@@
type TYPE;
expression THING;
identifier COUNT_ID;
constant COUNT_CONST;
@@

(
- kvzalloc
+ kvcalloc
  (
-	sizeof(TYPE) * (COUNT_ID)
+	COUNT_ID, sizeof(TYPE)
  , ...)
|
- kvzalloc
+ kvcalloc
  (
-	sizeof(TYPE) * COUNT_ID
+	COUNT_ID, sizeof(TYPE)
  , ...)
|
- kvzalloc
+ kvcalloc
  (
-	sizeof(TYPE) * (COUNT_CONST)
+	COUNT_CONST, sizeof(TYPE)
  , ...)
|
- kvzalloc
+ kvcalloc
  (
-	sizeof(TYPE) * COUNT_CONST
+	COUNT_CONST, sizeof(TYPE)
  , ...)
|
- kvzalloc
+ kvcalloc
  (
-	sizeof(THING) * (COUNT_ID)
+	COUNT_ID, sizeof(THING)
  , ...)
|
- kvzalloc
+ kvcalloc
  (
-	sizeof(THING) * COUNT_ID
+	COUNT_ID, sizeof(THING)
  , ...)
|
- kvzalloc
+ kvcalloc
  (
-	sizeof(THING) * (COUNT_CONST)
+	COUNT_CONST, sizeof(THING)
  , ...)
|
- kvzalloc
+ kvcalloc
  (
-	sizeof(THING) * COUNT_CONST
+	COUNT_CONST, sizeof(THING)
  , ...)
)

// 2-factor product, only identifiers.
@@
identifier SIZE, COUNT;
@@

- kvzalloc
+ kvcalloc
  (
-	SIZE * COUNT
+	COUNT, SIZE
  , ...)

// 3-factor product with 1 sizeof(type) or sizeof(expression), with
// redundant parens removed.
@@
expression THING;
identifier STRIDE, COUNT;
type TYPE;
@@

(
  kvzalloc(
-	sizeof(TYPE) * (COUNT) * (STRIDE)
+	array3_size(COUNT, STRIDE, sizeof(TYPE))
  , ...)
|
  kvzalloc(
-	sizeof(TYPE) * (COUNT) * STRIDE
+	array3_size(COUNT, STRIDE, sizeof(TYPE))
  , ...)
|
  kvzalloc(
-	sizeof(TYPE) * COUNT * (STRIDE)
+	array3_size(COUNT, STRIDE, sizeof(TYPE))
  , ...)
|
  kvzalloc(
-	sizeof(TYPE) * COUNT * STRIDE
+	array3_size(COUNT, STRIDE, sizeof(TYPE))
  , ...)
|
  kvzalloc(
-	sizeof(THING) * (COUNT) * (STRIDE)
+	array3_size(COUNT, STRIDE, sizeof(THING))
  , ...)
|
  kvzalloc(
-	sizeof(THING) * (COUNT) * STRIDE
+	array3_size(COUNT, STRIDE, sizeof(THING))
  , ...)
|
  kvzalloc(
-	sizeof(THING) * COUNT * (STRIDE)
+	array3_size(COUNT, STRIDE, sizeof(THING))
  , ...)
|
  kvzalloc(
-	sizeof(THING) * COUNT * STRIDE
+	array3_size(COUNT, STRIDE, sizeof(THING))
  , ...)
)

// 3-factor product with 2 sizeof(variable), with redundant parens removed.
@@
expression THING1, THING2;
identifier COUNT;
type TYPE1, TYPE2;
@@

(
  kvzalloc(
-	sizeof(TYPE1) * sizeof(TYPE2) * COUNT
+	array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2))
  , ...)
|
  kvzalloc(
-	sizeof(TYPE1) * sizeof(THING2) * (COUNT)
+	array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2))
  , ...)
|
  kvzalloc(
-	sizeof(THING1) * sizeof(THING2) * COUNT
+	array3_size(COUNT, sizeof(THING1), sizeof(THING2))
  , ...)
|
  kvzalloc(
-	sizeof(THING1) * sizeof(THING2) * (COUNT)
+	array3_size(COUNT, sizeof(THING1), sizeof(THING2))
  , ...)
|
  kvzalloc(
-	sizeof(TYPE1) * sizeof(THING2) * COUNT
+	array3_size(COUNT, sizeof(TYPE1), sizeof(THING2))
  , ...)
|
  kvzalloc(
-	sizeof(TYPE1) * sizeof(THING2) * (COUNT)
+	array3_size(COUNT, sizeof(TYPE1), sizeof(THING2))
  , ...)
)

// 3-factor product, only identifiers, with redundant parens removed.
@@
identifier STRIDE, SIZE, COUNT;
@@

(
  kvzalloc(
-	(COUNT) * STRIDE * SIZE
+	array3_size(COUNT, STRIDE, SIZE)
  , ...)
|
  kvzalloc(
-	COUNT * (STRIDE) * SIZE
+	array3_size(COUNT, STRIDE, SIZE)
  , ...)
|
  kvzalloc(
-	COUNT * STRIDE * (SIZE)
+	array3_size(COUNT, STRIDE, SIZE)
  , ...)
|
  kvzalloc(
-	(COUNT) * (STRIDE) * SIZE
+	array3_size(COUNT, STRIDE, SIZE)
  , ...)
|
  kvzalloc(
-	COUNT * (STRIDE) * (SIZE)
+	array3_size(COUNT, STRIDE, SIZE)
  , ...)
|
  kvzalloc(
-	(COUNT) * STRIDE * (SIZE)
+	array3_size(COUNT, STRIDE, SIZE)
  , ...)
|
  kvzalloc(
-	(COUNT) * (STRIDE) * (SIZE)
+	array3_size(COUNT, STRIDE, SIZE)
  , ...)
|
  kvzalloc(
-	COUNT * STRIDE * SIZE
+	array3_size(COUNT, STRIDE, SIZE)
  , ...)
)

// Any remaining multi-factor products, first at least 3-factor products,
// when they're not all constants...
@@
expression E1, E2, E3;
constant C1, C2, C3;
@@

(
  kvzalloc(C1 * C2 * C3, ...)
|
  kvzalloc(
-	(E1) * E2 * E3
+	array3_size(E1, E2, E3)
  , ...)
|
  kvzalloc(
-	(E1) * (E2) * E3
+	array3_size(E1, E2, E3)
  , ...)
|
  kvzalloc(
-	(E1) * (E2) * (E3)
+	array3_size(E1, E2, E3)
  , ...)
|
  kvzalloc(
-	E1 * E2 * E3
+	array3_size(E1, E2, E3)
  , ...)
)

