mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2025-01-27 08:30:40 +07:00
7a1ade8475
45 Commits
Author | SHA1 | Message | Date | |
---|---|---|---|---|
David Howells
|
d8076bdb56 |
uapi: Wire up the mount API syscalls on non-x86 arches [ver #2]
Wire up the mount API syscalls on non-x86 arches. Reported-by: Arnd Bergmann <arnd@arndb.de> Signed-off-by: David Howells <dhowells@redhat.com> Reviewed-by: Arnd Bergmann <arnd@arndb.de> Signed-off-by: Al Viro <viro@zeniv.linux.org.uk> |
||
Linus Torvalds
|
a9dce6679d |
pidfd patches for v5.1-rc1
-----BEGIN PGP SIGNATURE----- iQIzBAABCgAdFiEE7btrcuORLb1XUhEwjrBW1T7ssS0FAlx+nn4ACgkQjrBW1T7s sS2kwg//aJUCwLIhV91gXUFN2jHTCf0/+5fnigEk7JhAT5wmAykxLM8tprLlIlyp HtwNQx54hq/6p010Ulo9K50VS6JRii+2lNSpC6IkqXXdHXXm0ViH+5I9Nru8SVJ+ avRCYWNjW9Gn1EtcB2yv6KP3XffgnQ6ZLIr4QJwglOxgAqUaWZ68woSUlrIR5yFj j48wAxjsC3g2qwGLvXPeiwYZHwk6VnYmrZ3eWXPDthWRDC4zkjyBdchZZzFJagSC 6sX8T9s5ua5juZMokEJaWjuBQQyfg0NYu41hupSdVjV7/0D3E+5/DiReInvLmSup 63bZ85uKRqWTNgl4cmJ1W3aVe2RYYemMZCXVVYYvU+IKpvTSzzYY7us+FyMAIRUV bT+XPGzTWcGrChzv9bHZcBrkL91XGqyxRJz56jLl6EhRtqxmzmywf6mO6pS2WK4N r+aBDgXeJbG39KguCzwUgVX8hC6YlSxSP8Md+2sK+UoAdfTUvFtdCYnjhuACofCt saRvDIPF8N9qn4Ch3InzCKkrUTL/H3BZKBl2jo6tYQ9smUsFZW7lQoip5Ui/0VS+ qksJ91djOc9facGoOorPazojY5fO5Lj3Hg+cGIoxUV0jPH483z7hWH0ALynb0f6z EDsgNyEUpIO2nJMJJfm37ysbU/j1gOpzQdaAEaWeknwtfecFPzM= =yOWp -----END PGP SIGNATURE----- Merge tag 'pidfd-v5.1-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/brauner/linux Pull pidfd system call from Christian Brauner: "This introduces the ability to use file descriptors from /proc/<pid>/ as stable handles on struct pid. Even if a pid is recycled the handle will not change. For a start these fds can be used to send signals to the processes they refer to. With the ability to use /proc/<pid> fds as stable handles on struct pid we can fix a long-standing issue where after a process has exited its pid can be reused by another process. If a caller sends a signal to a reused pid it will end up signaling the wrong process. With this patchset we enable a variety of use cases. One obvious example is that we can now safely delegate an important part of process management - sending signals - to processes other than the parent of a given process by sending file descriptors around via scm rights and not fearing that the given process will have been recycled in the meantime. It also allows for easy testing whether a given process is still alive or not by sending signal 0 to a pidfd which is quite handy. There has been some interest in this feature e.g. from systems management (systemd, glibc) and container managers. I have requested and gotten comments from glibc to make sure that this syscall is suitable for their needs as well. In the future I expect it to take on most other pid-based signal syscalls. But such features are left for the future once they are needed. This has been sitting in linux-next for quite a while and has not caused any issues. It comes with selftests which verify basic functionality and also test that a recycled pid cannot be signaled via a pidfd. Jon has written about a prior version of this patchset. It should cover the basic functionality since not a lot has changed since then: https://lwn.net/Articles/773459/ The commit message for the syscall itself is extensively documenting the syscall, including it's functionality and extensibility" * tag 'pidfd-v5.1-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/brauner/linux: selftests: add tests for pidfd_send_signal() signal: add pidfd_send_signal() syscall |
||
Linus Torvalds
|
38e7571c07 |
io_uring-2019-03-06
-----BEGIN PGP SIGNATURE----- iQJEBAABCAAuFiEEwPw5LcreJtl1+l5K99NY+ylx4KYFAlyAJvAQHGF4Ym9lQGtl cm5lbC5kawAKCRD301j7KXHgphb+EACFaKI2HIdjExQ5T7Cxebzwky+Qiro3FV55 ziW00FZrkJ5g0h4ItBzh/5SDlcNQYZDMlA3s4xzWIMadWl5PjMPq1uJul0cITbSl WIJO5hpgNMXeUEhvcXUl6+f/WzpgYUxN40uW8N5V7EKlooaFVfudDqJGlvEv+UgB g8NWQYThSG+/e7r9OGwK0xDRVKfpjxVvmqmnDH3DrxKaDgSOwTf4xn1u41wKwfQ3 3uPfQ+GBeTqt4a2AhOi7K6KQFNnj5Jz5CXYMiOZI2JGtLPcL6dmyBVD7K0a0HUr+ rs4ghNdd1+puvPGNK4TX8qV0uiNrMctoRNVA/JDd1ZTYEKTmNLxeFf+olfYHlwuK K5FRs60/lgNzNkzcUpFvJHitPwYtxYJdB36PyswE1FZP1YviEeVoKNt9W8aIhEoA 549uj90brfA74eCINGhq98pJqj9CNyCPw3bfi76f5Ej2utwYDb9S5Cp2gfSa853X qc/qNda9efEq7ikwCbPzhekRMXZo6TSXtaSmC2C+Vs5+mD1Scc4kdAvdCKGQrtr9 aoy0iQMYO2NDZ/G5fppvXtMVuEPAZWbsGftyOe15IlMysjRze2ycJV8cFahKEVM9 uBeXLyH1pqGU/j7ABP4+XRZ/sbHJTwjKJbnXhTgBsdU8XO/CR3U+kRQFTsidKMfH Wlo3uH2h2A== =p78E -----END PGP SIGNATURE----- Merge tag 'io_uring-2019-03-06' of git://git.kernel.dk/linux-block Pull io_uring IO interface from Jens Axboe: "Second attempt at adding the io_uring interface. Since the first one, we've added basic unit testing of the three system calls, that resides in liburing like the other unit tests that we have so far. It'll take a while to get full coverage of it, but we're working towards it. I've also added two basic test programs to tools/io_uring. One uses the raw interface and has support for all the various features that io_uring supports outside of standard IO, like fixed files, fixed IO buffers, and polled IO. The other uses the liburing API, and is a simplified version of cp(1). This adds support for a new IO interface, io_uring. io_uring allows an application to communicate with the kernel through two rings, the submission queue (SQ) and completion queue (CQ) ring. This allows for very efficient handling of IOs, see the v5 posting for some basic numbers: https://lore.kernel.org/linux-block/20190116175003.17880-1-axboe@kernel.dk/ Outside of just efficiency, the interface is also flexible and extendable, and allows for future use cases like the upcoming NVMe key-value store API, networked IO, and so on. It also supports async buffered IO, something that we've always failed to support in the kernel. Outside of basic IO features, it supports async polled IO as well. This particular feature has already been tested at Facebook months ago for flash storage boxes, with 25-33% improvements. It makes polled IO actually useful for real world use cases, where even basic flash sees a nice win in terms of efficiency, latency, and performance. These boxes were IOPS bound before, now they are not. This series adds three new system calls. One for setting up an io_uring instance (io_uring_setup(2)), one for submitting/completing IO (io_uring_enter(2)), and one for aux functions like registrating file sets, buffers, etc (io_uring_register(2)). Through the help of Arnd, I've coordinated the syscall numbers so merge on that front should be painless. Jon did a writeup of the interface a while back, which (except for minor details that have been tweaked) is still accurate. Find that here: https://lwn.net/Articles/776703/ Huge thanks to Al Viro for helping getting the reference cycle code correct, and to Jann Horn for his extensive reviews focused on both security and bugs in general. There's a userspace library that provides basic functionality for applications that don't need or want to care about how to fiddle with the rings directly. It has helpers to allow applications to easily set up an io_uring instance, and submit/complete IO through it without knowing about the intricacies of the rings. It also includes man pages (thanks to Jeff Moyer), and will continue to grow support helper functions and features as time progresses. Find it here: git://git.kernel.dk/liburing Fio has full support for the raw interface, both in the form of an IO engine (io_uring), but also with a small test application (t/io_uring) that can exercise and benchmark the interface" * tag 'io_uring-2019-03-06' of git://git.kernel.dk/linux-block: io_uring: add a few test tools io_uring: allow workqueue item to handle multiple buffered requests io_uring: add support for IORING_OP_POLL io_uring: add io_kiocb ref count io_uring: add submission polling io_uring: add file set registration net: split out functions related to registering inflight socket files io_uring: add support for pre-mapped user IO buffers block: implement bio helper to add iter bvec pages to bio io_uring: batch io_kiocb allocation io_uring: use fget/fput_many() for file references fs: add fget_many() and fput_many() io_uring: support for IO polling io_uring: add fsync support Add io_uring IO interface |
||
Christian Brauner
|
3eb39f4793
|
signal: add pidfd_send_signal() syscall
