mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2025-01-24 05:39:42 +07:00
77058e1adc
5 Commits
Author | SHA1 | Message | Date | |
---|---|---|---|---|
Linus Torvalds
|
d0316554d3 |
Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/percpu
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/percpu: (34 commits) m68k: rename global variable vmalloc_end to m68k_vmalloc_end percpu: add missing per_cpu_ptr_to_phys() definition for UP percpu: Fix kdump failure if booted with percpu_alloc=page percpu: make misc percpu symbols unique percpu: make percpu symbols in ia64 unique percpu: make percpu symbols in powerpc unique percpu: make percpu symbols in x86 unique percpu: make percpu symbols in xen unique percpu: make percpu symbols in cpufreq unique percpu: make percpu symbols in oprofile unique percpu: make percpu symbols in tracer unique percpu: make percpu symbols under kernel/ and mm/ unique percpu: remove some sparse warnings percpu: make alloc_percpu() handle array types vmalloc: fix use of non-existent percpu variable in put_cpu_var() this_cpu: Use this_cpu_xx in trace_functions_graph.c this_cpu: Use this_cpu_xx for ftrace this_cpu: Use this_cpu_xx in nmi handling this_cpu: Use this_cpu operations in RCU this_cpu: Use this_cpu ops for VM statistics ... Fix up trivial (famous last words) global per-cpu naming conflicts in arch/x86/kvm/svm.c mm/slab.c |
||
David Gibson
|
a4fe3ce769 |
powerpc/mm: Allow more flexible layouts for hugepage pagetables
Currently each available hugepage size uses a slightly different pagetable layout: that is, the bottem level table of pointers to hugepages is a different size, and may branch off from the normal page tables at a different level. Every hugepage aware path that needs to walk the pagetables must therefore look up the hugepage size from the slice info first, and work out the correct way to walk the pagetables accordingly. Future hardware is likely to add more possible hugepage sizes, more layout options and more mess. This patch, therefore reworks the handling of hugepage pagetables to reduce this complexity. In the new scheme, instead of having to consult the slice mask, pagetable walking code can check a flag in the PGD/PUD/PMD entries to see where to branch off to hugepage pagetables, and the entry also contains the information (eseentially hugepage shift) necessary to then interpret that table without recourse to the slice mask. This scheme can be extended neatly to handle multiple levels of self-describing "special" hugepage pagetables, although for now we assume only one level exists. This approach means that only the pagetable allocation path needs to know how the pagetables should be set out. All other (hugepage) pagetable walking paths can just interpret the structure as they go. There already was a flag bit in PGD/PUD/PMD entries for hugepage directory pointers, but it was only used for debug. We alter that flag bit to instead be a 0 in the MSB to indicate a hugepage pagetable pointer (normally it would be 1 since the pointer lies in the linear mapping). This means that asm pagetable walking can test for (and punt on) hugepage pointers with the same test that checks for unpopulated page directory entries (beq becomes bge), since hugepage pointers will always be positive, and normal pointers always negative. While we're at it, we get rid of the confusing (and grep defeating) #defining of hugepte_shift to be the same thing as mmu_huge_psizes. Signed-off-by: David Gibson <dwg@au1.ibm.com> Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org> |
||
Tejun Heo
|
6b7487fc65 |
percpu: make percpu symbols in powerpc unique
This patch updates percpu related symbols in powerpc such that percpu symbols are unique and don't clash with local symbols. This serves two purposes of decreasing the possibility of global percpu symbol collision and allowing dropping per_cpu__ prefix from percpu symbols. * arch/powerpc/kernel/perf_callchain.c: s/callchain/cpu_perf_callchain/ * arch/powerpc/kernel/setup-common.c: s/pvr/cpu_pvr/ * arch/powerpc/platforms/pseries/dtl.c: s/dtl/cpu_dtl/ * arch/powerpc/platforms/cell/interrupt.c: s/iic/cpu_iic/ Partly based on Rusty Russell's "alloc_percpu: rename percpu vars which cause name clashes" patch. Signed-off-by: Tejun Heo <tj@kernel.org> Acked-by: Arnd Bergmann <arnd@arndb.de> Acked-by: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Rusty Russell <rusty@rustcorp.com.au> Cc: Paul Mackerras <paulus@samba.org> Cc: linuxppc-dev@ozlabs.org |
||
Ingo Molnar
|
cdd6c482c9 |
perf: Do the big rename: Performance Counters -> Performance Events
