The APIC timer calibration (calibrate_APIC_timer()) can be skipped
in cases where we know the APIC timer frequency. On Intel SoCs,
we believe that the APIC is fed by the crystal clock; this would make
sense, and the crystal clock frequency has been verified against the
APIC timer calibration result on ApolloLake, GeminiLake, Kabylake,
CoffeeLake, WhiskeyLake and AmberLake.
Set lapic_timer_period based on the crystal clock frequency
accordingly.
APIC timer calibration would normally be skipped on modern CPUs
by nature of the TSC deadline timer being used instead,
however this change is still potentially useful, e.g. if the
TSC deadline timer has been disabled with a kernel parameter.
calibrate_APIC_timer() uses the legacy timer, but we are seeing
new platforms that omit such legacy functionality, so avoiding
such codepaths is becoming more important.
Suggested-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Daniel Drake <drake@endlessm.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: len.brown@intel.com
Cc: linux@endlessm.com
Cc: rafael.j.wysocki@intel.com
Link: http://lkml.kernel.org/r/20190509055417.13152-3-drake@endlessm.com
Link: https://lkml.kernel.org/r/20190419083533.32388-1-drake@endlessm.com
Link: https://lkml.kernel.org/r/alpine.DEB.2.21.1904031206440.1967@nanos.tec.linutronix.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
This variable is a period unit (number of clock cycles per jiffy),
not a frequency (which is number of cycles per second).
Give it a more appropriate name.
Suggested-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Daniel Drake <drake@endlessm.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: len.brown@intel.com
Cc: linux@endlessm.com
Cc: rafael.j.wysocki@intel.com
Link: http://lkml.kernel.org/r/20190509055417.13152-2-drake@endlessm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
native_calibrate_tsc() had a data mapping Intel CPU families
and crystal clock speed, but hardcoded tables are not ideal, and this
approach was already problematic at least in the Skylake X case, as
seen in commit:
b511203093 ("x86/tsc: Fix erroneous TSC rate on Skylake Xeon")
By examining CPUID data from http://instlatx64.atw.hu/ and units
in the lab, we have found that 3 different scenarios need to be dealt
with, and we can eliminate most of the hardcoded data using an approach a
little more advanced than before:
1. ApolloLake, GeminiLake, CannonLake (and presumably all new chipsets
from this point) report the crystal frequency directly via CPUID.0x15.
That's definitive data that we can rely upon.
2. Skylake, Kabylake and all variants of those two chipsets report a
crystal frequency of zero, however we can calculate the crystal clock
speed by condidering data from CPUID.0x16.
This method correctly distinguishes between the two crystal clock
frequencies present on different Skylake X variants that caused
headaches before.
As the calculations do not quite match the previously-hardcoded values
in some cases (e.g. 23913043Hz instead of 24MHz), TSC refinement is
enabled on all platforms where we had to calculate the crystal
frequency in this way.
3. Denverton (GOLDMONT_X) reports a crystal frequency of zero and does
not support CPUID.0x16, so we leave this entry hardcoded.
Suggested-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Daniel Drake <drake@endlessm.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: len.brown@intel.com
Cc: linux@endlessm.com
Cc: rafael.j.wysocki@intel.com
Link: http://lkml.kernel.org/r/20190509055417.13152-1-drake@endlessm.com
Link: https://lkml.kernel.org/r/20190419083533.32388-1-drake@endlessm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
-----BEGIN PGP SIGNATURE-----
iQIcBAABAgAGBQJc04M6AAoJEAx081l5xIa+SJgP/0uIgIOM53vPpydgmr+2IEHF
jbDqrd+mipgNriRVHjDsWdUHCUNtyhB7YEBCMrj3mY0rRFI7FlQQf4lOwYGoHiKP
4JZg4kwC37997lFXl1uabGj3DmJLtxKL2/D15zCH/uLe+2EDzWznP6NVdFT3WK0P
YKZQCWT19PWSsLoBRPutWxkmop4AYvkqE0a6vXUlJlFYZK3Bbytx6/179uWKfiX5
ZkKEEtx1XiDAvcp5gBb6PISurycrBY0e/bkPBnK3ES5vawMbTU5IrmWOrQ4D8yOd
z9qOVZawZ6+b2XBDgBWjQ9bM7I5R7Il1q/LglYEaFI9+wHUnlUdDSm6ft5/5BiCZ
fqgkh5Bj2iEsajbSsacoljMOpxpYPqj63mqc+7fAGXF34V+B+9U1bpt8kCbMKowf
7Abb7IuiCR6vLDapjP6VqTMvdQ4O466OEAN83ULGFTdmMqYYH4AxaIwc+xcAk/aP
RNq7/RHhh4FRynRAj9fCkGlF3ArnM88gLINwWuEQq4SClWGcvdw7eaHpwWo77c4g
iccCnTLqSIg5pDVu07AQzzBlW6KulWxh5o72x+Xx+EXWdYUDHQ1SlNs11bSNUBV1
5MkrzY2GuD+NFEjsXJEDIPOr40mQOyJCXnxq8nXPsz/hD9kHeJPvWn3J3eVKyb5B
Z6/knNqM0BDn3SaYR/rD
=YFiQ
-----END PGP SIGNATURE-----
Merge tag 'drm-next-2019-05-09' of git://anongit.freedesktop.org/drm/drm
Pull drm updates from Dave Airlie:
"This has two exciting community drivers for ARM Mali accelerators.
Since ARM has never been open source friendly on the GPU side of the
house, the community has had to create open source drivers for the
Mali GPUs. Lima covers the older t4xx and panfrost the newer 6xx/7xx
series. Well done to all involved and hopefully this will help ARM
head in the right direction.
There is also now the ability if you don't have any of the legacy
drivers enabled (pre-KMS) to remove all the pre-KMS support code from
the core drm, this saves 10% or so in codesize on my machine.
i915 also enable Icelake/Elkhart Lake Gen11 GPUs by default, vboxvideo
moves out of staging.
There are also some rcar-du patches which crossover with media tree
but all should be acked by Mauro.