// And then all remaining 2 factors products when they're not all constants,
// keeping sizeof() as the second factor argument.
@@
expression THING, E1, E2;
type TYPE;
constant C1, C2, C3;
@@

(
  kvzalloc(sizeof(THING) * C2, ...)
|
  kvzalloc(sizeof(TYPE) * C2, ...)
|
  kvzalloc(C1 * C2 * C3, ...)
|
  kvzalloc(C1 * C2, ...)
|
- kvzalloc
+ kvcalloc
  (
-	sizeof(TYPE) * (E2)
+	E2, sizeof(TYPE)
  , ...)
|
- kvzalloc
+ kvcalloc
  (
-	sizeof(TYPE) * E2
+	E2, sizeof(TYPE)
  , ...)
|
- kvzalloc
+ kvcalloc
  (
-	sizeof(THING) * (E2)
+	E2, sizeof(THING)
  , ...)
|
- kvzalloc
+ kvcalloc
  (
-	sizeof(THING) * E2
+	E2, sizeof(THING)
  , ...)
|
- kvzalloc
+ kvcalloc
  (
-	(E1) * E2
+	E1, E2
  , ...)
|
- kvzalloc
+ kvcalloc
  (
-	(E1) * (E2)
+	E1, E2
  , ...)
|
- kvzalloc
+ kvcalloc
  (
-	E1 * E2
+	E1, E2
  , ...)
)

Signed-off-by: Kees Cook <keescook@chromium.org>
2018-06-12 16:19:22 -07:00
Linus Torvalds
b357bf6023 Small update for KVM.
* ARM: lazy context-switching of FPSIMD registers on arm64, "split"
 regions for vGIC redistributor
 
 * s390: cleanups for nested, clock handling, crypto, storage keys and
 control register bits
 
 * x86: many bugfixes, implement more Hyper-V super powers,
 implement lapic_timer_advance_ns even when the LAPIC timer
 is emulated using the processor's VMX preemption timer.  Two
 security-related bugfixes at the top of the branch.
 -----BEGIN PGP SIGNATURE-----
 Version: GnuPG v2.0.22 (GNU/Linux)
 
 iQEcBAABAgAGBQJbH8Z/AAoJEL/70l94x66DF+UIAJeOuTp6LGasT/9uAb2OovaN
 +5kGmOPGFwkTcmg8BQHI2fXT4vhxMXWPFcQnyig9eXJVxhuwluXDOH4P9IMay0yw
 VDCBsWRdMvZDQad2hn6Z5zR4Jx01XrSaG/KqvXbbDKDCy96mWG7SYAY2m3ZwmeQi
 3Pa3O3BTijr7hBYnMhdXGkSn4ZyU8uPaAgIJ8795YKeOJ2JmioGYk6fj6y2WCxA3
 ztJymBjTmIoZ/F8bjuVouIyP64xH4q9roAyw4rpu7vnbWGqx1fjPYJoB8yddluWF
 JqCPsPzhKDO7mjZJy+lfaxIlzz2BN7tKBNCm88s5GefGXgZwk3ByAq/0GQ2M3rk=
 =H5zI
 -----END PGP SIGNATURE-----

Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm

Pull KVM updates from Paolo Bonzini:
 "Small update for KVM:

  ARM:
   - lazy context-switching of FPSIMD registers on arm64
   - "split" regions for vGIC redistributor

  s390:
   - cleanups for nested
   - clock handling
   - crypto
   - storage keys
   - control register bits

  x86:
   - many bugfixes
   - implement more Hyper-V super powers
   - implement lapic_timer_advance_ns even when the LAPIC timer is
     emulated using the processor's VMX preemption timer.
   - two security-related bugfixes at the top of the branch"

* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (79 commits)
  kvm: fix typo in flag name
  kvm: x86: use correct privilege level for sgdt/sidt/fxsave/fxrstor access
  KVM: x86: pass kvm_vcpu to kvm_read_guest_virt and kvm_write_guest_virt_system
  KVM: x86: introduce linear_{read,write}_system
  kvm: nVMX: Enforce cpl=0 for VMX instructions
  kvm: nVMX: Add support for "VMWRITE to any supported field"
  kvm: nVMX: Restrict VMX capability MSR changes
  KVM: VMX: Optimize tscdeadline timer latency
  KVM: docs: nVMX: Remove known limitations as they do not exist now
  KVM: docs: mmu: KVM support exposing SLAT to guests
  kvm: no need to check return value of debugfs_create functions
  kvm: Make VM ioctl do valloc for some archs
  kvm: Change return type to vm_fault_t
  KVM: docs: mmu: Fix link to NPT presentation from KVM Forum 2008
  kvm: x86: Amend the KVM_GET_SUPPORTED_CPUID API documentation
  KVM: x86: hyperv: declare KVM_CAP_HYPERV_TLBFLUSH capability
  KVM: x86: hyperv: simplistic HVCALL_FLUSH_VIRTUAL_ADDRESS_{LIST,SPACE}_EX implementation
  KVM: x86: hyperv: simplistic HVCALL_FLUSH_VIRTUAL_ADDRESS_{LIST,SPACE} implementation
  KVM: introduce kvm_make_vcpus_request_mask() API
  KVM: x86: hyperv: do rep check for each hypercall separately
  ...
2018-06-12 11:34:04 -07:00
Michael S. Tsirkin
766d3571d8 kvm: fix typo in flag name
KVM_X86_DISABLE_EXITS_HTL really refers to exit on halt.
Obviously a typo: should be named KVM_X86_DISABLE_EXITS_HLT.

Fixes: caa057a2ca ("KVM: X86: Provide a capability to disable HLT intercepts")
Cc: stable@vger.kernel.org
Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-06-12 15:06:35 +02:00
Paolo Bonzini
3c9fa24ca7 kvm: x86: use correct privilege level for sgdt/sidt/fxsave/fxrstor access
The functions that were used in the emulation of fxrstor, fxsave, sgdt and
sidt were originally meant for task switching, and as such they did not
check privilege levels.  This is very bad when the same functions are used
in the emulation of unprivileged instructions.  This is CVE-2018-10853.

The obvious fix is to add a new argument to ops->read_std and ops->write_std,
which decides whether the access is a "system" access or should use the
processor's CPL.