The kill() syscall operates on process identifiers (pid). After a process has exited its pid can be reused by another process. If a caller sends a signal to a reused pid it will end up signaling the wrong process. This issue has often surfaced and there has been a push to address this problem [1]. This patch uses file descriptors (fd) from proc/<pid> as stable handles on struct pid. Even if a pid is recycled the handle will not change. The fd can be used to send signals to the process it refers to. Thus, the new syscall pidfd_send_signal() is introduced to solve this problem. Instead of pids it operates on process fds (pidfd). /* prototype and argument /* long pidfd_send_signal(int pidfd, int sig, siginfo_t *info, unsigned int flags); /* syscall number 424 */ The syscall number was chosen to be 424 to align with Arnd's rework in his y2038 to minimize merge conflicts (cf. [25]). In addition to the pidfd and signal argument it takes an additional siginfo_t and flags argument. If the siginfo_t argument is NULL then pidfd_send_signal() is equivalent to kill(<positive-pid>, <signal>). If it is not NULL pidfd_send_signal() is equivalent to rt_sigqueueinfo(). The flags argument is added to allow for future extensions of this syscall. It currently needs to be passed as 0. Failing to do so will cause EINVAL. /* pidfd_send_signal() replaces multiple pid-based syscalls */ The pidfd_send_signal() syscall currently takes on the job of rt_sigqueueinfo(2) and parts of the functionality of kill(2), Namely, when a positive pid is passed to kill(2). It will however be possible to also replace tgkill(2) and rt_tgsigqueueinfo(2) if this syscall is extended. /* sending signals to threads (tid) and process groups (pgid) */ Specifically, the pidfd_send_signal() syscall does currently not operate on process groups or threads. This is left for future extensions. In order to extend the syscall to allow sending signal to threads and process groups appropriately named flags (e.g. PIDFD_TYPE_PGID, and PIDFD_TYPE_TID) should be added. This implies that the flags argument will determine what is signaled and not the file descriptor itself. Put in other words, grouping in this api is a property of the flags argument not a property of the file descriptor (cf. [13]). Clarification for this has been requested by Eric (cf. [19]). When appropriate extensions through the flags argument are added then pidfd_send_signal() can additionally replace the part of kill(2) which operates on process groups as well as the tgkill(2) and rt_tgsigqueueinfo(2) syscalls. How such an extension could be implemented has been very roughly sketched in [14], [15], and [16]. However, this should not be taken as a commitment to a particular implementation. There might be better ways to do it. Right now this is intentionally left out to keep this patchset as simple as possible (cf. [4]). /* naming */ The syscall had various names throughout iterations of this patchset: - procfd_signal() - procfd_send_signal() - taskfd_send_signal() In the last round of reviews it was pointed out that given that if the flags argument decides the scope of the signal instead of different types of fds it might make sense to either settle for "procfd_" or "pidfd_" as prefix. The community was willing to accept either (cf. [17] and [18]). Given that one developer expressed strong preference for the "pidfd_" prefix (cf. [13]) and with other developers less opinionated about the name we should settle for "pidfd_" to avoid further bikeshedding. The "_send_signal" suffix was chosen to reflect the fact that the syscall takes on the job of multiple syscalls. It is therefore intentional that the name is not reminiscent of neither kill(2) nor rt_sigqueueinfo(2). Not the fomer because it might imply that pidfd_send_signal() is a replacement for kill(2), and not the latter because it is a hassle to remember the correct spelling - especially for non-native speakers - and because it is not descriptive enough of what the syscall actually does. The name "pidfd_send_signal" makes it very clear that its job is to send signals. /* zombies */ Zombies can be signaled just as any other process. No special error will be reported since a zombie state is an unreliable state (cf. [3]). However, this can be added as an extension through the @flags argument if the need ever arises. /* cross-namespace signals */ The patch currently enforces that the signaler and signalee either are in the same pid namespace or that the signaler's pid namespace is an ancestor of the signalee's pid namespace. This is done for the sake of simplicity and because it is unclear to what values certain members of struct siginfo_t would need to be set to (cf. [5], [6]). /* compat syscalls */ It became clear that we would like to avoid adding compat syscalls (cf. [7]). The compat syscall handling is now done in kernel/signal.c itself by adding __copy_siginfo_from_user_generic() which lets us avoid compat syscalls (cf. [8]). It should be noted that the addition of __copy_siginfo_from_user_any() is caused by a bug in the original implementation of rt_sigqueueinfo(2) (cf. 12). With upcoming rework for syscall handling things might improve significantly (cf. [11]) and __copy_siginfo_from_user_any() will not gain any additional callers. /* testing */ This patch was tested on x64 and x86. /* userspace usage */ An asciinema recording for the basic functionality can be found under [9]. With this patch a process can be killed via: #define _GNU_SOURCE #include <errno.h> #include <fcntl.h> #include <signal.h> #include <stdio.h> #include <stdlib.h> #include <string.h> #include <sys/stat.h> #include <sys/syscall.h> #include <sys/types.h> #include <unistd.h> static inline int do_pidfd_send_signal(int pidfd, int sig, siginfo_t *info, unsigned int flags) { #ifdef __NR_pidfd_send_signal return syscall(__NR_pidfd_send_signal, pidfd, sig, info, flags); #else return -ENOSYS; #endif } int main(int argc, char *argv[]) { int fd, ret, saved_errno, sig; if (argc < 3) exit(EXIT_FAILURE); fd = open(argv[1], O_DIRECTORY | O_CLOEXEC); if (fd < 0) { printf("%s - Failed to open \"%s\"\n", strerror(errno), argv[1]); exit(EXIT_FAILURE); } sig = atoi(argv[2]); printf("Sending signal %d to process %s\n", sig, argv[1]); ret = do_pidfd_send_signal(fd, sig, NULL, 0); saved_errno = errno; close(fd); errno = saved_errno; if (ret < 0) { printf("%s - Failed to send signal %d to process %s\n", strerror(errno), sig, argv[1]); exit(EXIT_FAILURE); } exit(EXIT_SUCCESS); } /* Q&A * Given that it seems the same questions get asked again by people who are * late to the party it makes sense to add a Q&A section to the commit * message so it's hopefully easier to avoid duplicate threads. * * For the sake of progress please consider these arguments settled unless * there is a new point that desperately needs to be addressed. Please make * sure to check the links to the threads in this commit message whether * this has not already been covered. */ Q-01: (Florian Weimer [20], Andrew Morton [21]) What happens when the target process has exited? A-01: Sending the signal will fail with ESRCH (cf. [22]). Q-02: (Andrew Morton [21]) Is the task_struct pinned by the fd? A-02: No. A reference to struct pid is kept. struct pid - as far as I understand - was created exactly for the reason to not require to pin struct task_struct (cf. [22]). Q-03: (Andrew Morton [21]) Does the entire procfs directory remain visible? Just one entry within it? A-03: The same thing that happens right now when you hold a file descriptor to /proc/<pid> open (cf. [22]). Q-04: (Andrew Morton [21]) Does the pid remain reserved? A-04: No. This patchset guarantees a stable handle not that pids are not recycled (cf. [22]). Q-05: (Andrew Morton [21]) Do attempts to signal that fd return errors? A-05: See {Q,A}-01. Q-06: (Andrew Morton [22]) Is there a cleaner way of obtaining the fd? Another syscall perhaps. A-06: Userspace can already trivially retrieve file descriptors from procfs so this is something that we will need to support anyway. Hence, there's no immediate need to add another syscalls just to make pidfd_send_signal() not dependent on the presence of procfs. However, adding a syscalls to get such file descriptors is planned for a future patchset (cf. [22]). Q-07: (Andrew Morton [21] and others) This fd-for-a-process sounds like a handy thing and people may well think up other uses for it in the future, probably unrelated to signals. Are the code and the interface designed to permit such future applications? A-07: Yes (cf. [22]). Q-08: (Andrew Morton [21] and others) Now I think about it, why a new syscall? This thing is looking rather like an ioctl? A-08: This has been extensively discussed. It was agreed that a syscall is preferred for a variety or reasons. Here are just a few taken from prior threads. Syscalls are safer than ioctl()s especially when signaling to fds. Processes are a core kernel concept so a syscall seems more appropriate. The layout of the syscall with its four arguments would require the addition of a custom struct for the ioctl() thereby causing at least the same amount or even more complexity for userspace than a simple syscall. The new syscall will replace multiple other pid-based syscalls (see description above). The file-descriptors-for-processes concept introduced with this syscall will be extended with other syscalls in the future. See also [22], [23] and various other threads already linked in here. Q-09: (Florian Weimer [24]) What happens if you use the new interface with an O_PATH descriptor? A-09: pidfds opened as O_PATH fds cannot be used to send signals to a process (cf. [2]). Signaling processes through pidfds is the equivalent of writing to a file. Thus, this is not an operation that operates "purely at the file descriptor level" as required by the open(2) manpage. See also [4]. /* References */ [1]: https://lore.kernel.org/lkml/20181029221037.87724-1-dancol@google.com/ [2]: https://lore.kernel.org/lkml/874lbtjvtd.fsf@oldenburg2.str.redhat.com/ [3]: https://lore.kernel.org/lkml/20181204132604.aspfupwjgjx6fhva@brauner.io/ [4]: https://lore.kernel.org/lkml/20181203180224.fkvw4kajtbvru2ku@brauner.io/ [5]: https://lore.kernel.org/lkml/20181121213946.GA10795@mail.hallyn.com/ [6]: https://lore.kernel.org/lkml/20181120103111.etlqp7zop34v6nv4@brauner.io/ [7]: https://lore.kernel.org/lkml/36323361-90BD-41AF-AB5B-EE0D7BA02C21@amacapital.net/ [8]: https://lore.kernel.org/lkml/87tvjxp8pc.fsf@xmission.com/ [9]: https://asciinema.org/a/IQjuCHew6bnq1cr78yuMv16cy [11]: https://lore.kernel.org/lkml/F53D6D38-3521-4C20-9034-5AF447DF62FF@amacapital.net/ [12]: https://lore.kernel.org/lkml/87zhtjn8ck.fsf@xmission.com/ [13]: https://lore.kernel.org/lkml/871s6u9z6u.fsf@xmission.com/ [14]: https://lore.kernel.org/lkml/20181206231742.xxi4ghn24z4h2qki@brauner.io/ [15]: https://lore.kernel.org/lkml/20181207003124.GA11160@mail.hallyn.com/ [16]: https://lore.kernel.org/lkml/20181207015423.4miorx43l3qhppfz@brauner.io/ [17]: https://lore.kernel.org/lkml/CAGXu5jL8PciZAXvOvCeCU3wKUEB_dU-O3q0tDw4uB_ojMvDEew@mail.gmail.com/ [18]: https://lore.kernel.org/lkml/20181206222746.GB9224@mail.hallyn.com/ [19]: https://lore.kernel.org/lkml/20181208054059.19813-1-christian@brauner.io/ [20]: https://lore.kernel.org/lkml/8736rebl9s.fsf@oldenburg.str.redhat.com/ [21]: https://lore.kernel.org/lkml/20181228152012.dbf0508c2508138efc5f2bbe@linux-foundation.org/ [22]: https://lore.kernel.org/lkml/20181228233725.722tdfgijxcssg76@brauner.io/ [23]: https://lwn.net/Articles/773459/ [24]: https://lore.kernel.org/lkml/8736rebl9s.fsf@oldenburg.str.redhat.com/ [25]: https://lore.kernel.org/lkml/CAK8P3a0ej9NcJM8wXNPbcGUyOUZYX+VLoDFdbenW3s3114oQZw@mail.gmail.com/ Cc: "Eric W. Biederman" <ebiederm@xmission.com> Cc: Jann Horn <jannh@google.com> Cc: Andy Lutomirsky <luto@kernel.org> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Florian Weimer <fweimer@redhat.com> Signed-off-by: Christian Brauner <christian@brauner.io> Reviewed-by: Tycho Andersen <tycho@tycho.ws> Reviewed-by: Kees Cook <keescook@chromium.org> Reviewed-by: David Howells <dhowells@redhat.com> Acked-by: Arnd Bergmann <arnd@arndb.de> Acked-by: Thomas Gleixner <tglx@linutronix.de> Acked-by: Serge Hallyn <serge@hallyn.com> Acked-by: Aleksa Sarai <cyphar@cyphar.com> |
||
Jens Axboe
|
edafccee56 |
io_uring: add support for pre-mapped user IO buffers
If we have fixed user buffers, we can map them into the kernel when we setup the io_uring. That avoids the need to do get_user_pages() for each and every IO. To utilize this feature, the application must call io_uring_register() after having setup an io_uring instance, passing in IORING_REGISTER_BUFFERS as the opcode. The argument must be a pointer to an iovec array, and the nr_args should contain how many iovecs the application wishes to map. If successful, these buffers are now mapped into the kernel, eligible for IO. To use these fixed buffers, the application must use the IORING_OP_READ_FIXED and IORING_OP_WRITE_FIXED opcodes, and then set sqe->index to the desired buffer index. sqe->addr..sqe->addr+seq->len must point to somewhere inside the indexed buffer. The application may register buffers throughout the lifetime of the io_uring instance. It can call io_uring_register() with IORING_UNREGISTER_BUFFERS as the opcode to unregister the current set of buffers, and then register a new set. The application need not unregister buffers explicitly before shutting down the io_uring instance. It's perfectly valid to setup a larger buffer, and then sometimes only use parts of it for an IO. As long as the range is within the originally mapped region, it will work just fine. For now, buffers must not be file backed. If file backed buffers are passed in, the registration will fail with -1/EOPNOTSUPP. This restriction may be relaxed in the future. RLIMIT_MEMLOCK is used to check how much memory we can pin. A somewhat arbitrary 1G per buffer size is also imposed. Reviewed-by: Hannes Reinecke <hare@suse.com> Signed-off-by: Jens Axboe <axboe@kernel.dk> |
||
Jens Axboe
|
2b188cc1bb |
Add io_uring IO interface
The submission queue (SQ) and completion queue (CQ) rings are shared between the application and the kernel. This eliminates the need to copy data back and forth to submit and complete IO. IO submissions use the io_uring_sqe data structure, and completions are generated in the form of io_uring_cqe data structures. The SQ ring is an index into the io_uring_sqe array, which makes it possible to submit a batch of IOs without them being contiguous in the ring. The CQ ring is always contiguous, as completion events are inherently unordered, and hence any io_uring_cqe entry can point back to an arbitrary submission. Two new system calls are added for this: io_uring_setup(entries, params) Sets up an io_uring instance for doing async IO. On success, returns a file descriptor that the application can mmap to gain access to the SQ ring, CQ ring, and io_uring_sqes. io_uring_enter(fd, to_submit, min_complete, flags, sigset, sigsetsize) Initiates IO against the rings mapped to this fd, or waits for them to complete, or both. The behavior is controlled by the parameters passed in. If 'to_submit' is non-zero, then we'll try and submit new IO. If IORING_ENTER_GETEVENTS is set, the kernel will wait for 'min_complete' events, if they aren't already available. It's valid to set IORING_ENTER_GETEVENTS and 'min_complete' == 0 at the same time, this allows the kernel to return already completed events without waiting for them. This is useful only for polling, as for IRQ driven IO, the application can just check the CQ ring without entering the kernel. With this setup, it's possible to do async IO with a single system call. Future developments will enable polled IO with this interface, and polled submission as well. The latter will enable an application to do IO without doing ANY system calls at all. For IRQ driven IO, an application only needs to enter the kernel for completions if it wants to wait for them to occur. Each io_uring is backed by a workqueue, to support buffered async IO as well. We will only punt to an async context if the command would need to wait for IO on the device side. Any data that can be accessed directly in the page cache is done inline. This avoids the slowness issue of usual threadpools, since cached data is accessed as quickly as a sync interface. Sample application: http://git.kernel.dk/cgit/fio/plain/t/io_uring.c Reviewed-by: Hannes Reinecke <hare@suse.com> Signed-off-by: Jens Axboe <axboe@kernel.dk> |
||
Arnd Bergmann
|
c8ce48f065 |
asm-generic: Make time32 syscall numbers optional
We don't want new architectures to even provide the old 32-bit time_t based system calls any more, or define the syscall number macros. Add a new __ARCH_WANT_TIME32_SYSCALLS macro that gets enabled for all existing 32-bit architectures using the generic system call table, so we don't change any current behavior. Since this symbol is evaluated in user space as well, we cannot use a Kconfig CONFIG_* macro but have to define it in uapi/asm/unistd.h. On 64-bit architectures, the same system call numbers mostly refer to the system calls we want to keep, as they already pass 64-bit time_t. As new architectures no longer provide these, we need new exceptions in checksyscalls.sh. Signed-off-by: Arnd Bergmann <arnd@arndb.de> |
||
Yury Norov
|
80d7da1cac |
asm-generic: Drop getrlimit and setrlimit syscalls from default list
The newer prlimit64 syscall provides all the functionality of getrlimit and setrlimit syscalls and adds the pid of target process, so future architectures won't need to include getrlimit and setrlimit. Therefore drop getrlimit and setrlimit syscalls from the generic syscall list unless __ARCH_WANT_SET_GET_RLIMIT is defined by the architecture's unistd.h prior to including asm-generic/unistd.h, and adjust all architectures using the generic syscall list to define it so that no in-tree architectures are affected. Cc: Arnd Bergmann <arnd@arndb.de> Cc: linux-arch@vger.kernel.org Cc: linux-arm-kernel@lists.infradead.org Cc: linux-hexagon@vger.kernel.org Cc: uclinux-h8-devel@lists.sourceforge.jp Signed-off-by: Yury Norov <ynorov@caviumnetworks.com> Acked-by: Arnd Bergmann <arnd@arndb.de> Acked-by: Mark Salter <msalter@redhat.com> [c6x] Acked-by: James Hogan <james.hogan@imgtec.com> [metag] Acked-by: Ley Foon Tan <lftan@altera.com> [nios2] Acked-by: Stafford Horne <shorne@gmail.com> [openrisc] Acked-by: Will Deacon <will.deacon@arm.com> [arm64] Acked-by: Vineet Gupta <vgupta@synopsys.com> #arch/arc bits Signed-off-by: Yury Norov <ynorov@marvell.com> Signed-off-by: Arnd Bergmann <arnd@arndb.de> |
||
Yury Norov
|
0d0216c03a |
compat ABI: use non-compat openat and open_by_handle_at variants
The only difference between native and compat openat and open_by_handle_at is that non-compat version forces O_LARGEFILE, and it should be the default behaviour for all architectures, as we are going to drop the support of 32-bit userspace off_t. Signed-off-by: Yury Norov <ynorov@caviumnetworks.com> Signed-off-by: Yury Norov <ynorov@marvell.com> Signed-off-by: Arnd Bergmann <arnd@arndb.de> |