Summary:
uapi changes:
- Colorspace connector property
- fourcc - new YUV formts
- timeline sync objects initially merged
- expose FB_DAMAGE_CLIPS to atomic userspace
new drivers:
- vboxvideo: moved out of staging
- aspeed: ASPEED SoC BMC chip display support
- lima: ARM Mali4xx GPU acceleration driver support
- panfrost: ARM Mali6xx/7xx Midgard/Bitfrost acceleration driver support
core:
- component helper docs
- unplugging fixes
- devm device init
- MIPI/DSI rate control
- shmem backed gem objects
- connector, display_info, edid_quirks cleanups
- dma_buf fence chain support
- 64-bit dma-fence seqno comparison fixes
- move initial fb config code to core
- gem fence array helpers for Lima
- ability to remove legacy support code if no drivers requires it (removes 10% of drm.ko size)
- lease fixes
ttm:
- unified DRM_FILE_PAGE_OFFSET handling
- Account for kernel allocations in kernel zone only
panel:
- OSD070T1718-19TS panel support
- panel-tpo-td028ttec1 backlight support
- Ronbo RB070D30 MIPI/DSI
- Feiyang FY07024DI26A30-D MIPI-DSI panel
- Rocktech jh057n00900 MIPI-DSI panel
i915:
- Comet Lake (Gen9) PCI IDs
- Updated Icelake PCI IDs
- Elkhartlake (Gen11) support
- DP MST property addtions
- plane and watermark fixes
- Icelake port sync and VEBOX disable fixes
- struct_mutex usage reduction
- Icelake gamma fix
- GuC reset fixes
- make mmap more asynchronous
- sound display power well race fixes
- DDI/MIPI-DSI clocks for Icelake
- Icelake RPS frequency changing support
- Icelake workarounds
amdgpu:
- Use HMM for userptr
- vega20 experimental smu11 support
- RAS support for vega20
- BACO support for vega12 + fixes for vega20
- reworked IH interrupt handling
- amdkfd RAS support
- Freesync improvements
- initial timeline sync object support
- DC Z ordering fixes
- NV12 planes support
- colorspace properties for planes=
- eDP opts if eDP already initialized
nouveau:
- misc fixes
etnaviv:
- misc fixes
msm:
- GPU zap shader support expansion
- robustness ABI addition
exynos:
- Logging cleanups
tegra:
- Shared reset fix
- CPU cache maintenance fix
cirrus:
- driver rewritten using simple helpers
meson:
- G12A support
vmwgfx:
- Resource dirtying management improvements
- Userspace logging improvements
virtio:
- PRIME fixes
rockchip:
- rk3066 hdmi support
sun4i:
- DSI burst mode support
vc4:
- load tracker to detect underflow
v3d:
- v3d v4.2 support
malidp:
- initial Mali D71 support in komeda driver
tfp410:
- omap related improvement
omapdrm:
- drm bridge/panel support
- drop some omap specific panels
rcar-du:
- Display writeback support"
* tag 'drm-next-2019-05-09' of git://anongit.freedesktop.org/drm/drm: (1507 commits)
drm/msm/a6xx: No zap shader is not an error
drm/cma-helper: Fix drm_gem_cma_free_object()
drm: Fix timestamp docs for variable refresh properties.
drm/komeda: Mark the local functions as static
drm/komeda: Fixed warning: Function parameter or member not described
drm/komeda: Expose bus_width to Komeda-CORE
drm/komeda: Add sysfs attribute: core_id and config_id
drm: add non-desktop quirk for Valve HMDs
drm/panfrost: Show stored feature registers
drm/panfrost: Don't scream about deferred probe
drm/panfrost: Disable PM on probe failure
drm/panfrost: Set DMA masks earlier
drm/panfrost: Add sanity checks to submit IOCTL
drm/etnaviv: initialize idle mask before querying the HW db
drm: introduce a capability flag for syncobj timeline support
drm: report consistent errors when checking syncobj capibility
drm/nouveau/nouveau: forward error generated while resuming objects tree
drm/nouveau/fb/ramgk104: fix spelling mistake "sucessfully" -> "successfully"
drm/nouveau/i2c: Disable i2c bus access after ->fini()
drm/nouveau: Remove duplicate ACPI_VIDEO_NOTIFY_PROBE definition
...
Nicolai Stange discovered[1] that if live kernel patching is enabled, and the
function tracer started tracing the same function that was patched, the
conversion of the fentry call site during the translation of going from
calling the live kernel patch trampoline to the iterator trampoline, would
have as slight window where it didn't call anything.
As live kernel patching depends on ftrace to always call its code (to
prevent the function being traced from being called, as it will redirect
it). This small window would allow the old buggy function to be called, and
this can cause undesirable results.
Nicolai submitted new patches[2] but these were controversial. As this is
similar to the static call emulation issues that came up a while ago[3].
But after some debate[4][5] adding a gap in the stack when entering the
breakpoint handler allows for pushing the return address onto the stack to
easily emulate a call.
[1] http://lkml.kernel.org/r/20180726104029.7736-1-nstange@suse.de
[2] http://lkml.kernel.org/r/20190427100639.15074-1-nstange@suse.de
[3] http://lkml.kernel.org/r/3cf04e113d71c9f8e4be95fb84a510f085aa4afa.1541711457.git.jpoimboe@redhat.com
[4] http://lkml.kernel.org/r/CAHk-=wh5OpheSU8Em_Q3Hg8qw_JtoijxOdPtHru6d+5K8TWM=A@mail.gmail.com
[5] http://lkml.kernel.org/r/CAHk-=wjvQxY4DvPrJ6haPgAa6b906h=MwZXO6G8OtiTGe=N7_w@mail.gmail.com
[
Live kernel patching is not implemented on x86_32, thus the emulate
calls are only for x86_64.