Fixes: 129a72a0d3 ("KVM: x86: Introduce segmented_write_std", 2017-01-12)
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-06-12 15:06:34 +02:00
Paolo Bonzini
ce14e868a5 KVM: x86: pass kvm_vcpu to kvm_read_guest_virt and kvm_write_guest_virt_system
Int the next patch the emulator's .read_std and .write_std callbacks will
grow another argument, which is not needed in kvm_read_guest_virt and
kvm_write_guest_virt_system's callers.  Since we have to make separate
functions, let's give the currently existing names a nicer interface, too.

Fixes: 129a72a0d3 ("KVM: x86: Introduce segmented_write_std", 2017-01-12)
Cc: stable@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-06-12 15:06:28 +02:00
Wanpeng Li
c5ce8235cf KVM: VMX: Optimize tscdeadline timer latency
'Commit d0659d946b ("KVM: x86: add option to advance tscdeadline
hrtimer expiration")' advances the tscdeadline (the timer is emulated
by hrtimer) expiration in order that the latency which is incurred
by hypervisor (apic_timer_fn -> vmentry) can be avoided. This patch
adds the advance tscdeadline expiration support to which the tscdeadline
timer is emulated by VMX preemption timer to reduce the hypervisor
lantency (handle_preemption_timer -> vmentry). The guest can also
set an expiration that is very small (for example in Linux if an
hrtimer feeds a expiration in the past); in that case we set delta_tsc
to 0, leading to an immediately vmexit when delta_tsc is not bigger than
advance ns.

This patch can reduce ~63% latency (~4450 cycles to ~1660 cycles on
a haswell desktop) for kvm-unit-tests/tscdeadline_latency when testing
busy waits.

Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Signed-off-by: Wanpeng Li <wanpengli@tencent.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-06-04 17:51:59 +02:00
Souptick Joarder
1499fa809e kvm: Change return type to vm_fault_t
Use new return type vm_fault_t for fault handler. For
now, this is just documenting that the function returns
a VM_FAULT value rather than an errno. Once all instances
are converted, vm_fault_t will become a distinct type.

commit 1c8f422059 ("mm: change return type to vm_fault_t")

Signed-off-by: Souptick Joarder <jrdr.linux@gmail.com>
Reviewed-by: Matthew Wilcox <mawilcox@microsoft.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-06-01 19:18:25 +02:00
Linus Torvalds
ec30dcf7f4 KVM fixes for v4.17-rc7
PPC:
  - Close a hole which could possibly lead to the host timebase getting
    out of sync.
 
  - Three fixes relating to PTEs and TLB entries for radix guests.
 
  - Fix a bug which could lead to an interrupt never getting delivered
    to the guest, if it is pending for a guest vCPU when the vCPU gets
    offlined.
 
 s390:
  - Fix false negatives in VSIE validity check (Cc stable)
 
 x86:
  - Fix time drift of VMX preemption timer when a guest uses LAPIC timer
    in periodic mode (Cc stable)
 
  - Unconditionally expose CPUID.IA32_ARCH_CAPABILITIES to allow
    migration from hosts that don't need retpoline mitigation (Cc stable)
 
  - Fix guest crashes on reboot by properly coupling CR4.OSXSAVE and
    CPUID.OSXSAVE (Cc stable)
 
  - Report correct RIP after Hyper-V hypercall #UD (introduced in -rc6)
 -----BEGIN PGP SIGNATURE-----
 
 iQEcBAABCAAGBQJbCXxHAAoJEED/6hsPKofon5oIAKTwpbpBi0UKIyYcHQ2pwIoP
 +qITTZUGGhEaIfe+aDkzE4vxVIA2ywYCbaC2+OSy4gNVThnytRL8WuhLyV8WLmlC
 sDVSQ87RWaN8mW6hEJ95qXMS7FS0TsDJdytaw+c8OpODrsykw1XMSyV2rMLb0sMT
 SmfioO2kuDx5JQGyiAPKFFXKHjAnnkH+OtffNemAEHGoPpenJ4qLRuXvrjQU8XT6
 tVARIBZsutee5ITIsBKVDmI2n98mUoIe9na21M7N2QaJ98IF+qRz5CxZyL1CgvFk
 tHqG8PZ/bqhnmuIIR5Di919UmhamOC3MODsKUVeciBLDS6LHlhado+HEpj6B8mI=
 =ygB7
 -----END PGP SIGNATURE-----

Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm

Pull KVM fixes from Radim Krčmář:
 "PPC:

   - Close a hole which could possibly lead to the host timebase getting
     out of sync.

   - Three fixes relating to PTEs and TLB entries for radix guests.

   - Fix a bug which could lead to an interrupt never getting delivered
     to the guest, if it is pending for a guest vCPU when the vCPU gets
     offlined.

  s390:

   - Fix false negatives in VSIE validity check (Cc stable)

  x86:

   - Fix time drift of VMX preemption timer when a guest uses LAPIC
     timer in periodic mode (Cc stable)

   - Unconditionally expose CPUID.IA32_ARCH_CAPABILITIES to allow
     migration from hosts that don't need retpoline mitigation (Cc
     stable)

   - Fix guest crashes on reboot by properly coupling CR4.OSXSAVE and
     CPUID.OSXSAVE (Cc stable)

   - Report correct RIP after Hyper-V hypercall #UD (introduced in
     -rc6)"

* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm:
  KVM: x86: fix #UD address of failed Hyper-V hypercalls
  kvm: x86: IA32_ARCH_CAPABILITIES is always supported
  KVM: x86: Update cpuid properly when CR4.OSXAVE or CR4.PKE is changed
  x86/kvm: fix LAPIC timer drift when guest uses periodic mode
  KVM: s390: vsie: fix < 8k check for the itdba
  KVM: PPC: Book 3S HV: Do ptesync in radix guest exit path
  KVM: PPC: Book3S HV: XIVE: Resend re-routed interrupts on CPU priority change
  KVM: PPC: Book3S HV: Make radix clear pte when unmapping
  KVM: PPC: Book3S HV: Make radix use correct tlbie sequence in kvmppc_radix_tlbie_page
  KVM: PPC: Book3S HV: Snapshot timebase offset on guest entry
2018-05-26 10:46:57 -07:00
Vitaly Kuznetsov
c1aea9196e KVM: x86: hyperv: declare KVM_CAP_HYPERV_TLBFLUSH capability
We need a new capability to indicate support for the newly added
HvFlushVirtualAddress{List,Space}{,Ex} hypercalls. Upon seeing this
capability, userspace is supposed to announce PV TLB flush features
by setting the appropriate CPUID bits (if needed).

Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
2018-05-26 15:35:35 +02:00
Radim Krčmář
f33ecec9bb Merge branch 'x86/hyperv' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
To resolve conflicts with the PV TLB flush series.
2018-05-26 13:45:49 +02:00
Radim Krčmář
696ca779a9 KVM: x86: fix #UD address of failed Hyper-V hypercalls
If the hypercall was called from userspace or real mode, KVM injects #UD
and then advances RIP, so it looks like #UD was caused by the following
instruction.  This probably won't cause more than confusion, but could
give an unexpected access to guest OS' instruction emulator.

Also, refactor the code to count hv hypercalls that were handled by the
virt userspace.

Fixes: 6356ee0c96 ("x86: Delay skip of emulated hypercall instruction")
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
2018-05-25 21:33:31 +02:00
Wei Huang
c4d2188206 KVM: x86: Update cpuid properly when CR4.OSXAVE or CR4.PKE is changed
The CPUID bits of OSXSAVE (function=0x1) and OSPKE (func=0x7, leaf=0x0)
allows user apps to detect if OS has set CR4.OSXSAVE or CR4.PKE. KVM is
supposed to update these CPUID bits when CR4 is updated. Current KVM
code doesn't handle some special cases when updates come from emulator.
Here is one example:

  Step 1: guest boots
  Step 2: guest OS enables XSAVE ==> CR4.OSXSAVE=1 and CPUID.OSXSAVE=1
  Step 3: guest hot reboot ==> QEMU reset CR4 to 0, but CPUID.OSXAVE==1
  Step 4: guest os checks CPUID.OSXAVE, detects 1, then executes xgetbv

Step 4 above will cause an #UD and guest crash because guest OS hasn't
turned on OSXAVE yet. This patch solves the problem by comparing the the
old_cr4 with cr4. If the related bits have been changed,
kvm_update_cpuid() needs to be called.

Signed-off-by: Wei Huang <wei@redhat.com>
Reviewed-by: Bandan Das <bsd@redhat.com>
Cc: stable@vger.kernel.org
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
2018-05-24 17:57:18 +02:00
Arnd Bergmann
899a31f509 KVM: x86: use timespec64 for KVM_HC_CLOCK_PAIRING
The hypercall was added using a struct timespec based implementation,
but we should not use timespec in new code.

This changes it to timespec64. There is no functional change
here since the implementation is only used in 64-bit kernels
that use the same definition for timespec and timespec64.

Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
2018-05-23 15:22:02 +02:00
Linus Torvalds
3b78ce4a34 Merge branch 'speck-v20' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Merge speculative store buffer bypass fixes from Thomas Gleixner:

 - rework of the SPEC_CTRL MSR management to accomodate the new fancy
   SSBD (Speculative Store Bypass Disable) bit handling.

 - the CPU bug and sysfs infrastructure for the exciting new Speculative
   Store Bypass 'feature'.

 - support for disabling SSB via LS_CFG MSR on AMD CPUs including
   Hyperthread synchronization on ZEN.

 - PRCTL support for dynamic runtime control of SSB

 - SECCOMP integration to automatically disable SSB for sandboxed
   processes with a filter flag for opt-out.

 - KVM integration to allow guests fiddling with SSBD including the new
   software MSR VIRT_SPEC_CTRL to handle the LS_CFG based oddities on
   AMD.

 - BPF protection against SSB

.. this is just the core and x86 side, other architecture support will
come separately.

* 'speck-v20' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (49 commits)
  bpf: Prevent memory disambiguation attack
  x86/bugs: Rename SSBD_NO to SSB_NO
  KVM: SVM: Implement VIRT_SPEC_CTRL support for SSBD
  x86/speculation, KVM: Implement support for VIRT_SPEC_CTRL/LS_CFG
  x86/bugs: Rework spec_ctrl base and mask logic
  x86/bugs: Remove x86_spec_ctrl_set()
  x86/bugs: Expose x86_spec_ctrl_base directly
  x86/bugs: Unify x86_spec_ctrl_{set_guest,restore_host}
  x86/speculation: Rework speculative_store_bypass_update()
  x86/speculation: Add virtualized speculative store bypass disable support
  x86/bugs, KVM: Extend speculation control for VIRT_SPEC_CTRL
  x86/speculation: Handle HT correctly on AMD
  x86/cpufeatures: Add FEATURE_ZEN
  x86/cpufeatures: Disentangle SSBD enumeration
  x86/cpufeatures: Disentangle MSR_SPEC_CTRL enumeration from IBRS
  x86/speculation: Use synthetic bits for IBRS/IBPB/STIBP
  KVM: SVM: Move spec control call after restore of GS
  x86/cpu: Make alternative_msr_write work for 32-bit code
  x86/bugs: Fix the parameters alignment and missing void
  x86/bugs: Make cpu_show_common() static
  ...
2018-05-21 11:23:26 -07:00
Tom Lendacky
bc226f07dc KVM: SVM: Implement VIRT_SPEC_CTRL support for SSBD
Expose the new virtualized architectural mechanism, VIRT_SSBD, for using
speculative store bypass disable (SSBD) under SVM.  This will allow guests
to use SSBD on hardware that uses non-architectural mechanisms for enabling
SSBD.

[ tglx: Folded the migration fixup from Paolo Bonzini ]

Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2018-05-17 17:09:21 +02:00
Wanpeng Li
4c27625b7a KVM: X86: Lower the default timer frequency limit to 200us
Anthoine reported:
 The period used by Windows change over time but it can be 1
 milliseconds or less. I saw the limit_periodic_timer_frequency
 print so 500 microseconds is sometimes reached.

As suggested by Paolo, lower the default timer frequency limit to a
smaller interval of 200 us (5000 Hz) to leave some headroom. This
is required due to Windows 10 changing the scheduler tick limit
from 1024 Hz to 2048 Hz.

Reported-by: Anthoine Bourgeois <anthoine.bourgeois@blade-group.com>
Suggested-by: Paolo Bonzini <pbonzini@redhat.com>
Reviewed-by: Darren Kenny <darren.kenny@oracle.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Anthoine Bourgeois <anthoine.bourgeois@blade-group.com>
Cc: Darren Kenny <darren.kenny@oracle.com>
Cc: Jan Kiszka <jan.kiszka@web.de>
Signed-off-by: Wanpeng Li <wanpengli@tencent.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-05-15 11:56:21 +02:00
Jim Mattson
5887164942 kvm: vmx: Introduce lapic_mode enumeration
The local APIC can be in one of three modes: disabled, xAPIC or
x2APIC. (A fourth mode, "invalid," is included for completeness.)

