Previously output drivers would enable continuous display mode and power
up the display controller at various points during the initialization.
This is suboptimal because it accesses display controller registers in
output drivers and duplicates a bit of code.
Move this code into the display controller driver and enable the display
controller as the final step of the ->mode_set_nofb() implementation.
Signed-off-by: Thierry Reding <treding@nvidia.com>
All output drivers have now been converted to use the ->atomic_check()
callback, so the ->mode_fixup() callbacks are no longer used.
Signed-off-by: Thierry Reding <treding@nvidia.com>
The implementation of the ->atomic_check() callback precomputes all
parameters to check if the given configuration can be applied. If so the
precomputed values are stored in the atomic state object for the encoder
and applied during modeset. In that way the modeset no longer needs to
perform any checking but simply program values into registers.
Signed-off-by: Thierry Reding <treding@nvidia.com>
Hook up the default ->reset() and ->atomic_duplicate_state() helpers.
This ensures that state objects are properly created and framebuffer
reference counts correctly maintained.
Signed-off-by: Thierry Reding <treding@nvidia.com>
Implement initial atomic state handling. Hook up the CRTCs, planes' and
connectors' ->atomic_destroy_state() callback to ensure that the atomic
state objects don't leak.
Furthermore the CRTC now implements the ->mode_set_nofb() callback that
is used by new helpers to implement ->mode_set() and ->mode_set_base().
These new helpers also make use of the new plane helper functions which
the driver now provides.
Signed-off-by: Thierry Reding <treding@nvidia.com>
The tegra_output midlayer is now completely gone and output drivers use
it purely as a helper library.
Signed-off-by: Thierry Reding <treding@nvidia.com>
Implement encoder and connector within the RGB driver itself using the
Tegra output helpers rather than using the Tegra output as midlayer. By
doing so one level of indirection is removed and output drivers become
more flexible while keeping the majority of the advantages provided by
the common output helpers.
Signed-off-by: Thierry Reding <treding@nvidia.com>
Previously output drivers would all stop the display controller in their
disable path. However with the transition to atomic modesetting the
display controller needs to be kept running until all planes have been
disabled so that software can properly determine (using VBLANK counts)
when it is safe to remove the framebuffers associated with the planes.
Moving this code into the display controller's disable path also gets
rid of the duplication of this into all output drivers.
Signed-off-by: Thierry Reding <treding@nvidia.com>
All output drivers have open-coded variants of this function, so export
it to remove some code duplication.
Signed-off-by: Thierry Reding <treding@nvidia.com>
The shift clock divider is highly dependent on the type of output, so
push computation of it down into the output drivers. The old code used
to work merely by accident.
Signed-off-by: Thierry Reding <treding@nvidia.com>
Add guard to check whether RGB output is already enabled in the way it's
done for HDMI output. Fixes possible hang on trying to disable output twice
(first time during driver probe and second on fb registering).
Signed-off-by: Dmitry Osipenko <digetx@gmail.com>
Signed-off-by: Thierry Reding <treding@nvidia.com>
The mask of possible CRTCs that an output (DRM encoder) can be attached
to is relative to the position within the DRM device's list of CRTCs.
Deferred probing can cause this to not match the pipe number associated
with a CRTC. Use the newly introduced drm_crtc_mask() to compute the
mask by looking up the proper index of the given CRTC in the list.
Signed-off-by: Thierry Reding <treding@nvidia.com>
Some of the code in the CRTC's mode setting code is specific to the RGB
output or needs to be called slightly differently depending on the type
of output. Push that code down into the output drivers.
Signed-off-by: Thierry Reding <treding@nvidia.com>
Previously the association to a DC was done via the encoder's .crtc
field. That has the disadvantage that when an encoder is detached from
its CRTC, that field is set to NULL, leading to situations where it is
impossible to access the DC registers required by the RGB output.
However, the coupling between DC and RGB output is really fixed on
Tegra. While they can be detached logically in DRM, the RGB output can
rely on the DC's existence.
Signed-off-by: Thierry Reding <treding@nvidia.com>
Since the .init() and .exit() functions are executed whenever the DRM
driver is loaded or unloaded, care must be taken not to use them for
resource allocation. Otherwise deferred probing cannot be used, since
the .init() and .exit() are not run at probe time. Similarly the code
that frees resources must be run at .remove() time. If it is run from
the .exit() function, it can release resources multiple times.
To handle this more consistently, rename the tegra_output_parse_dt()
function to tegra_output_probe() and introduce tegra_output_remove()
which can be used to free output-related resources.
Signed-off-by: Thierry Reding <treding@nvidia.com>
This commit adds a KMS driver for the Tegra20 SoC. This includes basic
support for host1x and the two display controllers found on the Tegra20
SoC. Each display controller can drive a separate RGB/LVDS output.
Signed-off-by: Thierry Reding <thierry.reding@avionic-design.de>
Tested-by: Stephen Warren <swarren@nvidia.com>
Acked-by: Mark Zhang <markz@nvidia.com>
Reviewed-by: Mark Zhang <markz@nvidia.com>
Tested-by: Mark Zhang <markz@nvidia.com>
Tested-and-acked-by: Alexandre Courbot <acourbot@nvidia.com>
Acked-by: Terje Bergstrom <tbergstrom@nvidia.com>
Tested-by: Terje Bergstrom <tbergstrom@nvidia.com>
Signed-off-by: Dave Airlie <airlied@redhat.com>