]
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Nicolai Stange <nstange@suse.de>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: the arch/x86 maintainers <x86@kernel.org>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Jiri Kosina <jikos@kernel.org>
Cc: Miroslav Benes <mbenes@suse.cz>
Cc: Petr Mladek <pmladek@suse.com>
Cc: Joe Lawrence <joe.lawrence@redhat.com>
Cc: Shuah Khan <shuah@kernel.org>
Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Cc: Mimi Zohar <zohar@linux.ibm.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Nick Desaulniers <ndesaulniers@google.com>
Cc: Nayna Jain <nayna@linux.ibm.com>
Cc: Masahiro Yamada <yamada.masahiro@socionext.com>
Cc: Joerg Roedel <jroedel@suse.de>
Cc: "open list:KERNEL SELFTEST FRAMEWORK" <linux-kselftest@vger.kernel.org>
Cc: stable@vger.kernel.org
Fixes: b700e7f03d ("livepatch: kernel: add support for live patching")
Tested-by: Nicolai Stange <nstange@suse.de>
Reviewed-by: Nicolai Stange <nstange@suse.de>
Reviewed-by: Masami Hiramatsu <mhiramat@kernel.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
[ Changed to only implement emulated calls for x86_64 ]
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
This function is referenced from assembler, so in LTO
it needs to be global and visible to not be optimized away.
Signed-off-by: Andi Kleen <ak@linux.intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Masami Hiramatsu <mhiramat@kernel.org>
Link: https://lkml.kernel.org/r/20190330004743.29541-7-andi@firstfloor.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Here is the "big" set of driver core patches for 5.2-rc1
There are a number of ACPI patches in here as well, as Rafael said they
should go through this tree due to the driver core changes they
required. They have all been acked by the ACPI developers.
There are also a number of small subsystem-specific changes in here, due
to some changes to the kobject core code. Those too have all been acked
by the various subsystem maintainers.
As for content, it's pretty boring outside of the ACPI changes:
- spdx cleanups
- kobject documentation updates
- default attribute groups for kobjects
- other minor kobject/driver core fixes
All have been in linux-next for a while with no reported issues.
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-----BEGIN PGP SIGNATURE-----
iG0EABECAC0WIQT0tgzFv3jCIUoxPcsxR9QN2y37KQUCXNHDbw8cZ3JlZ0Brcm9h
aC5jb20ACgkQMUfUDdst+ynDAgCfbb4LBR6I50wFXb8JM/R6cAS7qrsAn1unshKV
8XCYcif2RxjtdJWXbjdm
=/rLh
-----END PGP SIGNATURE-----
Merge tag 'driver-core-5.2-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/driver-core
Pull driver core/kobject updates from Greg KH:
"Here is the "big" set of driver core patches for 5.2-rc1
There are a number of ACPI patches in here as well, as Rafael said
they should go through this tree due to the driver core changes they
required. They have all been acked by the ACPI developers.
There are also a number of small subsystem-specific changes in here,
due to some changes to the kobject core code. Those too have all been
acked by the various subsystem maintainers.
As for content, it's pretty boring outside of the ACPI changes:
- spdx cleanups
- kobject documentation updates
- default attribute groups for kobjects
- other minor kobject/driver core fixes
All have been in linux-next for a while with no reported issues"
* tag 'driver-core-5.2-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/driver-core: (47 commits)
kobject: clean up the kobject add documentation a bit more
kobject: Fix kernel-doc comment first line
kobject: Remove docstring reference to kset
firmware_loader: Fix a typo ("syfs" -> "sysfs")
kobject: fix dereference before null check on kobj
Revert "driver core: platform: Fix the usage of platform device name(pdev->name)"
init/config: Do not select BUILD_BIN2C for IKCONFIG
Provide in-kernel headers to make extending kernel easier
kobject: Improve doc clarity kobject_init_and_add()
kobject: Improve docs for kobject_add/del
driver core: platform: Fix the usage of platform device name(pdev->name)
livepatch: Replace klp_ktype_patch's default_attrs with groups
cpufreq: schedutil: Replace default_attrs field with groups
padata: Replace padata_attr_type default_attrs field with groups
irqdesc: Replace irq_kobj_type's default_attrs field with groups
net-sysfs: Replace ktype default_attrs field with groups
block: Replace all ktype default_attrs with groups
samples/kobject: Replace foo_ktype's default_attrs field with groups
kobject: Add support for default attribute groups to kobj_type
driver core: Postpone DMA tear-down until after devres release for probe failure
...
https://lore.kernel.org/linux-fsdevel/CAHk-=wg1tFzcaX2v9Z91vPJiBR486ddW5MtgDL02-fOen2F0Aw@mail.gmail.com/T/#m5b2d9ad3aeacea4bd6aa1964468ac074bf3aa5bf
-----BEGIN PGP SIGNATURE-----
iQJEBAABCgAuFiEECVWwJCUO7/z+QjZbZsp4hBP2dUkFAlzR1UgQHGtpcnJAbmV4
ZWRpLmNvbQAKCRBmyniEE/Z1SZBiEACGw1LzUmjV9eBYFjqaUkgX/Zfcu42D4Ek2
8MuWnNdRabtpGQq0LccYlfoL3yH5xECp14IkCgJvkjqoZ3CcqWcv6uDxf0WtnUqZ
wPx1RYZykb4RZj2A6/ndhInReP4AlXICyTVulKb+BquVkemMvmXX8k+bkr/msKfT
9jdKWFIn+ANNABt3y2D7ywZvs9mkxIx+Fti+tVV4BFBeGfUuj4ArZBOHnngRnIk/
XYlQ7FVzENSPSB+3GvL34jTGEzo8suPHKhHQlIhtcd5hwzVRZKE2sdVXsCc6/WbY
YnT32gmT1/+cUuDl1mZSiQY5R4Xkb07k6/jNrdmjQpwmWbZu90cuRhb+JBXwnmjZ
2Wgy3sfwYISDxtePukg1iYePlHlVlGTYqMo3AQrTBs/gEwCKWrsKQb98mRxlf1YK
e2mdtmq6upYoorLFQesfRgrCg4GTBiPkrR3amXsFgJ2O5fhV6R98ZdGSv4kip19f
ZNoc/t1EtKGwyAJwjINduv36E3RSHODWwSPtSnmSS1ieCGToY1SI3bVUkFM4C0tO
5GMdSugHgXRGGVbTd/VftndJm6Wtj8b1j8c/1Vh04Q8qbKKJDRTDzAbK1v8oLaDh
UXAKMIc8uY4caZy3/bTAB2Ou9dibrSi8Oc+LwZqJlwIcbkwn/IGNvmwtWv4ehorE
N7EhCFZsFQ==
=Mavg
-----END PGP SIGNATURE-----
Merge tag 'stream_open-5.2' of https://lab.nexedi.com/kirr/linux
Pull stream_open conversion from Kirill Smelkov:
- remove unnecessary double nonseekable_open from drivers/char/dtlk.c
as noticed by Pavel Machek while reviewing nonseekable_open ->
stream_open mass conversion.