Using the new enumeration can make some of the APIC mode logic easier
to read. In kvm_set_apic_base, for instance, it is clear that one
cannot transition directly from x2APIC mode to xAPIC mode or directly
from APIC disabled to x2APIC mode.

Signed-off-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Krish Sadhukhan <krish.sadhukhan@oracle.com>
[Check invalid bits even if msr_info->host_initiated.  Reported by
 Wanpeng Li. - Paolo]
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-05-14 18:14:25 +02:00
Wanpeng Li
a780a3ea62 KVM: X86: Fix reserved bits check for MOV to CR3
MSB of CR3 is a reserved bit if the PCIDE bit is not set in CR4.
It should be checked when PCIDE bit is not set, however commit
'd1cd3ce900441 ("KVM: MMU: check guest CR3 reserved bits based on
its physical address width")' removes the bit 63 checking
unconditionally. This patch fixes it by checking bit 63 of CR3
when PCIDE bit is not set in CR4.

Fixes: d1cd3ce900 (KVM: MMU: check guest CR3 reserved bits based on its physical address width)
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Liran Alon <liran.alon@oracle.com>
Cc: stable@vger.kernel.org
Reviewed-by: Junaid Shahid <junaids@google.com>
Signed-off-by: Wanpeng Li <wanpengli@tencent.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-05-14 18:14:16 +02:00
Junaid Shahid
c19986fea8 kvm: x86: Suppress CR3_PCID_INVD bit only when PCIDs are enabled
If the PCIDE bit is not set in CR4, then the MSb of CR3 is a reserved
bit. If the guest tries to set it, that should cause a #GP fault. So
mask out the bit only when the PCIDE bit is set.

Signed-off-by: Junaid Shahid <junaids@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-05-11 11:21:12 +02:00
Marian Rotariu
6356ee0c96 x86: Delay skip of emulated hypercall instruction
The IP increment should be done after the hypercall emulation, after
calling the various handlers. In this way, these handlers can accurately
identify the the IP of the VMCALL if they need it.

This patch keeps the same functionality for the Hyper-V handler which does
not use the return code of the standard kvm_skip_emulated_instruction()
call.

Signed-off-by: Marian Rotariu <mrotariu@bitdefender.com>
[Hyper-V hypercalls also need kvm_skip_emulated_instruction() - Paolo]
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-05-11 11:21:10 +02:00
Paolo Bonzini
dd259935e4 kvm: x86: move MSR_IA32_TSC handling to x86.c
This is not specific to Intel/AMD anymore.  The TSC offset is available
in vcpu->arch.tsc_offset.

Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-04-16 17:50:22 +02:00
KarimAllah Ahmed
e79f245dde X86/KVM: Properly update 'tsc_offset' to represent the running guest
Update 'tsc_offset' on vmentry/vmexit of L2 guests to ensure that it always
captures the TSC_OFFSET of the running guest whether it is the L1 or L2
guest.

Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: kvm@vger.kernel.org
Cc: linux-kernel@vger.kernel.org
Reviewed-by: Jim Mattson <jmattson@google.com>
Suggested-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: KarimAllah Ahmed <karahmed@amazon.de>
[AMD changes, fix update_ia32_tsc_adjust_msr. - Paolo]
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-04-16 17:50:11 +02:00
KarimAllah Ahmed
8e9b29b618 X86/KVM: Do not allow DISABLE_EXITS_MWAIT when LAPIC ARAT is not available
If the processor does not have an "Always Running APIC Timer" (aka ARAT),
we should not give guests direct access to MWAIT. The LAPIC timer would
stop ticking in deep C-states, so any host deadlines would not wakeup the
host kernel.

The host kernel intel_idle driver handles this by switching to broadcast
mode when ARAT is not available and MWAIT is issued with a deep C-state
that would stop the LAPIC timer. When MWAIT is passed through, we can not
tell when MWAIT is issued.

So just disable this capability when LAPIC ARAT is not available. I am not
even sure if there are any CPUs with VMX support but no LAPIC ARAT or not.

Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Reported-by: Wanpeng Li <kernellwp@gmail.com>
Signed-off-by: KarimAllah Ahmed <karahmed@amazon.de>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-04-11 11:34:16 +02:00
Peng Hao
3140c156e9 kvm: x86: fix a compile warning
fix a "warning: no previous prototype".

Cc: stable@vger.kernel.org
Signed-off-by: Peng Hao <peng.hao2@zte.com.cn>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-04-04 19:10:29 +02:00
Wanpeng Li
6c86eedc20 KVM: X86: Add Force Emulation Prefix for "emulate the next instruction"
There is no easy way to force KVM to run an instruction through the emulator
(by design as that will expose the x86 emulator as a significant attack-surface).
However, we do wish to expose the x86 emulator in case we are testing it
(e.g. via kvm-unit-tests). Therefore, this patch adds a "force emulation prefix"
that is designed to raise #UD which KVM will trap and it's #UD exit-handler will
match "force emulation prefix" to run instruction after prefix by the x86 emulator.
To not expose the x86 emulator by default, we add a module parameter that should
be off by default.

A simple testcase here:

    #include <stdio.h>
    #include <string.h>

    #define HYPERVISOR_INFO 0x40000000

    #define CPUID(idx, eax, ebx, ecx, edx) \
        asm volatile (\
        "ud2a; .ascii \"kvm\"; cpuid" \
        :"=b" (*ebx), "=a" (*eax), "=c" (*ecx), "=d" (*edx) \
            :"0"(idx) );

    void main()
    {
        unsigned int eax, ebx, ecx, edx;
        char string[13];

        CPUID(HYPERVISOR_INFO, &eax, &ebx, &ecx, &edx);
        *(unsigned int *)(string + 0) = ebx;
        *(unsigned int *)(string + 4) = ecx;
        *(unsigned int *)(string + 8) = edx;

        string[12] = 0;
        if (strncmp(string, "KVMKVMKVM\0\0\0", 12) == 0)
            printf("kvm guest\n");
        else
            printf("bare hardware\n");
    }

Suggested-by: Andrew Cooper <andrew.cooper3@citrix.com>
Reviewed-by: Radim Krčmář <rkrcmar@redhat.com>
Reviewed-by: Liran Alon <liran.alon@oracle.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Andrew Cooper <andrew.cooper3@citrix.com>
Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Cc: Liran Alon <liran.alon@oracle.com>
Signed-off-by: Wanpeng Li <wanpengli@tencent.com>
[Correctly handle usermode exits. - Paolo]
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-04-04 19:09:40 +02:00
Wanpeng Li
082d06edab KVM: X86: Introduce handle_ud()
Introduce handle_ud() to handle invalid opcode, this function will be
used by later patches.