||
Arnd Bergmann
|
48166e6ea4 |
y2038: add 64-bit time_t syscalls to all 32-bit architectures
This adds 21 new system calls on each ABI that has 32-bit time_t today. All of these have the exact same semantics as their existing counterparts, and the new ones all have macro names that end in 'time64' for clarification. This gets us to the point of being able to safely use a C library that has 64-bit time_t in user space. There are still a couple of loose ends to tie up in various areas of the code, but this is the big one, and should be entirely uncontroversial at this point. In particular, there are four system calls (getitimer, setitimer, waitid, and getrusage) that don't have a 64-bit counterpart yet, but these can all be safely implemented in the C library by wrapping around the existing system calls because the 32-bit time_t they pass only counts elapsed time, not time since the epoch. They will be dealt with later. Signed-off-by: Arnd Bergmann <arnd@arndb.de> Acked-by: Heiko Carstens <heiko.carstens@de.ibm.com> Acked-by: Geert Uytterhoeven <geert@linux-m68k.org> Acked-by: Catalin Marinas <catalin.marinas@arm.com> |
||
Arnd Bergmann
|
00bf25d693 |
y2038: use time32 syscall names on 32-bit
This is the big flip, where all 32-bit architectures set COMPAT_32BIT_TIME and use the _time32 system calls from the former compat layer instead of the system calls that take __kernel_timespec and similar arguments. The temporary redirects for __kernel_timespec, __kernel_itimerspec and __kernel_timex can get removed with this. It would be easy to split this commit by architecture, but with the new generated system call tables, it's easy enough to do it all at once, which makes it a little easier to check that the changes are the same in each table. Acked-by: Geert Uytterhoeven <geert@linux-m68k.org> Signed-off-by: Arnd Bergmann <arnd@arndb.de> |
||
Arnd Bergmann
|
8dabe7245b |
y2038: syscalls: rename y2038 compat syscalls
A lot of system calls that pass a time_t somewhere have an implementation using a COMPAT_SYSCALL_DEFINEx() on 64-bit architectures, and have been reworked so that this implementation can now be used on 32-bit architectures as well. The missing step is to redefine them using the regular SYSCALL_DEFINEx() to get them out of the compat namespace and make it possible to build them on 32-bit architectures. Any system call that ends in 'time' gets a '32' suffix on its name for that version, while the others get a '_time32' suffix, to distinguish them from the normal version, which takes a 64-bit time argument in the future. In this step, only 64-bit architectures are changed, doing this rename first lets us avoid touching the 32-bit architectures twice. Acked-by: Catalin Marinas <catalin.marinas@arm.com> Signed-off-by: Arnd Bergmann <arnd@arndb.de> |
||
Arnd Bergmann
|
0d6040d468 |
arch: add split IPC system calls where needed
The IPC system call handling is highly inconsistent across architectures, some use sys_ipc, some use separate calls, and some use both. We also have some architectures that require passing IPC_64 in the flags, and others that set it implicitly. For the addition of a y2038 safe semtimedop() system call, I chose to only support the separate entry points, but that requires first supporting the regular ones with their own syscall numbers. The IPC_64 is now implied by the new semctl/shmctl/msgctl system calls even on the architectures that require passing it with the ipc() multiplexer. I'm not adding the new semtimedop() or semop() on 32-bit architectures, those will get implemented using the new semtimedop_time64() version that gets added along with the other time64 calls. Three 64-bit architectures (powerpc, s390 and sparc) get semtimedop(). Signed-off-by: Arnd Bergmann <arnd@arndb.de> Acked-by: Geert Uytterhoeven <geert@linux-m68k.org> Acked-by: Heiko Carstens <heiko.carstens@de.ibm.com> |
||
Linus Torvalds
|
5694cecdb0 |
arm64 festive updates for 4.21
In the end, we ended up with quite a lot more than I expected: - Support for ARMv8.3 Pointer Authentication in userspace (CRIU and kernel-side support to come later) - Support for per-thread stack canaries, pending an update to GCC that is currently undergoing review - Support for kexec_file_load(), which permits secure boot of a kexec payload but also happens to improve the performance of kexec dramatically because we can avoid the sucky purgatory code from userspace. Kdump will come later (requires updates to libfdt). - Optimisation of our dynamic CPU feature framework, so that all detected features are enabled via a single stop_machine() invocation - KPTI whitelisting of Cortex-A CPUs unaffected by Meltdown, so that they can benefit from global TLB entries when KASLR is not in use - 52-bit virtual addressing for userspace (kernel remains 48-bit) - Patch in LSE atomics for per-cpu atomic operations - Custom preempt.h implementation to avoid unconditional calls to preempt_schedule() from preempt_enable() - Support for the new 'SB' Speculation Barrier instruction - Vectorised implementation of XOR checksumming and CRC32 optimisations - Workaround for Cortex-A76 erratum #1165522 - Improved compatibility with Clang/LLD - Support for TX2 system PMUS for profiling the L3 cache and DMC - Reflect read-only permissions in the linear map by default - Ensure MMIO reads are ordered with subsequent calls to Xdelay() - Initial support for memory hotplug - Tweak the threshold when we invalidate the TLB by-ASID, so that mremap() performance is improved for ranges spanning multiple PMDs. - Minor refactoring and cleanups -----BEGIN PGP SIGNATURE----- Version: GnuPG v1 iQEcBAABCgAGBQJcE4TmAAoJELescNyEwWM0Nr0H/iaU7/wQSzHyNXtZoImyKTul Blu2ga4/EqUrTU7AVVfmkl/3NBILWlgQVpY6tH6EfXQuvnxqD7CizbHyLdyO+z0S B5PsFUH2GLMNAi48AUNqGqkgb2knFbg+T+9IimijDBkKg1G/KhQnRg6bXX32mLJv Une8oshUPBVJMsHN1AcQknzKariuoE3u0SgJ+eOZ9yA2ZwKxP4yy1SkDt3xQrtI0 lojeRjxcyjTP1oGRNZC+BWUtGOT35p7y6cGTnBd/4TlqBGz5wVAJUcdoxnZ6JYVR O8+ob9zU+4I0+SKt80s7pTLqQiL9rxkKZ5joWK1pr1g9e0s5N5yoETXKFHgJYP8= =sYdt -----END PGP SIGNATURE----- Merge tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux Pull arm64 festive updates from Will Deacon: "In the end, we ended up with quite a lot more than I expected: - Support for ARMv8.3 Pointer Authentication in userspace (CRIU and kernel-side support to come later) - Support for per-thread stack canaries, pending an update to GCC that is currently undergoing review - Support for kexec_file_load(), which permits secure boot of a kexec payload but also happens to improve the performance of kexec dramatically because we can avoid the sucky purgatory code from userspace. Kdump will come later (requires updates to libfdt). - Optimisation of our dynamic CPU feature framework, so that all detected features are enabled via a single stop_machine() invocation - KPTI whitelisting of Cortex-A CPUs unaffected by Meltdown, so that they can benefit from global TLB entries when KASLR is not in use - 52-bit virtual addressing for userspace (kernel remains 48-bit) - Patch in LSE atomics for per-cpu atomic operations - Custom preempt.h implementation to avoid unconditional calls to preempt_schedule() from preempt_enable() - Support for the new 'SB' Speculation Barrier instruction - Vectorised implementation of XOR checksumming and CRC32 optimisations - Workaround for Cortex-A76 erratum #1165522 - Improved compatibility with Clang/LLD - Support for TX2 system PMUS for profiling the L3 cache and DMC - Reflect read-only permissions in the linear map by default - Ensure MMIO reads are ordered with subsequent calls to Xdelay() - Initial support for memory hotplug - Tweak the threshold when we invalidate the TLB by-ASID, so that mremap() performance is improved for ranges spanning multiple PMDs. - Minor refactoring and cleanups" * tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux: (125 commits) arm64: kaslr: print PHYS_OFFSET in dump_kernel_offset() arm64: sysreg: Use _BITUL() when defining register bits arm64: cpufeature: Rework ptr auth hwcaps using multi_entry_cap_matches arm64: cpufeature: Reduce number of pointer auth CPU caps from 6 to 4 arm64: docs: document pointer authentication arm64: ptr auth: Move per-thread keys from thread_info to thread_struct arm64: enable pointer authentication arm64: add prctl control for resetting ptrauth keys arm64: perf: strip PAC when unwinding userspace arm64: expose user PAC bit positions via ptrace arm64: add basic pointer authentication support arm64/cpufeature: detect pointer authentication arm64: Don't trap host pointer auth use to EL2 arm64/kvm: hide ptrauth from guests arm64/kvm: consistently handle host HCR_EL2 flags arm64: add pointer authentication register bits arm64: add comments about EC exception levels arm64: perf: Treat EXCLUDE_EL* bit definitions as unsigned arm64: kpti: Whitelist Cortex-A CPUs that don't implement the CSV3 field arm64: enable per-task stack canaries ... |
||
Guo Ren
|
b7d624ab43 |
asm-generic: unistd.h: fixup broken macro include.