- the mass conversion patch promised in commit 10dce8af34 ("fs:
stream_open - opener for stream-like files so that read and write can
run simultaneously without deadlock") and is automatically generated
by running
$ make coccicheck MODE=patch COCCI=scripts/coccinelle/api/stream_open.cocci
I've verified each generated change manually - that it is correct to
convert - and each other nonseekable_open instance left - that it is
either not correct to convert there, or that it is not converted due
to current stream_open.cocci limitations. More details on this in the
patch.
- finally, change VFS to pass ppos=NULL into .read/.write for files
that declare themselves streams. It was suggested by Rasmus Villemoes
and makes sure that if ppos starts to be erroneously used in a stream
file, such bug won't go unnoticed and will produce an oops instead of
creating illusion of position change being taken into account.
Note: this patch does not conflict with "fuse: Add FOPEN_STREAM to
use stream_open()" that will be hopefully coming via FUSE tree,
because fs/fuse/ uses new-style .read_iter/.write_iter, and for these
accessors position is still passed as non-pointer kiocb.ki_pos .
* tag 'stream_open-5.2' of https://lab.nexedi.com/kirr/linux:
vfs: pass ppos=NULL to .read()/.write() of FMODE_STREAM files
*: convert stream-like files from nonseekable_open -> stream_open
dtlk: remove double call to nonseekable_open
Pull x86 FPU state handling updates from Borislav Petkov:
"This contains work started by Rik van Riel and brought to fruition by
Sebastian Andrzej Siewior with the main goal to optimize when to load
FPU registers: only when returning to userspace and not on every
context switch (while the task remains in the kernel).
In addition, this optimization makes kernel_fpu_begin() cheaper by
requiring registers saving only on the first invocation and skipping
that in following ones.
What is more, this series cleans up and streamlines many aspects of
the already complex FPU code, hopefully making it more palatable for
future improvements and simplifications.
Finally, there's a __user annotations fix from Jann Horn"
* 'x86-fpu-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (29 commits)
x86/fpu: Fault-in user stack if copy_fpstate_to_sigframe() fails
x86/pkeys: Add PKRU value to init_fpstate
x86/fpu: Restore regs in copy_fpstate_to_sigframe() in order to use the fastpath
x86/fpu: Add a fastpath to copy_fpstate_to_sigframe()
x86/fpu: Add a fastpath to __fpu__restore_sig()
x86/fpu: Defer FPU state load until return to userspace
x86/fpu: Merge the two code paths in __fpu__restore_sig()
x86/fpu: Restore from kernel memory on the 64-bit path too
x86/fpu: Inline copy_user_to_fpregs_zeroing()
x86/fpu: Update xstate's PKRU value on write_pkru()
x86/fpu: Prepare copy_fpstate_to_sigframe() for TIF_NEED_FPU_LOAD
x86/fpu: Always store the registers in copy_fpstate_to_sigframe()
x86/entry: Add TIF_NEED_FPU_LOAD
x86/fpu: Eager switch PKRU state
x86/pkeys: Don't check if PKRU is zero before writing it
x86/fpu: Only write PKRU if it is different from current
x86/pkeys: Provide *pkru() helpers
x86/fpu: Use a feature number instead of mask in two more helpers
x86/fpu: Make __raw_xsave_addr() use a feature number instead of mask
x86/fpu: Add an __fpregs_load_activate() internal helper
...
Pull RAS updates from Borislav Petkov:
- Support for varying MCA bank numbers per CPU: this is in preparation
for future CPU enablement (Yazen Ghannam)
- MCA banks read race fix (Tony Luck)
- Facility to filter MCEs which should not be logged (Yazen Ghannam)
- The usual round of cleanups and fixes
* 'ras-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/MCE/AMD: Don't report L1 BTB MCA errors on some family 17h models
x86/MCE: Add an MCE-record filtering function
RAS/CEC: Increment cec_entered under the mutex lock
x86/mce: Fix debugfs_simple_attr.cocci warnings
x86/mce: Remove mce_report_event()
x86/mce: Handle varying MCA bank counts
x86/mce: Fix machine_check_poll() tests for error types
MAINTAINERS: Fix file pattern for X86 MCE INFRASTRUCTURE
x86/MCE: Group AMD function prototypes in <asm/mce.h>
- Fix the handling of Performance and Energy Bias Hint (EPB) on
Intel processors and expose it to user space via sysfs to avoid
having to access it through the generic MSR I/F (Rafael Wysocki).
- Improve the handling of global turbo changes made by the platform
firmware in the intel_pstate driver (Rafael Wysocki).
- Convert some slow-path static_cpu_has() callers to boot_cpu_has()
in cpufreq (Borislav Petkov).
- Fix the frequency calculation loop in the armada-37xx cpufreq
driver (Gregory CLEMENT).
- Fix possible object reference leaks in multuple cpufreq drivers
(Wen Yang).
- Fix kerneldoc comment in the centrino cpufreq driver (dongjian).
- Clean up the ACPI and maple cpufreq drivers (Viresh Kumar, Mohan
Kumar).
- Add support for lx2160a and ls1028a to the qoriq cpufreq driver
(Vabhav Sharma, Yuantian Tang).
- Fix kobject memory leak in the cpufreq core (Viresh Kumar).
- Simplify the IOwait boosting in the schedutil cpufreq governor
and rework the TSC cpufreq notifier on x86 (Rafael Wysocki).
- Clean up the cpufreq core and statistics code (Yue Hu, Kyle Lin).
- Improve the cpufreq documentation, add SPDX license tags to
some PM documentation files and unify copyright notices in
them (Rafael Wysocki).
- Add support for "CPU" domains to the generic power domains (genpd)
framework and provide low-level PSCI firmware support for that
feature (Ulf Hansson).
- Rearrange the PSCI firmware support code and add support for
SYSTEM_RESET2 to it (Ulf Hansson, Sudeep Holla).
- Improve genpd support for devices in multiple power domains (Ulf
Hansson).