Reviewed-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Reviewed-by: Liran Alon <liran.alon@oracle.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim KrÄmář <rkrcmar@redhat.com>
Cc: Andrew Cooper <andrew.cooper3@citrix.com>
Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Cc: Liran Alon <liran.alon@oracle.com>
Signed-off-by: Wanpeng Li <wanpengli@tencent.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-04-04 19:03:58 +02:00
Liran Alon
1a680e355c KVM: nVMX: Require immediate-exit when event reinjected to L2 and L1 event pending
In case L2 VMExit to L0 during event-delivery, VMCS02 is filled with
IDT-vectoring-info which vmx_complete_interrupts() makes sure to
reinject before next resume of L2.

While handling the VMExit in L0, an IPI could be sent by another L1 vCPU
to the L1 vCPU which currently runs L2 and exited to L0.

When L0 will reach vcpu_enter_guest() and call inject_pending_event(),
it will note that a previous event was re-injected to L2 (by
IDT-vectoring-info) and therefore won't check if there are pending L1
events which require exit from L2 to L1. Thus, L0 enters L2 without
immediate VMExit even though there are pending L1 events!

This commit fixes the issue by making sure to check for L1 pending
events even if a previous event was reinjected to L2 and bailing out
from inject_pending_event() before evaluating a new pending event in
case an event was already reinjected.

The bug was observed by the following setup:
* L0 is a 64CPU machine which runs KVM.
* L1 is a 16CPU machine which runs KVM.
* L0 & L1 runs with APICv disabled.
(Also reproduced with APICv enabled but easier to analyze below info
with APICv disabled)
* L1 runs a 16CPU L2 Windows Server 2012 R2 guest.
During L2 boot, L1 hangs completely and analyzing the hang reveals that
one L1 vCPU is holding KVM's mmu_lock and is waiting forever on an IPI
that he has sent for another L1 vCPU. And all other L1 vCPUs are
currently attempting to grab mmu_lock. Therefore, all L1 vCPUs are stuck
forever (as L1 runs with kernel-preemption disabled).

Observing /sys/kernel/debug/tracing/trace_pipe reveals the following
series of events:
(1) qemu-system-x86-19066 [030] kvm_nested_vmexit: rip:
0xfffff802c5dca82f reason: EPT_VIOLATION ext_inf1: 0x0000000000000182
ext_inf2: 0x00000000800000d2 ext_int: 0x00000000 ext_int_err: 0x00000000
(2) qemu-system-x86-19054 [028] kvm_apic_accept_irq: apicid f
vec 252 (Fixed|edge)
(3) qemu-system-x86-19066 [030] kvm_inj_virq: irq 210
(4) qemu-system-x86-19066 [030] kvm_entry: vcpu 15
(5) qemu-system-x86-19066 [030] kvm_exit: reason EPT_VIOLATION
rip 0xffffe00069202690 info 83 0
(6) qemu-system-x86-19066 [030] kvm_nested_vmexit: rip:
0xffffe00069202690 reason: EPT_VIOLATION ext_inf1: 0x0000000000000083
ext_inf2: 0x0000000000000000 ext_int: 0x00000000 ext_int_err: 0x00000000
(7) qemu-system-x86-19066 [030] kvm_nested_vmexit_inject: reason:
EPT_VIOLATION ext_inf1: 0x0000000000000083 ext_inf2: 0x0000000000000000
ext_int: 0x00000000 ext_int_err: 0x00000000
(8) qemu-system-x86-19066 [030] kvm_entry: vcpu 15

Which can be analyzed as follows:
(1) L2 VMExit to L0 on EPT_VIOLATION during delivery of vector 0xd2.
Therefore, vmx_complete_interrupts() will set KVM_REQ_EVENT and reinject
a pending-interrupt of 0xd2.
(2) L1 sends an IPI of vector 0xfc (CALL_FUNCTION_VECTOR) to destination
vCPU 15. This will set relevant bit in LAPIC's IRR and set KVM_REQ_EVENT.
(3) L0 reach vcpu_enter_guest() which calls inject_pending_event() which
notes that interrupt 0xd2 was reinjected and therefore calls
vmx_inject_irq() and returns. Without checking for pending L1 events!
Note that at this point, KVM_REQ_EVENT was cleared by vcpu_enter_guest()
before calling inject_pending_event().
(4) L0 resumes L2 without immediate-exit even though there is a pending
L1 event (The IPI pending in LAPIC's IRR).

We have already reached the buggy scenario but events could be
furthered analyzed:
(5+6) L2 VMExit to L0 on EPT_VIOLATION.  This time not during
event-delivery.
(7) L0 decides to forward the VMExit to L1 for further handling.
(8) L0 resumes into L1. Note that because KVM_REQ_EVENT is cleared, the
LAPIC's IRR is not examined and therefore the IPI is still not delivered
into L1!

Signed-off-by: Liran Alon <liran.alon@oracle.com>
Reviewed-by: Nikita Leshenko <nikita.leshchenko@oracle.com>
Reviewed-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
2018-03-28 22:47:06 +02:00
Liran Alon
a042c26fd8 KVM: x86: Fix misleading comments on handling pending exceptions
The reason that exception.pending should block re-injection of
NMI/interrupt is not described correctly in comment in code.
Instead, it describes why a pending exception should be injected
before a pending NMI/interrupt.

Therefore, move currently present comment to code-block evaluating
a new pending event which explains why exception.pending is evaluated
first.
In addition, create a new comment describing that exception.pending
blocks re-injection of NMI/interrupt because the exception was
queued by handling vmexit which was due to NMI/interrupt delivery.

Signed-off-by: Liran Alon <liran.alon@oracle.com>
Reviewed-by: Nikita Leshenko <nikita.leshchenko@oracle.com>
Signed-off-by: Krish Sadhukhan <krish.sadhukhan@orcle.com>
[Used a comment from Sean J <sean.j.christopherson@intel.com>. - Radim]
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
2018-03-28 22:47:06 +02:00
Liran Alon
04140b4144 KVM: x86: Rename interrupt.pending to interrupt.injected
For exceptions & NMIs events, KVM code use the following
coding convention:
*) "pending" represents an event that should be injected to guest at
some point but it's side-effects have not yet occurred.
*) "injected" represents an event that it's side-effects have already
occurred.