The broken macros make the glibc compile error. If there is no
__NR3264_fstat*, we should also removed related definitions.
Reported-by: Marcin Juszkiewicz <marcin.juszkiewicz@linaro.org>
Fixes:
|
||
AKASHI Takahiro
|
4e21565b7f |
asm-generic: add kexec_file_load system call to unistd.h
The initial user of this system call number is arm64. Signed-off-by: AKASHI Takahiro <takahiro.akashi@linaro.org> Acked-by: Arnd Bergmann <arnd@arndb.de> Signed-off-by: Will Deacon <will.deacon@arm.com> |
||
Arnd Bergmann
|
bf4b6a7d37 |
y2038: Remove stat64 family from default syscall set
New architectures should no longer need stat64, which is not y2038 safe and has been replaced by statx(). This removes the 'select __ARCH_WANT_STAT64' statement from asm-generic/unistd.h and instead moves it into the respective asm/unistd.h UAPI header files for each architecture that uses it today. In the generic file, the system call number and entry points are now made conditional, so newly added architectures (e.g. riscv32 or csky) will never need to carry backwards compatiblity for it. arm64 is the only 64-bit architecture using the asm-generic/unistd.h file, and it already sets __ARCH_WANT_NEW_STAT in its headers, and I use the same #ifdef here: future 64-bit architectures therefore won't see newstat or stat64 any more. They don't suffer from the y2038 time_t overflow, but for consistency it seems best to also let them use statx(). Signed-off-by: Arnd Bergmann <arnd@arndb.de> |
||
Will Deacon
|
db7a2d1809 |
asm-generic: unistd.h: Wire up sys_rseq
The new rseq call arrived in 4.18-rc1, so provide it in the asm-generic unistd.h for architectures such as arm64. Acked-by: Arnd Bergmann <arnd@arndb.de> Acked-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Signed-off-by: Will Deacon <will.deacon@arm.com> |
||
Christoph Hellwig
|
7a074e96de |
aio: implement io_pgetevents
This is the io_getevents equivalent of ppoll/pselect and allows to properly mix signals and aio completions (especially with IOCB_CMD_POLL) and atomically executes the following sequence: sigset_t origmask; pthread_sigmask(SIG_SETMASK, &sigmask, &origmask); ret = io_getevents(ctx, min_nr, nr, events, timeout); pthread_sigmask(SIG_SETMASK, &origmask, NULL); Note that unlike many other signal related calls we do not pass a sigmask size, as that would get us to 7 arguments, which aren't easily supported by the syscall infrastructure. It seems a lot less painful to just add a new syscall variant in the unlikely case we're going to increase the sigset size. Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com> |
||
Arnd Bergmann
|
a0673fdbcd |
asm-generic: clean up asm/unistd.h
The score architecture used a number of old system calls for compatibility with a traditional libc port, all architectures that got added later skip these. With score out of the way, we can finally clean up the syscall list to no longer provide these. Signed-off-by: Arnd Bergmann <arnd@arndb.de> |
||
Greg Kroah-Hartman
|
6f52b16c5b |
License cleanup: add SPDX license identifier to uapi header files with no license
Many user space API headers are missing licensing information, which makes it hard for compliance tools to determine the correct license. By default are files without license information under the default license of the kernel, which is GPLV2. Marking them GPLV2 would exclude them from being included in non GPLV2 code, which is obviously not intended. The user space API headers fall under the syscall exception which is in the kernels COPYING file: NOTE! This copyright does *not* cover user programs that use kernel services by normal system calls - this is merely considered normal use of the kernel, and does *not* fall under the heading of "derived work". otherwise syscall usage would not be possible. Update the files which contain no license information with an SPDX license identifier. The chosen identifier is 'GPL-2.0 WITH Linux-syscall-note' which is the officially assigned identifier for the Linux syscall exception. SPDX license identifiers are a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. See the previous patch in this series for the methodology of how this patch was researched. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> |
||
Al Viro
|
2611dc1939 |
Remove compat_sys_getdents64()
Unlike normal compat syscall variants, it is needed only for biarch architectures that have different alignement requirements for u64 in 32bit and 64bit ABI *and* have __put_user() that won't handle a store of 64bit value at 32bit-aligned address. We used to have one such (ia64), but its biarch support has been gone since 2010 (after being broken in 2008, which went unnoticed since nobody had been using it). It had escaped removal at the same time only because back in 2004 a patch that switched several syscalls on amd64 from private wrappers to generic compat ones had switched to use of compat_sys_getdents64(), which hadn't needed (or used) a compat wrapper on amd64. Let's bury it - it's at least 7 years overdue. Signed-off-by: Al Viro <viro@zeniv.linux.org.uk> |
||
Stafford Horne
|
fdfe4a393e |
generic syscalls: Wire up statx syscall
The new syscall statx is implemented as generic code, so enable it
for architectures like openrisc which use the generic syscall table.
Fixes:
|
||
Dave Hansen
|
71757904ef |
generic syscalls: kill cruft from removed pkey syscalls
pkey_set() and pkey_get() were syscalls present in older versions
of the protection keys patches. They were fully excised from the
x86 code, but some cruft was left in the generic syscall code. The
C++ comments were intended to help to make it more glaring to me to
fix them before actually submitting them. That technique worked,
but later than I would have liked.
I test-compiled this for arm64.
Fixes:
|
||
Dave Hansen
|
a60f7b69d9 |
generic syscalls: Wire up memory protection keys syscalls
These new syscalls are implemented as generic code, so enable them for architectures like arm64 which use the generic syscall table. According to Arnd: Even if the support is x86 specific for the forseeable future, it may be good to reserve the number just in case. The other architecture specific syscall lists are usually left to the individual arch maintainers, most a lot of the newer architectures share this table. Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com> Acked-by: Arnd Bergmann <arnd@arndb.de> Cc: linux-arch@vger.kernel.org Cc: Dave Hansen <dave@sr71.net> Cc: mgorman@techsingularity.net Cc: linux-api@vger.kernel.org Cc: linux-mm@kvack.org Cc: luto@kernel.org Cc: akpm@linux-foundation.org Cc: torvalds@linux-foundation.org Link: http://lkml.kernel.org/r/20160729163018.505A6875@viggo.jf.intel.com Signed-off-by: Thomas Gleixner <tglx@linutronix.de> |
||
James Hogan
|
b0da6d4415 |
asm-generic: Drop renameat syscall from default list
The newer renameat2 syscall provides all the functionality provided by the renameat syscall and adds flags, so future architectures won't need to include renameat. Therefore drop the renameat syscall from the generic syscall list unless __ARCH_WANT_RENAMEAT is defined by the architecture's unistd.h prior to including asm-generic/unistd.h, and adjust all architectures using the generic syscall list to define it so that no in-tree architectures are affected. Signed-off-by: James Hogan <james.hogan@imgtec.com> Acked-by: Vineet Gupta <vgupta@synopsys.com> Cc: linux-arch@vger.kernel.org Cc: linux-snps-arc@lists.infradead.org Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Will Deacon <will.deacon@arm.com> Cc: linux-arm-kernel@lists.infradead.org Cc: Mark Salter <msalter@redhat.com> Cc: Aurelien Jacquiot <a-jacquiot@ti.com> Cc: linux-c6x-dev@linux-c6x.org Cc: Richard Kuo <rkuo@codeaurora.org> Cc: linux-hexagon@vger.kernel.org Cc: linux-metag@vger.kernel.org Cc: Jonas Bonn <jonas@southpole.se> Cc: linux@lists.openrisc.net Cc: Chen Liqin <liqin.linux@gmail.com> Cc: Lennox Wu <lennox.wu@gmail.com> Cc: Chris Metcalf <cmetcalf@mellanox.com> Cc: Guan Xuetao <gxt@mprc.pku.edu.cn> Cc: Ley Foon Tan <lftan@altera.com> Cc: nios2-dev@lists.rocketboards.org Cc: Yoshinori Sato <ysato@users.sourceforge.jp> Cc: uclinux-h8-devel@lists.sourceforge.jp Signed-off-by: Arnd Bergmann <arnd@arndb.de> |
||
Yury Norov
|
1f93e9f231 |
asm-generic: use compat version for preadv2 and pwritev2
Compat architectures that does not use generic unistd (mips, s390), declare compat version in their syscall tables for preadv2 and pwritev2. Generic unistd syscall table should do it as well. [arnd: this initially slipped through the review and an incorrect patch got merged. arch/tile/ is the only architecture that could be affected for their 32-bit compat mode, every other architecture we support today is fine.] Signed-off-by: Yury Norov <ynorov@caviumnetworks.com> Signed-off-by: Arnd Bergmann <arnd@arndb.de> |
||
Andre Przywara
|
987aedb5d6 |
generic syscalls: wire up preadv2 and pwritev2 syscalls
These new syscalls are implemented as generic code, so enable them for architectures like arm64 which use the generic syscall table. Signed-off-by: Andre Przywara <andre.przywara@arm.com> Signed-off-by: Arnd Bergmann <arnd@arndb.de> |
||
Zach Brown
|
29732938a6 |
vfs: add copy_file_range syscall and vfs helper