- Unify target residency for the AFTR and coupled AFTR states in the
exynos cpuidle driver (Marek Szyprowski).
- Introduce new helper routine in the operating performance points
(OPP) framework (Andrew-sh.Cheng).
- Add support for passing on-die termination (ODT) and auto power
down parameters from the kernel to Trusted Firmware-A (TF-A) to
the rk3399_dmc devfreq driver (Enric Balletbo i Serra).
- Add tracing to devfreq (Lukasz Luba).
- Make the exynos-bus devfreq driver suspend all devices on system
shutdown (Marek Szyprowski).
- Fix a few minor issues in the devfreq subsystem and clean it up
somewhat (Enric Balletbo i Serra, MyungJoo Ham, Rob Herring,
Saravana Kannan, Yangtao Li).
- Improve system wakeup diagnostics (Stephen Boyd).
- Rework filesystem sync messages emitted during system suspend and
hibernation (Harry Pan).
-----BEGIN PGP SIGNATURE-----
iQJGBAABCAAwFiEE4fcc61cGeeHD/fCwgsRv/nhiVHEFAlzQEwUSHHJqd0Byand5
c29ja2kubmV0AAoJEILEb/54YlRxxXwP/jrxikIXdCOV3CJVioV0NetyebwlOqYp
UsIA7lQBfZ/DY6dHw/oKuAT9LP01vcFg6XGe83Alkta9qczR5KZ/MYHFNSZXjXjL
kEvIMBCS/oykaBuW+Xn9am8Ke3Yq/rBSTKWVom3vzSQY0qvZ9GBwPDrzw+k63Zhz
P3afB4ThyY0e9ftgw4HvSSNm13Kn0ItUIQOdaLatXMMcPqP5aAdnUma5Ibinbtpp
rpTHuHKYx7MSjaCg6wl3kKTJeWbQP4wYO2ISZqH9zEwQgdvSHeFAvfPKTegUkmw9
uUsQnPD1JvdglOKovr2muehD1Ur+zsjKDf2OKERkWsWXHPyWzA/AqaVv1mkkU++b
KaWaJ9pE86kGlJ3EXwRbGfV0dM5rrl+dUUQW6nPI1XJnIOFlK61RzwAbqI26F0Mz
AlKxY4jyPLcM3SpQz9iILqyzHQqB67rm29XvId/9scoGGgoqEI4S+v6LYZqI3Vx6
aeSRu+Yof7p5w4Kg5fODX+HzrtMnMrPmLUTXhbExfsYZMi7hXURcN6s+tMpH0ckM
4yiIpnNGCKUSV4vxHBm8XJdAuUnR4Vcz++yFslszgDVVvw5tkvF7SYeHZ6HqcQVm
af9HdWzx3qajs/oyBwdRBedZYDnP1joC5donBI2ofLeF33NA7TEiPX8Zebw8XLkv
fNikssA7PGdv
=nY9p
-----END PGP SIGNATURE-----
Merge tag 'pm-5.2-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm
Pull power management updates from Rafael Wysocki:
"These fix the (Intel-specific) Performance and Energy Bias Hint (EPB)
handling and expose it to user space via sysfs, fix and clean up
several cpufreq drivers, add support for two new chips to the qoriq
cpufreq driver, fix, simplify and clean up the cpufreq core and the
schedutil governor, add support for "CPU" domains to the generic power
domains (genpd) framework and provide low-level PSCI firmware support
for that feature, fix the exynos cpuidle driver and fix a couple of
issues in the devfreq subsystem and clean it up.
Specifics:
- Fix the handling of Performance and Energy Bias Hint (EPB) on Intel
processors and expose it to user space via sysfs to avoid having to
access it through the generic MSR I/F (Rafael Wysocki).
- Improve the handling of global turbo changes made by the platform
firmware in the intel_pstate driver (Rafael Wysocki).
- Convert some slow-path static_cpu_has() callers to boot_cpu_has()
in cpufreq (Borislav Petkov).
- Fix the frequency calculation loop in the armada-37xx cpufreq
driver (Gregory CLEMENT).
- Fix possible object reference leaks in multuple cpufreq drivers
(Wen Yang).
- Fix kerneldoc comment in the centrino cpufreq driver (dongjian).
- Clean up the ACPI and maple cpufreq drivers (Viresh Kumar, Mohan
Kumar).
- Add support for lx2160a and ls1028a to the qoriq cpufreq driver
(Vabhav Sharma, Yuantian Tang).
- Fix kobject memory leak in the cpufreq core (Viresh Kumar).
- Simplify the IOwait boosting in the schedutil cpufreq governor and
rework the TSC cpufreq notifier on x86 (Rafael Wysocki).
- Clean up the cpufreq core and statistics code (Yue Hu, Kyle Lin).
- Improve the cpufreq documentation, add SPDX license tags to some PM
documentation files and unify copyright notices in them (Rafael
Wysocki).
- Add support for "CPU" domains to the generic power domains (genpd)
framework and provide low-level PSCI firmware support for that
feature (Ulf Hansson).
- Rearrange the PSCI firmware support code and add support for
SYSTEM_RESET2 to it (Ulf Hansson, Sudeep Holla).
- Improve genpd support for devices in multiple power domains (Ulf
Hansson).
- Unify target residency for the AFTR and coupled AFTR states in the
exynos cpuidle driver (Marek Szyprowski).
- Introduce new helper routine in the operating performance points
(OPP) framework (Andrew-sh.Cheng).
- Add support for passing on-die termination (ODT) and auto power
down parameters from the kernel to Trusted Firmware-A (TF-A) to the
rk3399_dmc devfreq driver (Enric Balletbo i Serra).
- Add tracing to devfreq (Lukasz Luba).
- Make the exynos-bus devfreq driver suspend all devices on system
shutdown (Marek Szyprowski).
- Fix a few minor issues in the devfreq subsystem and clean it up
somewhat (Enric Balletbo i Serra, MyungJoo Ham, Rob Herring,
Saravana Kannan, Yangtao Li).
- Improve system wakeup diagnostics (Stephen Boyd).