Bye-bye Performance Counters, welcome Performance Events! In the past few months the perfcounters subsystem has grown out its initial role of counting hardware events, and has become (and is becoming) a much broader generic event enumeration, reporting, logging, monitoring, analysis facility. Naming its core object 'perf_counter' and naming the subsystem 'perfcounters' has become more and more of a misnomer. With pending code like hw-breakpoints support the 'counter' name is less and less appropriate. All in one, we've decided to rename the subsystem to 'performance events' and to propagate this rename through all fields, variables and API names. (in an ABI compatible fashion) The word 'event' is also a bit shorter than 'counter' - which makes it slightly more convenient to write/handle as well. Thanks goes to Stephane Eranian who first observed this misnomer and suggested a rename. User-space tooling and ABI compatibility is not affected - this patch should be function-invariant. (Also, defconfigs were not touched to keep the size down.) This patch has been generated via the following script: FILES=$(find * -type f | grep -vE 'oprofile|[^K]config') sed -i \ -e 's/PERF_EVENT_/PERF_RECORD_/g' \ -e 's/PERF_COUNTER/PERF_EVENT/g' \ -e 's/perf_counter/perf_event/g' \ -e 's/nb_counters/nb_events/g' \ -e 's/swcounter/swevent/g' \ -e 's/tpcounter_event/tp_event/g' \ $FILES for N in $(find . -name perf_counter.[ch]); do M=$(echo $N | sed 's/perf_counter/perf_event/g') mv $N $M done FILES=$(find . -name perf_event.*) sed -i \ -e 's/COUNTER_MASK/REG_MASK/g' \ -e 's/COUNTER/EVENT/g' \ -e 's/\<event\>/event_id/g' \ -e 's/counter/event/g' \ -e 's/Counter/Event/g' \ $FILES ... to keep it as correct as possible. This script can also be used by anyone who has pending perfcounters patches - it converts a Linux kernel tree over to the new naming. We tried to time this change to the point in time where the amount of pending patches is the smallest: the end of the merge window. Namespace clashes were fixed up in a preparatory patch - and some stylistic fallout will be fixed up in a subsequent patch. ( NOTE: 'counters' are still the proper terminology when we deal with hardware registers - and these sed scripts are a bit over-eager in renaming them. I've undone some of that, but in case there's something left where 'counter' would be better than 'event' we can undo that on an individual basis instead of touching an otherwise nicely automated patch. ) Suggested-by: Stephane Eranian <eranian@google.com> Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Acked-by: Paul Mackerras <paulus@samba.org> Reviewed-by: Arjan van de Ven <arjan@linux.intel.com> Cc: Mike Galbraith <efault@gmx.de> Cc: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: David Howells <dhowells@redhat.com> Cc: Kyle McMartin <kyle@mcmartin.ca> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: "David S. Miller" <davem@davemloft.net> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: <linux-arch@vger.kernel.org> LKML-Reference: <new-submission> Signed-off-by: Ingo Molnar <mingo@elte.hu> |
||
Paul Mackerras
|
20002ded4d |
perf_counter: powerpc: Add callchain support
This adds support for tracing callchains for powerpc, both 32-bit and 64-bit, and both in the kernel and userspace, from PMU interrupt context. The first three entries stored for each callchain are the NIP (next instruction pointer), LR (link register), and the contents of the LR save area in the second stack frame (the first is ignored because the ABI convention on powerpc is that functions save their return address in their caller's stack frame). Because leaf functions don't have to save their return address (LR value) and don't have to establish a stack frame, it's possible for either or both of LR and the second stack frame's LR save area to have valid return addresses in them. This is basically impossible to disambiguate without either reading the code or looking at auxiliary information such as CFI tables. Since we don't want to do either of those things at interrupt time, we store both LR and the second stack frame's LR save area. Once we get past the second stack frame, there is no ambiguity; all return addresses we get are reliable. For kernel traces, we check whether they are valid kernel instruction addresses and store zero instead if they are not (rather than omitting them, which would make it impossible for userspace to know which was which). We also store zero instead of the second stack frame's LR save area value if it is the same as LR. For kernel traces, we check for interrupt frames, and for user traces, we check for signal frames. In each case, since we're starting a new trace, we store a PERF_CONTEXT_KERNEL/USER marker so that userspace knows that the next three entries are NIP, LR and the second stack frame for the interrupted context. We read user memory with __get_user_inatomic. On 64-bit, if this PMU interrupt occurred while interrupts are soft-disabled, and there is no MMU hash table entry for the page, we will get an -EFAULT return from __get_user_inatomic even if there is a valid Linux PTE for the page, since hash_page isn't reentrant. Thus we have code here to read the Linux PTE and access the page via the kernel linear mapping. Since 64-bit doesn't use (or need) highmem there is no need to do kmap_atomic. On 32-bit, we don't do soft interrupt disabling, so this complication doesn't occur and there is no need to fall back to reading the Linux PTE, since hash_page (or the TLB miss handler) will get called automatically if necessary. Note that we cannot get PMU interrupts in the interval during context switch between switch_mm (which switches the user address space) and switch_to (which actually changes current to the new process). On 64-bit this is because interrupts are hard-disabled in switch_mm and stay hard-disabled until they are soft-enabled later, after switch_to has returned. So there is no possibility of trying to do a user stack trace when the user address space is not current's address space. Acked-by: Benjamin Herrenschmidt <benh@kernel.crashing.org> Signed-off-by: Paul Mackerras <paulus@samba.org> |