Add a copy_file_range() system call for offloading copies between regular files. This gives an interface to underlying layers of the storage stack which can copy without reading and writing all the data. There are a few candidates that should support copy offloading in the nearer term: - btrfs shares extent references with its clone ioctl - NFS has patches to add a COPY command which copies on the server - SCSI has a family of XCOPY commands which copy in the device This system call avoids the complexity of also accelerating the creation of the destination file by operating on an existing destination file descriptor, not a path. Currently the high level vfs entry point limits copy offloading to files on the same mount and super (and not in the same file). This can be relaxed if we get implementations which can copy between file systems safely. Signed-off-by: Zach Brown <zab@redhat.com> [Anna Schumaker: Change -EINVAL to -EBADF during file verification, Change flags parameter from int to unsigned int, Add function to include/linux/syscalls.h, Check copy len after file open mode, Don't forbid ranges inside the same file, Use rw_verify_area() to veriy ranges, Use file_out rather than file_in, Add COPY_FR_REFLINK flag] Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Al Viro <viro@zeniv.linux.org.uk> |
||
Eric B Munson
|
a8ca5d0ecb |
mm: mlock: add new mlock system call
With the refactored mlock code, introduce a new system call for mlock. The new call will allow the user to specify what lock states are being added. mlock2 is trivial at the moment, but a follow on patch will add a new mlock state making it useful. Signed-off-by: Eric B Munson <emunson@akamai.com> Acked-by: Michal Hocko <mhocko@suse.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: Geert Uytterhoeven <geert@linux-m68k.org> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Cc: Guenter Roeck <linux@roeck-us.net> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Michael Kerrisk <mtk.manpages@gmail.com> Cc: Ralf Baechle <ralf@linux-mips.org> Cc: Shuah Khan <shuahkh@osg.samsung.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Dr. David Alan Gilbert
|
09f7298100 |
userfaultfd: register uapi generic syscall (aarch64)
Add the userfaultfd syscalls to uapi asm-generic, it was tested with postcopy live migration on aarch64 with both 4k and 64k pagesize kernels. Signed-off-by: Dr. David Alan Gilbert <dgilbert@redhat.com> Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Shuah Khan <shuahkh@osg.samsung.com> Cc: Thierry Reding <treding@nvidia.com> Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Mathieu Desnoyers
|
5b25b13ab0 |
sys_membarrier(): system-wide memory barrier (generic, x86)
Here is an implementation of a new system call, sys_membarrier(), which executes a memory barrier on all threads running on the system. It is implemented by calling synchronize_sched(). It can be used to distribute the cost of user-space memory barriers asymmetrically by transforming pairs of memory barriers into pairs consisting of sys_membarrier() and a compiler barrier. For synchronization primitives that distinguish between read-side and write-side (e.g. userspace RCU [1], rwlocks), the read-side can be accelerated significantly by moving the bulk of the memory barrier overhead to the write-side. The existing applications of which I am aware that would be improved by this system call are as follows: * Through Userspace RCU library (http://urcu.so) - DNS server (Knot DNS) https://www.knot-dns.cz/ - Network sniffer (http://netsniff-ng.org/) - Distributed object storage (https://sheepdog.github.io/sheepdog/) - User-space tracing (http://lttng.org) - Network storage system (https://www.gluster.org/) - Virtual routers (https://events.linuxfoundation.org/sites/events/files/slides/DPDK_RCU_0MQ.pdf) - Financial software (https://lkml.org/lkml/2015/3/23/189) Those projects use RCU in userspace to increase read-side speed and scalability compared to locking. Especially in the case of RCU used by libraries, sys_membarrier can speed up the read-side by moving the bulk of the memory barrier cost to synchronize_rcu(). * Direct users of sys_membarrier - core dotnet garbage collector (https://github.com/dotnet/coreclr/issues/198) Microsoft core dotnet GC developers are planning to use the mprotect() side-effect of issuing memory barriers through IPIs as a way to implement Windows FlushProcessWriteBuffers() on Linux. They are referring to sys_membarrier in their github thread, specifically stating that sys_membarrier() is what they are looking for. To explain the benefit of this scheme, let's introduce two example threads: Thread A (non-frequent, e.g. executing liburcu synchronize_rcu()) Thread B (frequent, e.g. executing liburcu rcu_read_lock()/rcu_read_unlock()) In a scheme where all smp_mb() in thread A are ordering memory accesses with respect to smp_mb() present in Thread B, we can change each smp_mb() within Thread A into calls to sys_membarrier() and each smp_mb() within Thread B into compiler barriers "barrier()". Before the change, we had, for each smp_mb() pairs: Thread A Thread B previous mem accesses previous mem accesses smp_mb() smp_mb() following mem accesses following mem accesses After the change, these pairs become: Thread A Thread B prev mem accesses prev mem accesses sys_membarrier() barrier() follow mem accesses follow mem accesses As we can see, there are two possible scenarios: either Thread B memory accesses do not happen concurrently with Thread A accesses (1), or they do (2). 1) Non-concurrent Thread A vs Thread B accesses: Thread A Thread B prev mem accesses sys_membarrier() follow mem accesses prev mem accesses barrier() follow mem accesses In this case, thread B accesses will be weakly ordered. This is OK, because at that point, thread A is not particularly interested in ordering them with respect to its own accesses. 2) Concurrent Thread A vs Thread B accesses Thread A Thread B prev mem accesses prev mem accesses sys_membarrier() barrier() follow mem accesses follow mem accesses In this case, thread B accesses, which are ensured to be in program order thanks to the compiler barrier, will be "upgraded" to full smp_mb() by synchronize_sched(). * Benchmarks On Intel Xeon E5405 (8 cores) (one thread is calling sys_membarrier, the other 7 threads are busy looping) 1000 non-expedited sys_membarrier calls in 33s =3D 33 milliseconds/call. * User-space user of this system call: Userspace RCU library Both the signal-based and the sys_membarrier userspace RCU schemes permit us to remove the memory barrier from the userspace RCU rcu_read_lock() and rcu_read_unlock() primitives, thus significantly accelerating them. These memory barriers are replaced by compiler barriers on the read-side, and all matching memory barriers on the write-side are turned into an invocation of a memory barrier on all active threads in the process. By letting the kernel perform this synchronization rather than dumbly sending a signal to every process threads (as we currently do), we diminish the number of unnecessary wake ups and only issue the memory barriers on active threads. Non-running threads do not need to execute such barrier anyway, because these are implied by the scheduler context switches. Results in liburcu: Operations in 10s, 6 readers, 2 writers: memory barriers in reader: 1701557485 reads, 2202847 writes signal-based scheme: 9830061167 reads, 6700 writes sys_membarrier: 9952759104 reads, 425 writes sys_membarrier (dyn. check): 7970328887 reads, 425 writes The dynamic sys_membarrier availability check adds some overhead to the read-side compared to the signal-based scheme, but besides that, sys_membarrier slightly outperforms the signal-based scheme. However, this non-expedited sys_membarrier implementation has a much slower grace period than signal and memory barrier schemes. Besides diminishing the number of wake-ups, one major advantage of the membarrier system call over the signal-based scheme is that it does not need to reserve a signal. This plays much more nicely with libraries, and with processes injected into for tracing purposes, for which we cannot expect that signals will be unused by the application. An expedited version of this system call can be added later on to speed up the grace period. Its implementation will likely depend on reading the cpu_curr()->mm without holding each CPU's rq lock. This patch adds the system call to x86 and to asm-generic. [1] http://urcu.so membarrier(2) man page: MEMBARRIER(2) Linux Programmer's Manual MEMBARRIER(2) NAME membarrier - issue memory barriers on a set of threads SYNOPSIS #include <linux/membarrier.h> int membarrier(int cmd, int flags); DESCRIPTION The cmd argument is one of the following: MEMBARRIER_CMD_QUERY Query the set of supported commands. It returns a bitmask of supported commands. MEMBARRIER_CMD_SHARED Execute a memory barrier on all threads running on the system. Upon return from system call, the caller thread is ensured that all running threads have passed through a state where all memory accesses to user-space addresses match program order between entry to and return from the system call (non-running threads are de facto in such a state). This covers threads from all pro=E2=80=90 cesses running on the system. This command returns 0. The flags argument needs to be 0. For future extensions. All memory accesses performed in program order from each targeted thread is guaranteed to be ordered with respect to sys_membarrier(). If we use the semantic "barrier()" to represent a compiler barrier forcing memory accesses to be performed in program order across the barrier, and smp_mb() to represent explicit memory barriers forcing full memory ordering across the barrier, we have the following ordering table for each pair of barrier(), sys_membarrier() and smp_mb(): The pair ordering is detailed as (O: ordered, X: not ordered): barrier() smp_mb() sys_membarrier() barrier() X X O smp_mb() X O O sys_membarrier() O O O RETURN VALUE On success, these system calls return zero. On error, -1 is returned, and errno is set appropriately. For a given command, with flags argument set to 0, this system call is guaranteed to always return the same value until reboot. ERRORS ENOSYS System call is not implemented. EINVAL Invalid arguments. Linux 2015-04-15 MEMBARRIER(2) Signed-off-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Reviewed-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Reviewed-by: Josh Triplett <josh@joshtriplett.org> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Nicholas Miell <nmiell@comcast.net> Cc: Ingo Molnar <mingo@redhat.com> Cc: Alan Cox <gnomes@lxorguk.ukuu.org.uk> Cc: Lai Jiangshan <laijs@cn.fujitsu.com> Cc: Stephen Hemminger <stephen@networkplumber.