However, interrupts don't conform to this coding convention.
All current code flows mark interrupt.pending when it's side-effects
have already taken place (For example, bit moved from LAPIC IRR to
ISR). Therefore, it makes sense to just rename
interrupt.pending to interrupt.injected.

This change follows logic of previous commit 664f8e26b0 ("KVM: X86:
Fix loss of exception which has not yet been injected") which changed
exception to follow this coding convention as well.

It is important to note that in case !lapic_in_kernel(vcpu),
interrupt.pending usage was and still incorrect.
In this case, interrrupt.pending can only be set using one of the
following ioctls: KVM_INTERRUPT, KVM_SET_VCPU_EVENTS and
KVM_SET_SREGS. Looking at how QEMU uses these ioctls, one can see that
QEMU uses them either to re-set an "interrupt.pending" state it has
received from KVM (via KVM_GET_VCPU_EVENTS interrupt.pending or
via KVM_GET_SREGS interrupt_bitmap) or by dispatching a new interrupt
from QEMU's emulated LAPIC which reset bit in IRR and set bit in ISR
before sending ioctl to KVM. So it seems that indeed "interrupt.pending"
in this case is also suppose to represent "interrupt.injected".
However, kvm_cpu_has_interrupt() & kvm_cpu_has_injectable_intr()
is misusing (now named) interrupt.injected in order to return if
there is a pending interrupt.
This leads to nVMX/nSVM not be able to distinguish if it should exit
from L2 to L1 on EXTERNAL_INTERRUPT on pending interrupt or should
re-inject an injected interrupt.
Therefore, add a FIXME at these functions for handling this issue.

This patch introduce no semantics change.

Signed-off-by: Liran Alon <liran.alon@oracle.com>
Reviewed-by: Nikita Leshenko <nikita.leshchenko@oracle.com>
Reviewed-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Krish Sadhukhan <krish.sadhukhan@oracle.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
2018-03-28 22:47:06 +02:00
Liran Alon
7c5a6a5970 KVM: VMX: No need to clear pending NMI/interrupt on inject realmode interrupt
kvm_inject_realmode_interrupt() is called from one of the injection
functions which writes event-injection to VMCS: vmx_queue_exception(),
vmx_inject_irq() and vmx_inject_nmi().

All these functions are called just to cause an event-injection to
guest. They are not responsible of manipulating the event-pending
flag. The only purpose of kvm_inject_realmode_interrupt() should be
to emulate real-mode interrupt-injection.

This was also incorrect when called from vmx_queue_exception().

Signed-off-by: Liran Alon <liran.alon@oracle.com>
Reviewed-by: Nikita Leshenko <nikita.leshchenko@oracle.com>
Reviewed-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Krish Sadhukhan <krish.sadhukhan@oracle.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
2018-03-28 22:47:06 +02:00
Ladi Prosek
d4abc577bb x86/kvm: rename HV_X64_MSR_APIC_ASSIST_PAGE to HV_X64_MSR_VP_ASSIST_PAGE
The assist page has been used only for the paravirtual EOI so far, hence
the "APIC" in the MSR name. Renaming to match the Hyper-V TLFS where it's
called "Virtual VP Assist MSR".

Signed-off-by: Ladi Prosek <lprosek@redhat.com>
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
2018-03-28 22:47:06 +02:00
Andi Kleen
dd60d21706 KVM: x86: Fix perf timer mode IP reporting
KVM and perf have a special backdoor mechanism to report the IP for interrupts
re-executed after vm exit. This works for the NMIs that perf normally uses.

However when perf is in timer mode it doesn't work because the timer interrupt
doesn't get this special treatment. This is common when KVM is running
nested in another hypervisor which may not implement the PMU, so only
timer mode is available.

Call the functions to set up the backdoor IP also for non NMI interrupts.

I renamed the functions to set up the backdoor IP reporting to be more
appropiate for their new use.  The SVM change is only compile tested.

v2: Moved the functions inline.
For the normal interrupt case the before/after functions are now
called from x86.c, not arch specific code.
For the NMI case we still need to call it in the architecture
specific code, because it's already needed in the low level *_run
functions.

Signed-off-by: Andi Kleen <ak@linux.intel.com>
[Removed unnecessary calls from arch handle_external_intr. - Radim]
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
2018-03-28 16:12:59 +02:00
Sean Christopherson
2ac52ab861 KVM: x86: move setting of ept_identity_map_addr to vmx.c
Add kvm_x86_ops->set_identity_map_addr and set ept_identity_map_addr
in VMX specific code so that ept_identity_map_addr can be moved out
of 'struct kvm_arch' in a future patch.

Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-03-23 18:30:47 +01:00
Liran Alon
e40ff1d660 KVM: nVMX: Do not load EOI-exitmap while running L2
When L1 IOAPIC redirection-table is written, a request of
KVM_REQ_SCAN_IOAPIC is set on all vCPUs. This is done such that
all vCPUs will now recalc their IOAPIC handled vectors and load
it to their EOI-exitmap.

However, it could be that one of the vCPUs is currently running
L2. In this case, load_eoi_exitmap() will be called which would
write to vmcs02->eoi_exit_bitmap, which is wrong because
vmcs02->eoi_exit_bitmap should always be equal to
vmcs12->eoi_exit_bitmap. Furthermore, at this point
KVM_REQ_SCAN_IOAPIC was already consumed and therefore we will
never update vmcs01->eoi_exit_bitmap. This could lead to remote_irr
of some IOAPIC level-triggered entry to remain set forever.

Fix this issue by delaying the load of EOI-exitmap to when vCPU
is running L1.

One may wonder why not just delay entire KVM_REQ_SCAN_IOAPIC
processing to when vCPU is running L1. This is done in order to handle
correctly the case where LAPIC & IO-APIC of L1 is pass-throughed into
L2. In this case, vmcs12->virtual_interrupt_delivery should be 0. In
current nVMX implementation, that results in
vmcs02->virtual_interrupt_delivery to also be 0. Thus,
vmcs02->eoi_exit_bitmap is not used. Therefore, every L2 EOI cause
a #VMExit into L0 (either on MSR_WRITE to x2APIC MSR or
APIC_ACCESS/APIC_WRITE/EPT_MISCONFIG to APIC MMIO page).
In order for such L2 EOI to be broadcasted, if needed, from LAPIC
to IO-APIC, vcpu->arch.ioapic_handled_vectors must be updated
while L2 is running. Therefore, patch makes sure to delay only the
loading of EOI-exitmap but not the update of
vcpu->arch.ioapic_handled_vectors.