- Rework filesystem sync messages emitted during system suspend and
hibernation (Harry Pan)"
* tag 'pm-5.2-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm: (72 commits)
cpufreq: Fix kobject memleak
cpufreq: armada-37xx: fix frequency calculation for opp
cpufreq: centrino: Fix centrino_setpolicy() kerneldoc comment
cpufreq: qoriq: add support for lx2160a
x86: tsc: Rework time_cpufreq_notifier()
PM / Domains: Allow to attach a CPU via genpd_dev_pm_attach_by_id|name()
PM / Domains: Search for the CPU device outside the genpd lock
PM / Domains: Drop unused in-parameter to some genpd functions
PM / Domains: Use the base device for driver_deferred_probe_check_state()
cpufreq: qoriq: Add ls1028a chip support
PM / Domains: Enable genpd_dev_pm_attach_by_id|name() for single PM domain
PM / Domains: Allow OF lookup for multi PM domain case from ->attach_dev()
PM / Domains: Don't kfree() the virtual device in the error path
cpufreq: Move ->get callback check outside of __cpufreq_get()
PM / Domains: remove unnecessary unlikely()
cpufreq: Remove needless bios_limit check in show_bios_limit()
drivers/cpufreq/acpi-cpufreq.c: This fixes the following checkpatch warning
firmware/psci: add support for SYSTEM_RESET2
PM / devfreq: add tracing for scheduling work
trace: events: add devfreq trace event file
...
Pull x86 microcode loading update from Borislav Petkov:
"A nice Intel microcode blob loading cleanup which gets rid of the ugly
memcpy wrappers and switches the driver to use the iov_iter API. By
Jann Horn.
In addition, the /dev/cpu/microcode interface is finally deprecated as
it is inadequate for the same reasons the late microcode loading is"
* 'x86-microcode-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/microcode: Deprecate MICROCODE_OLD_INTERFACE
x86/microcode: Fix the ancient deprecated microcode loading method
x86/microcode/intel: Refactor Intel microcode blob loading
Pull x86 topology updates from Ingo Molnar:
"Two main changes: preparatory changes for Intel multi-die topology
support, plus a syslog message tweak"
* 'x86-topology-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/topology: Make DEBUG_HOTPLUG_CPU0 pr_info() more descriptive
x86/smpboot: Rename match_die() to match_pkg()
topology: Simplify cputopology.txt formatting and wording
x86/topology: Fix documentation typo
Pull x86 timer updates from Ingo Molnar:
"Two changes: an LTO improvement, plus the new 'nowatchdog' boot option
to disable the clocksource watchdog"
* 'x86-timers-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/timer: Don't inline __const_udelay()
x86/tsc: Add option to disable tsc clocksource watchdog
Pull x86 platform updates from Ingo Molnar:
"Smaller update for Hyper-V to support EOI assist, plus LTO fixes"
* 'x86-platform-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/kvm: Make steal_time visible
x86/hyperv: Make hv_vcpu_is_preempted() visible
x86/hyper-v: Implement EOI assist
Pull x86 mm updates from Ingo Molnar:
"The changes in here are:
- text_poke() fixes and an extensive set of executability lockdowns,
to (hopefully) eliminate the last residual circumstances under
which we are using W|X mappings even temporarily on x86 kernels.
This required a broad range of surgery in text patching facilities,
module loading, trampoline handling and other bits.
- tweak page fault messages to be more informative and more
structured.
- remove DISCONTIGMEM support on x86-32 and make SPARSEMEM the
default.
- reduce KASLR granularity on 5-level paging kernels from 512 GB to
1 GB.
- misc other changes and updates"
* 'x86-mm-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (36 commits)
x86/mm: Initialize PGD cache during mm initialization
x86/alternatives: Add comment about module removal races
x86/kprobes: Use vmalloc special flag
x86/ftrace: Use vmalloc special flag
bpf: Use vmalloc special flag
modules: Use vmalloc special flag
mm/vmalloc: Add flag for freeing of special permsissions
mm/hibernation: Make hibernation handle unmapped pages
x86/mm/cpa: Add set_direct_map_*() functions
x86/alternatives: Remove the return value of text_poke_*()
x86/jump-label: Remove support for custom text poker
x86/modules: Avoid breaking W^X while loading modules
x86/kprobes: Set instruction page as executable
x86/ftrace: Set trampoline pages as executable
x86/kgdb: Avoid redundant comparison of patched code
x86/alternatives: Use temporary mm for text poking
x86/alternatives: Initialize temporary mm for patching
fork: Provide a function for copying init_mm
uprobes: Initialize uprobes earlier
x86/mm: Save debug registers when loading a temporary mm
...
Pull x86 kdump update from Ingo Molnar:
"This includes two changes:
- Raise the crash kernel reservation limit from from ~896MB to ~4GB.
Only very old (and already known-broken) kexec-tools is supposed to
be affected by this negatively.
- Allow higher than 4GB crash kernel allocations when low allocations
fail"
* 'x86-kdump-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/kdump: Fall back to reserve high crashkernel memory
x86/kdump: Have crashkernel=X reserve under 4G by default
Pull x86 irq updates from Ingo Molnar:
"Here are the main changes in this tree:
- Introduce x86-64 IRQ/exception/debug stack guard pages to detect
stack overflows immediately and deterministically.
- Clean up over a decade worth of cruft accumulated.
The outcome of this should be more clear-cut faults/crashes when any
of the low level x86 CPU stacks overflow, instead of silent memory
corruption and sporadic failures much later on"
* 'x86-irq-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (33 commits)
x86/irq: Fix outdated comments
x86/irq/64: Remove stack overflow debug code
x86/irq/64: Remap the IRQ stack with guard pages
x86/irq/64: Split the IRQ stack into its own pages
x86/irq/64: Init hardirq_stack_ptr during CPU hotplug
x86/irq/32: Handle irq stack allocation failure proper
x86/irq/32: Invoke irq_ctx_init() from init_IRQ()
x86/irq/64: Rename irq_stack_ptr to hardirq_stack_ptr
x86/irq/32: Rename hard/softirq_stack to hard/softirq_stack_ptr
x86/irq/32: Make irq stack a character array
x86/irq/32: Define IRQ_STACK_SIZE
x86/dumpstack/64: Speedup in_exception_stack()
x86/exceptions: Split debug IST stack
x86/exceptions: Enable IST guard pages
x86/exceptions: Disconnect IST index and stack order
x86/cpu: Remove orig_ist array
x86/cpu: Prepare TSS.IST setup for guard pages
x86/dumpstack/64: Use cpu_entry_area instead of orig_ist
x86/irq/64: Use cpu entry area instead of orig_ist
x86/traps: Use cpu_entry_area instead of orig_ist
...