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: David Howells <dhowells@redhat.com> Cc: Pranith Kumar <bobby.prani@gmail.com> Cc: Michael Kerrisk <mtk.manpages@gmail.com> Cc: Shuah Khan <shuahkh@osg.samsung.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
David Drysdale
|
51f39a1f0c |
syscalls: implement execveat() system call
This patchset adds execveat(2) for x86, and is derived from Meredydd Luff's patch from Sept 2012 (https://lkml.org/lkml/2012/9/11/528). The primary aim of adding an execveat syscall is to allow an implementation of fexecve(3) that does not rely on the /proc filesystem, at least for executables (rather than scripts). The current glibc version of fexecve(3) is implemented via /proc, which causes problems in sandboxed or otherwise restricted environments. Given the desire for a /proc-free fexecve() implementation, HPA suggested (https://lkml.org/lkml/2006/7/11/556) that an execveat(2) syscall would be an appropriate generalization. Also, having a new syscall means that it can take a flags argument without back-compatibility concerns. The current implementation just defines the AT_EMPTY_PATH and AT_SYMLINK_NOFOLLOW flags, but other flags could be added in future -- for example, flags for new namespaces (as suggested at https://lkml.org/lkml/2006/7/11/474). Related history: - https://lkml.org/lkml/2006/12/27/123 is an example of someone realizing that fexecve() is likely to fail in a chroot environment. - http://bugs.debian.org/cgi-bin/bugreport.cgi?bug=514043 covered documenting the /proc requirement of fexecve(3) in its manpage, to "prevent other people from wasting their time". - https://bugzilla.redhat.com/show_bug.cgi?id=241609 described a problem where a process that did setuid() could not fexecve() because it no longer had access to /proc/self/fd; this has since been fixed. This patch (of 4): Add a new execveat(2) system call. execveat() is to execve() as openat() is to open(): it takes a file descriptor that refers to a directory, and resolves the filename relative to that. In addition, if the filename is empty and AT_EMPTY_PATH is specified, execveat() executes the file to which the file descriptor refers. This replicates the functionality of fexecve(), which is a system call in other UNIXen, but in Linux glibc it depends on opening "/proc/self/fd/<fd>" (and so relies on /proc being mounted). The filename fed to the executed program as argv[0] (or the name of the script fed to a script interpreter) will be of the form "/dev/fd/<fd>" (for an empty filename) or "/dev/fd/<fd>/<filename>", effectively reflecting how the executable was found. This does however mean that execution of a script in a /proc-less environment won't work; also, script execution via an O_CLOEXEC file descriptor fails (as the file will not be accessible after exec). Based on patches by Meredydd Luff. Signed-off-by: David Drysdale <drysdale@google.com> Cc: Meredydd Luff <meredydd@senatehouse.org> Cc: Shuah Khan <shuah.kh@samsung.com> Cc: "Eric W. Biederman" <ebiederm@xmission.com> Cc: Andy Lutomirski <luto@amacapital.net> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Ingo Molnar <mingo@redhat.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Kees Cook <keescook@chromium.org> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Rich Felker <dalias@aerifal.cx> Cc: Christoph Hellwig <hch@infradead.org> Cc: Michael Kerrisk <mtk.manpages@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Alexei Starovoitov
|
749730ce42 |
bpf: enable bpf syscall on x64 and i386
done as separate commit to ease conflict resolution Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net> |
||
Will Deacon
|
503e6636b6 |
asm-generic: add memfd_create system call to unistd.h
Commit
|
||
Linus Torvalds
|
f4f142ed4e |
Cleanups and bug fixes to /dev/random, add a new getrandom(2) system
call, which is a superset of OpenBSD's getentropy(2) call, for use with userspace crypto libraries such as LibreSSL. Also add the ability to have a kernel thread to pull entropy from hardware rng devices into /dev/random. -----BEGIN PGP SIGNATURE----- Version: GnuPG v2 iQIcBAABCAAGBQJT4VkhAAoJENNvdpvBGATwGMwP/0DvcJnk8Xg2pE67GrBlkL4V ltDYZBUNI3Z9YqPFMbN02kt8jBJ4o8NVrD9XXSAmk0NbNV6pc4SdGUU7BBcms4BF DX4CasmQS1EMKOxsszlvEbj9Q25u9ODJhUKsr1ZQKe3wfjx1gKRQ1QHHcrqgbGc0 tjkBU/TW+8daza6dGYrUrO34BPeN5Y4xbBG5WmVOLGgbDH7J3ZKGzkG21R5zHraI tPJzZ3KGj+Cf1TtamBOpyF+SLqM7qi43JY/1l8LfDzJgJhB3NxOR1ig/Pk6z1qLi 2xYm1hb+EQqJGaToMXEl5fLLcYfnJmLYD/dWNq/pOVXFqC5cGxYIH1h+Nwzywvy3 hVqh4yDU5HXgu8mOMPPc23azicJflZwCNq0vTTDE+orYnb8n9Sbg0l+rUQ45BZua tVfGKT1LZuYtM0axYQ4fIfqS9bxsyRJcF6HNNaEMQJsm0V0prwlz0hXkaod1uOJd CwOn9+CpZUGCgj5paRS+zTOtcl39+X1tIhcWTHEDMpMzIqnk8KpkLGqCDisBZNBF UbjEaTA8w6tBxRX5FZ9qdmRFvsxCJH7nOxmmsaIOZ/7QXQHQNrxI2+v6yd4HWJAw yZnaVR5o6sojKc8zp9nOXQ219G1zvt4l6XyTqIP+gKWJGDKGCsMXXzEg1OchO+rI Oo8s5+ytZB9qei7QwLAf =wLqJ -----END PGP SIGNATURE----- Merge tag 'random_for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tytso/random Pull randomness updates from Ted Ts'o: "Cleanups and bug fixes to /dev/random, add a new getrandom(2) system call, which is a superset of OpenBSD's getentropy(2) call, for use with userspace crypto libraries such as LibreSSL. Also add the ability to have a kernel thread to pull entropy from hardware rng devices into /dev/random" * tag 'random_for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tytso/random: hwrng: Pass entropy to add_hwgenerator_randomness() in bits, not bytes random: limit the contribution of the hw rng to at most half random: introduce getrandom(2) system call hw_random: fix sparse warning (NULL vs 0 for pointer) random: use registers from interrupted code for CPU's w/o a cycle counter hwrng: add per-device entropy derating hwrng: create filler thread random: add_hwgenerator_randomness() for feeding entropy from devices random: use an improved fast_mix() function random: clean up interrupt entropy accounting for archs w/o cycle counters random: only update the last_pulled time if we actually transferred entropy random: remove unneeded hash of a portion of the entropy pool random: always update the entropy pool under the spinlock |
||
Theodore Ts'o
|
c6e9d6f388 |
random: introduce getrandom(2) system call
The getrandom(2) system call was requested by the LibreSSL Portable developers. It is analoguous to the getentropy(2) system call in OpenBSD. The rationale of this system call is to provide resiliance against file descriptor exhaustion attacks, where the attacker consumes all available file descriptors, forcing the use of the fallback code where /dev/[u]random is not available. Since the fallback code is often not well-tested, it is better to eliminate this potential failure mode entirely. The other feature provided by this new system call is the ability to request randomness from the /dev/urandom entropy pool, but to block until at least 128 bits of entropy has been accumulated in the /dev/urandom entropy pool. Historically, the emphasis in the /dev/urandom development has been to ensure that urandom pool is initialized as quickly as possible after system boot, and preferably before the init scripts start execution. This is because changing /dev/urandom reads to block represents an interface change that could potentially break userspace which is not acceptable. In practice, on most x86 desktop and server systems, in general the entropy pool can be initialized before it is needed (and in modern kernels, we will printk a warning message if not). However, on an embedded system, this may not be the case. And so with this new interface, we can provide the functionality of blocking until the urandom pool has been initialized. Any userspace program which uses this new functionality must take care to assure that if it is used during the boot process, that it will not cause the init scripts or other portions of the system startup to hang indefinitely. SYNOPSIS #include <linux/random.h> int getrandom(void *buf, size_t