Reviewed-by: Arbel Moshe <arbel.moshe@oracle.com>
Reviewed-by: Krish Sadhukhan <krish.sadhukhan@oracle.com>
Signed-off-by: Liran Alon <liran.alon@oracle.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-03-21 14:16:44 +01:00
Wanpeng Li
b31c114b82 KVM: X86: Provide a capability to disable PAUSE intercepts
Allow to disable pause loop exit/pause filtering on a per VM basis.

If some VMs have dedicated host CPUs, they won't be negatively affected
due to needlessly intercepted PAUSE instructions.

Thanks to Jan H. Schönherr's initial patch.

Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Jan H. Schönherr <jschoenh@amazon.de>
Signed-off-by: Wanpeng Li <wanpengli@tencent.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-03-16 22:03:53 +01:00
Wanpeng Li
caa057a2ca KVM: X86: Provide a capability to disable HLT intercepts
If host CPUs are dedicated to a VM, we can avoid VM exits on HLT.
This patch adds the per-VM capability to disable them.

Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Jan H. Schönherr <jschoenh@amazon.de>
Signed-off-by: Wanpeng Li <wanpengli@tencent.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-03-16 22:03:52 +01:00
Wanpeng Li
4d5422cea3 KVM: X86: Provide a capability to disable MWAIT intercepts
Allowing a guest to execute MWAIT without interception enables a guest
to put a (physical) CPU into a power saving state, where it takes
longer to return from than what may be desired by the host.

Don't give a guest that power over a host by default. (Especially,
since nothing prevents a guest from using MWAIT even when it is not
advertised via CPUID.)

Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Jan H. Schönherr <jschoenh@amazon.de>
Signed-off-by: Wanpeng Li <wanpengli@tencent.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-03-16 22:03:51 +01:00
Arbel Moshe
2d7921c499 KVM: x86: Add support for VMware backdoor Pseudo-PMCs
VMware exposes the following Pseudo PMCs:
0x10000: Physical host TSC
0x10001: Elapsed real time in ns
0x10002: Elapsed apparent time in ns

For more info refer to:
https://www.vmware.com/files/pdf/techpaper/Timekeeping-In-VirtualMachines.pdf

VMware allows access to these Pseduo-PMCs even when read via RDPMC
in Ring3 and CR4.PCE=0. Therefore, commit modifies x86 emulator
to allow access to these PMCs in this situation. In addition,
emulation of these PMCs were added to kvm_pmu_rdpmc().

Signed-off-by: Arbel Moshe <arbel.moshe@oracle.com>
Signed-off-by: Liran Alon <liran.alon@oracle.com>
Reviewed-by: Radim Krčmář <rkrcmar@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-03-16 22:02:01 +01:00
Liran Alon
04789b6664 KVM: x86: Emulate only IN/OUT instructions when accessing VMware backdoor
Access to VMware backdoor ports is done by one of the IN/OUT/INS/OUTS
instructions. These ports must be allowed access even if TSS I/O
permission bitmap don't allow it.

To handle this, VMX/SVM will be changed in future commits
to intercept #GP which was raised by such access and
handle it by calling x86 emulator to emulate instruction.
If it was one of these instructions, the x86 emulator already handles
it correctly (Since commit "KVM: x86: Always allow access to VMware
backdoor I/O ports") by not checking these ports against TSS I/O
permission bitmap.

One may wonder why checking for specific instructions is necessary
as we can just forward all #GPs to the x86 emulator.
There are multiple reasons for doing so:

1. We don't want the x86 emulator to be reached easily
by guest by just executing an instruction that raises #GP as that
exposes the x86 emulator as a bigger attack surface.

2. The x86 emulator is incomplete and therefore certain instructions
that can cause #GP cannot be emulated. Such an example is "INT x"
(opcode 0xcd) which reaches emulate_int() which can only emulate
the instruction if vCPU is in real-mode.

Signed-off-by: Liran Alon <liran.alon@oracle.com>
Reviewed-by: Nikita Leshenko <nikita.leshchenko@oracle.com>
Reviewed-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Reviewed-by: Radim Krčmář <rkrcmar@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-03-16 22:01:42 +01:00
Liran Alon
e236617120 KVM: x86: Add emulation_type to not raise #UD on emulation failure
Next commits are going introduce support for accessing VMware backdoor
ports even though guest's TSS I/O permissions bitmap doesn't allow
access. This mimic VMware hypervisor behavior.

In order to support this, next commits will change VMX/SVM to
intercept #GP which was raised by such access and handle it by calling
the x86 emulator to emulate instruction. Since commit "KVM: x86:
Always allow access to VMware backdoor I/O ports", the x86 emulator
handles access to these I/O ports by not checking these ports against
the TSS I/O permission bitmap.

However, there could be cases that CPU rasies a #GP on instruction
that fails to be disassembled by the x86 emulator (Because of
incomplete implementation for example).

In those cases, we would like the #GP intercept to just forward #GP
as-is to guest as if there was no intercept to begin with.
However, current emulator code always queues #UD exception in case
emulator fails (including disassembly failures) which is not what is
wanted in this flow.

This commit addresses this issue by adding a new emulation_type flag
that will allow the #GP intercept handler to specify that it wishes
to be aware when instruction emulation fails and doesn't want #UD
exception to be queued.

Signed-off-by: Liran Alon <liran.alon@oracle.com>
Reviewed-by: Nikita Leshenko <nikita.leshchenko@oracle.com>
Reviewed-by: Radim Krčmář <rkrcmar@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-03-16 22:01:41 +01:00
Liran Alon
c4ae60e4bb KVM: x86: Add module parameter for supporting VMware backdoor
Support access to VMware backdoor requires KVM to intercept #GP
exceptions from guest which introduce slight performance hit.
Therefore, control this support by module parameter.

Note that module parameter is exported as it should be consumed by
kvm_intel & kvm_amd to determine if they should intercept #GP or not.

This commit doesn't change semantics.
It is done as a preparation for future commits.

Signed-off-by: Liran Alon <liran.alon@oracle.com>
Reviewed-by: Nikita Leshenko <nikita.leshchenko@oracle.com>
Reviewed-by: Radim Krčmář <rkrcmar@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-03-16 22:01:40 +01:00
Sean Christopherson
dca7f1284f KVM: x86: add kvm_fast_pio() to consolidate fast PIO code
Add kvm_fast_pio() to consolidate duplicate code in VMX and SVM.
Unexport kvm_fast_pio_in() and kvm_fast_pio_out().

Suggested-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-03-16 22:01:39 +01:00