Pull x86 cpu updates from Ingo Molnar:
"Two changes: a Hygon CPU fix, and an optimization Centaur CPUs"
* 'x86-cpu-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/power: Optimize C3 entry on Centaur CPUs
x86/CPU/hygon: Fix phys_proc_id calculation logic for multi-die processors
Pull x86 cleanups from Ingo Molnar:
"A handful of cleanups: dma-ops cleanups, missing boot time kcalloc()
check, a Sparse fix and use struct_size() to simplify a vzalloc()
call"
* 'x86-cleanups-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/pci: Clean up usage of X86_DEV_DMA_OPS
x86/Kconfig: Remove the unused X86_DMA_REMAP KConfig symbol
x86/kexec/crash: Use struct_size() in vzalloc()
x86/mm/tlb: Define LOADED_MM_SWITCHING with pointer-sized number
x86/platform/uv: Fix missing checks of kcalloc() return values
Pull x86 cache QoS updates from Ingo Molnar:
"An RDT cleanup and a fix for RDT initialization of new resource
groups"
* 'x86-cache-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/resctrl: Initialize a new resource group with default MBA values
x86/resctrl: Move per RDT domain initialization to a separate function
Pull x86 asm updates from Ingo Molnar:
"This includes the following changes:
- cpu_has() cleanups
- sync_bitops.h modernization to the rmwcc.h facility, similarly to
bitops.h
- continued LTO annotations/fixes
- misc cleanups and smaller cleanups"
* 'x86-asm-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/um/vdso: Drop unnecessary cc-ldoption
x86/vdso: Rename variable to fix -Wshadow warning
x86/cpu/amd: Exclude 32bit only assembler from 64bit build
x86/asm: Mark all top level asm statements as .text
x86/build/vdso: Add FORCE to the build rule of %.so
x86/asm: Modernize sync_bitops.h
x86/mm: Convert some slow-path static_cpu_has() callers to boot_cpu_has()
x86: Convert some slow-path static_cpu_has() callers to boot_cpu_has()
x86/asm: Clarify static_cpu_has()'s intended use
x86/uaccess: Fix implicit cast of __user pointer
x86/cpufeature: Remove __pure attribute to _static_cpu_has()
Pull x86 apic update from Ingo Molnar:
"A single commit which unifies the unnecessarily diverged
implementations of APIC timer initialization. As a result the
max_delta parameter is now consistently taken into account"
* 'x86-apic-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/apic: Unify duplicated local apic timer clockevent initialization
Pull perf updates from Ingo Molnar:
"The main kernel changes were:
- add support for Intel's "adaptive PEBS v4" - which embedds LBS data
in PEBS records and can thus batch up and reduce the IRQ (NMI) rate
significantly - reducing overhead and making call-graph profiling
less intrusive.
- add Intel CPU core and uncore support updates for Tremont, Icelake,
- extend the x86 PMU constraints scheduler with 'constraint ranges'
to better support Icelake hw constraints,
- make x86 call-chain support work better with CONFIG_FRAME_POINTER=y
- misc other changes
Tooling changes:
- updates to the main tools: 'perf record', 'perf trace', 'perf
stat'
- updated Intel and S/390 vendor events
- libtraceevent updates
- misc other updates and fixes"
* 'perf-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (69 commits)
perf/x86: Make perf callchains work without CONFIG_FRAME_POINTER
watchdog: Fix typo in comment
perf/x86/intel: Add Tremont core PMU support
perf/x86/intel/uncore: Add Intel Icelake uncore support
perf/x86/msr: Add Icelake support
perf/x86/intel/rapl: Add Icelake support
perf/x86/intel/cstate: Add Icelake support
perf/x86/intel: Add Icelake support
perf/x86: Support constraint ranges
perf/x86/lbr: Avoid reading the LBRs when adaptive PEBS handles them
perf/x86/intel: Support adaptive PEBS v4
perf/x86/intel/ds: Extract code of event update in short period
perf/x86/intel: Extract memory code PEBS parser for reuse
perf/x86: Support outputting XMM registers
perf/x86/intel: Force resched when TFA sysctl is modified
perf/core: Add perf_pmu_resched() as global function
perf/headers: Fix stale comment for struct perf_addr_filter
perf/core: Make perf_swevent_init_cpu() static
perf/x86: Add sanity checks to x86_schedule_events()
perf/x86: Optimize x86_schedule_events()
...
Pull EFI updates from Ingo Molnar:
"The changes in this cycle were:
- Squash a spurious warning when using the EFI framebuffer on a
non-EFI boot
- Use DMI data to annotate RAS memory errors on ARM just like we do
on Intel
- Followup cleanups for DMI
- libstub Makefile cleanups"
* 'efi-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
efi/libstub/arm: Omit unneeded stripping of ksymtab/kcrctab sections
efi: Unify DMI setup code over the arm/arm64, ia64 and x86 architectures
efi/arm: Show SMBIOS bank/device location in CPER and GHES error logs
efifb: Omit memory map check on legacy boot
efi/libstub: Refactor the cmd_stubcopy Makefile command
Pull stack trace updates from Ingo Molnar:
"So Thomas looked at the stacktrace code recently and noticed a few
weirdnesses, and we all know how such stories of crummy kernel code
meeting German engineering perfection end: a 45-patch series to clean
it all up! :-)
Here's the changes in Thomas's words:
'Struct stack_trace is a sinkhole for input and output parameters
which is largely pointless for most usage sites. In fact if embedded
into other data structures it creates indirections and extra storage
overhead for no benefit.
Looking at all usage sites makes it clear that they just require an
interface which is based on a storage array. That array is either on
stack, global or embedded into some other data structure.
Some of the stack depot usage sites are outright wrong, but
fortunately the wrongness just causes more stack being used for
nothing and does not have functional impact.