buflen, unsigned int flags); DESCRIPTION The system call getrandom() fills the buffer pointed to by buf with up to buflen random bytes which can be used to seed user space random number generators (i.e., DRBG's) or for other cryptographic uses. It should not be used for Monte Carlo simulations or other programs/algorithms which are doing probabilistic sampling. If the GRND_RANDOM flags bit is set, then draw from the /dev/random pool instead of the /dev/urandom pool. The /dev/random pool is limited based on the entropy that can be obtained from environmental noise, so if there is insufficient entropy, the requested number of bytes may not be returned. If there is no entropy available at all, getrandom(2) will either block, or return an error with errno set to EAGAIN if the GRND_NONBLOCK bit is set in flags. If the GRND_RANDOM bit is not set, then the /dev/urandom pool will be used. Unlike using read(2) to fetch data from /dev/urandom, if the urandom pool has not been sufficiently initialized, getrandom(2) will block (or return -1 with the errno set to EAGAIN if the GRND_NONBLOCK bit is set in flags). The getentropy(2) system call in OpenBSD can be emulated using the following function: int getentropy(void *buf, size_t buflen) { int ret; if (buflen > 256) goto failure; ret = getrandom(buf, buflen, 0); if (ret < 0) return ret; if (ret == buflen) return 0; failure: errno = EIO; return -1; } RETURN VALUE On success, the number of bytes that was filled in the buf is returned. This may not be all the bytes requested by the caller via buflen if insufficient entropy was present in the /dev/random pool, or if the system call was interrupted by a signal. On error, -1 is returned, and errno is set appropriately. ERRORS EINVAL An invalid flag was passed to getrandom(2) EFAULT buf is outside the accessible address space. EAGAIN The requested entropy was not available, and getentropy(2) would have blocked if the GRND_NONBLOCK flag was not set. EINTR While blocked waiting for entropy, the call was interrupted by a signal handler; see the description of how interrupted read(2) calls on "slow" devices are handled with and without the SA_RESTART flag in the signal(7) man page. NOTES For small requests (buflen <= 256) getrandom(2) will not return EINTR when reading from the urandom pool once the entropy pool has been initialized, and it will return all of the bytes that have been requested. This is the recommended way to use getrandom(2), and is designed for compatibility with OpenBSD's getentropy() system call. However, if you are using GRND_RANDOM, then getrandom(2) may block until the entropy accounting determines that sufficient environmental noise has been gathered such that getrandom(2) will be operating as a NRBG instead of a DRBG for those people who are working in the NIST SP 800-90 regime. Since it may block for a long time, these guarantees do *not* apply. The user may want to interrupt a hanging process using a signal, so blocking until all of the requested bytes are returned would be unfriendly. For this reason, the user of getrandom(2) MUST always check the return value, in case it returns some error, or if fewer bytes than requested was returned. In the case of !GRND_RANDOM and small request, the latter should never happen, but the careful userspace code (and all crypto code should be careful) should check for this anyway! Finally, unless you are doing long-term key generation (and perhaps not even then), you probably shouldn't be using GRND_RANDOM. The cryptographic algorithms used for /dev/urandom are quite conservative, and so should be sufficient for all purposes. The disadvantage of GRND_RANDOM is that it can block, and the increased complexity required to deal with partially fulfilled getrandom(2) requests. Signed-off-by: Theodore Ts'o <tytso@mit.edu> Reviewed-by: Zach Brown <zab@zabbo.net> |
||
Kees Cook
|
48dc92b9fc |
seccomp: add "seccomp" syscall
This adds the new "seccomp" syscall with both an "operation" and "flags" parameter for future expansion. The third argument is a pointer value, used with the SECCOMP_SET_MODE_FILTER operation. Currently, flags must be 0. This is functionally equivalent to prctl(PR_SET_SECCOMP, ...). In addition to the TSYNC flag later in this patch series, there is a non-zero chance that this syscall could be used for configuring a fixed argument area for seccomp-tracer-aware processes to pass syscall arguments in the future. Hence, the use of "seccomp" not simply "seccomp_add_filter" for this syscall. Additionally, this syscall uses operation, flags, and user pointer for arguments because strictly passing arguments via a user pointer would mean seccomp itself would be unable to trivially filter the seccomp syscall itself. Signed-off-by: Kees Cook <keescook@chromium.org> Reviewed-by: Oleg Nesterov <oleg@redhat.com> Reviewed-by: Andy Lutomirski <luto@amacapital.net> |
||
James Hogan
|
63ba600028 |
asm-generic: Add renameat2 syscall
Add the renameat2 syscall to the generic syscall list, which is used by the following architectures: arc, arm64, c6x, hexagon, metag, openrisc, score, tile, unicore32. Signed-off-by: James Hogan <james.hogan@imgtec.com> Acked-by: Arnd Bergmann <arnd@arndb.de> Signed-off-by: Miklos Szeredi <mszeredi@suse.cz> Cc: linux-arch@vger.kernel.org Cc: Vineet Gupta <vgupta@synopsys.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Will Deacon <will.deacon@arm.com> Cc: linux-arm-kernel@lists.infradead.org Cc: Mark Salter <msalter@redhat.com> Cc: Aurelien Jacquiot <a-jacquiot@ti.com> Cc: Richard Kuo <rkuo@codeaurora.org> Cc: linux-hexagon@vger.kernel.org Cc: linux-metag@vger.kernel.org Cc: Jonas Bonn <jonas@southpole.se> Cc: Chen Liqin <liqin.linux@gmail.com> Cc: Lennox Wu <lennox.wu@gmail.com> Cc: Chris Metcalf <cmetcalf@tilera.com> Cc: Guan Xuetao <gxt@mprc.pku.edu.cn> |
||
Heiko Carstens
|
0473c9b5f0 |
compat: let architectures define __ARCH_WANT_COMPAT_SYS_GETDENTS64
For architecture dependent compat syscalls in common code an architecture must define something like __ARCH_WANT_<WHATEVER> if it wants to use the code. This however is not true for compat_sys_getdents64 for which architectures must define __ARCH_OMIT_COMPAT_SYS_GETDENTS64 if they do not want the code. This leads to the situation where all architectures, except mips, get the compat code but only x86_64, arm64 and the generic syscall architectures actually use it. So invert the logic, so that architectures actively must do something to get the compat code. This way a couple of architectures get rid of otherwise dead code. Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com> |
||
James Hogan
|
e6cfc0295c |
asm-generic: add sched_setattr/sched_getattr syscalls
Add the sched_setattr and sched_getattr syscalls to the generic syscall list, which is used by the following architectures: arc, arm64, c6x, hexagon, metag, openrisc, score, tile, unicore32. Signed-off-by: James Hogan <james.hogan@imgtec.com> Acked-by: Arnd Bergmann <arnd@arndb.de> Acked-by: Catalin Marinas <catalin.marinas@arm.com> Cc: linux-arch@vger.kernel.org Cc: Vineet Gupta <vgupta@synopsys.com> Cc: Will Deacon <will.deacon@arm.com> Cc: linux-arm-kernel@lists.infradead.org Cc: Mark Salter <msalter@redhat.com> Cc: Aurelien Jacquiot <a-jacquiot@ti.com> Cc: linux-c6x-dev@linux-c6x.org Cc: Richard Kuo <rkuo@codeaurora.org> Cc: linux-hexagon@vger.kernel.org Cc: linux-metag@vger.kernel.org Cc: Jonas Bonn <jonas@southpole.se> Cc: linux@lists.openrisc.net Cc: Chen Liqin <liqin.linux@gmail.com> Cc: Lennox Wu <lennox.wu@gmail.com> Cc: Chris Metcalf <cmetcalf@tilera.com> Cc: Guan Xuetao <gxt@mprc.pku.edu.cn> |
||
Viresh Kumar
|
0a0fca9d83 |
sched: Rename sched.c as sched/core.c in comments and Documentation
Most of the stuff from kernel/sched.c was moved to kernel/sched/core.c long time back and the comments/Documentation never got updated. I figured it out when I was going through sched-domains.txt and so thought of fixing it globally. I haven't crossed check if the stuff that is referenced in sched/core.c by all these files is still present and hasn't changed as that wasn't the motive behind this patch. Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org> Signed-off-by: Peter Zijlstra <peterz@infradead.org> Link: http://lkml.kernel.org/r/cdff76a265326ab8d71922a1db5be599f20aad45.1370329560.git.viresh.kumar@linaro.org Signed-off-by: Ingo Molnar <mingo@kernel.org> |
||
Al Viro
|
03e2759598 |
tile: switch to generic compat rt_sig{procmask,pending}()
note that the only systems that are going to care are big-endian 64bit ones with 32bit compat enabled - little-endian bitmaps are not sensitive to granularity. Signed-off-by: Al Viro <viro@zeniv.linux.org.uk> |
||
Kees Cook
|
1625cee56f |
add finit_module syscall to asm-generic
This adds the finit_module syscall to the generic syscall list. Signed-off-by: Kees Cook <keescook@chromium.org> Acked-by: Arnd Bergmann <arnd@arndb.de> Signed-off-by: Rusty Russell <rusty@rustcorp.com.au> |
||
David Howells
|
8a1ab3155c |
UAPI: (Scripted) Disintegrate include/asm-generic
Signed-off-by: David Howells <dhowells@redhat.com> Acked-by: Arnd Bergmann <arnd@arndb.de> Acked-by: Thomas Gleixner <tglx@linutronix.de> Acked-by: Michael Kerrisk <mtk.manpages@gmail.com> Acked-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Acked-by: Dave Jones <davej@redhat.com> |