Another oddity is the inconsistent termination of the stack trace
with ULONG_MAX. It's pointless as the number of entries is what
determines the length of the stored trace. In fact quite some call
sites remove the ULONG_MAX marker afterwards with or without nasty
comments about it. Not all architectures do that and those which do,
do it inconsistenly either conditional on nr_entries == 0 or
unconditionally.
The following series cleans that up by:
1) Removing the ULONG_MAX termination in the architecture code
2) Removing the ULONG_MAX fixups at the call sites
3) Providing plain storage array based interfaces for stacktrace
and stackdepot.
4) Cleaning up the mess at the callsites including some related
cleanups.
5) Removing the struct stack_trace based interfaces
This is not changing the struct stack_trace interfaces at the
architecture level, but it removes the exposure to the generic
code'"
* 'core-stacktrace-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (45 commits)
x86/stacktrace: Use common infrastructure
stacktrace: Provide common infrastructure
lib/stackdepot: Remove obsolete functions
stacktrace: Remove obsolete functions
livepatch: Simplify stack trace retrieval
tracing: Remove the last struct stack_trace usage
tracing: Simplify stack trace retrieval
tracing: Make ftrace_trace_userstack() static and conditional
tracing: Use percpu stack trace buffer more intelligently
tracing: Simplify stacktrace retrieval in histograms
lockdep: Simplify stack trace handling
lockdep: Remove save argument from check_prev_add()
lockdep: Remove unused trace argument from print_circular_bug()
drm: Simplify stacktrace handling
dm persistent data: Simplify stack trace handling
dm bufio: Simplify stack trace retrieval
btrfs: ref-verify: Simplify stack trace retrieval
dma/debug: Simplify stracktrace retrieval
fault-inject: Simplify stacktrace retrieval
mm/page_owner: Simplify stack trace handling
...
Pull speculation mitigation update from Ingo Molnar:
"This adds the "mitigations=" bootline option, which offers a
cross-arch set of options that will work on x86, PowerPC and s390 that
will map to the arch specific option internally"
* 'core-speculation-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
s390/speculation: Support 'mitigations=' cmdline option
powerpc/speculation: Support 'mitigations=' cmdline option
x86/speculation: Support 'mitigations=' cmdline option
cpu/speculation: Add 'mitigations=' cmdline option
Pull rseq updates from Ingo Molnar:
"A cleanup and a fix to comments"
* 'core-rseq-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
rseq: Remove superfluous rseq_len from task_struct
rseq: Clean up comments by reflecting removal of event counter
Pull objtool updates from Ingo Molnar:
"This is a series from Peter Zijlstra that adds x86 build-time uaccess
validation of SMAP to objtool, which will detect and warn about the
following uaccess API usage bugs and weirdnesses:
- call to %s() with UACCESS enabled
- return with UACCESS enabled
- return with UACCESS disabled from a UACCESS-safe function
- recursive UACCESS enable
- redundant UACCESS disable
- UACCESS-safe disables UACCESS
As it turns out not leaking uaccess permissions outside the intended
uaccess functionality is hard when the interfaces are complex and when
such bugs are mostly dormant.
As a bonus we now also check the DF flag. We had at least one
high-profile bug in that area in the early days of Linux, and the
checking is fairly simple. The checks performed and warnings emitted
are:
- call to %s() with DF set
- return with DF set
- return with modified stack frame
- recursive STD
- redundant CLD
It's all x86-only for now, but later on this can also be used for PAN
on ARM and objtool is fairly cross-platform in principle.
While all warnings emitted by this new checking facility that got
reported to us were fixed, there might be GCC version dependent
warnings that were not reported yet - which we'll address, should they
trigger.
The warnings are non-fatal build warnings"
* 'core-objtool-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (27 commits)
mm/uaccess: Use 'unsigned long' to placate UBSAN warnings on older GCC versions
x86/uaccess: Dont leak the AC flag into __put_user() argument evaluation
sched/x86_64: Don't save flags on context switch
objtool: Add Direction Flag validation
objtool: Add UACCESS validation
objtool: Fix sibling call detection
objtool: Rewrite alt->skip_orig
objtool: Add --backtrace support
objtool: Rewrite add_ignores()
objtool: Handle function aliases
objtool: Set insn->func for alternatives
x86/uaccess, kcov: Disable stack protector
x86/uaccess, ftrace: Fix ftrace_likely_update() vs. SMAP
x86/uaccess, ubsan: Fix UBSAN vs. SMAP
x86/uaccess, kasan: Fix KASAN vs SMAP
x86/smap: Ditch __stringify()
x86/uaccess: Introduce user_access_{save,restore}()
x86/uaccess, signal: Fix AC=1 bloat
x86/uaccess: Always inline user_access_begin()
x86/uaccess, xen: Suppress SMAP warnings
...
Using scripts/coccinelle/api/stream_open.cocci added in 10dce8af34
("fs: stream_open - opener for stream-like files so that read and write
can run simultaneously without deadlock"), search and convert to
stream_open all in-kernel nonseekable_open users for which read and
write actually do not depend on ppos and where there is no other methods
in file_operations which assume @offset access.
I've verified each generated change manually - that it is correct to convert -
and each other nonseekable_open instance left - that it is either not correct
to convert there, or that it is not converted due to current stream_open.cocci
limitations. The script also does not convert files that should be valid to
convert, but that currently have .llseek = noop_llseek or generic_file_llseek
for unknown reason despite file being opened with nonseekable_open (e.g.
drivers/input/mousedev.c)
Among cases converted 14 were potentially vulnerable to read vs write deadlock
(see details in 10dce8af34):
drivers/char/pcmcia/cm4000_cs.c:1685:7-23: ERROR: cm4000_fops: .read() can deadlock .write(); change nonseekable_open -> stream_open to fix.
drivers/gnss/core.c:45:1-17: ERROR: gnss_fops: .read() can deadlock .write(); change nonseekable_open -> stream_open to fix.
drivers/hid/uhid.c:635:1-17: ERROR: uhid_fops: .read() can deadlock .write(); change nonseekable_open -> stream_open to fix.
drivers/infiniband/core/user_mad.c:988:1-17: ERROR: umad_fops: .read() can deadlock .write(); change nonseekable_open -> stream_open to fix.
drivers/input/evdev.c:527:1-17: ERROR: evdev_fops: .read() can deadlock .write(); change nonseekable_open -> stream_open to fix.
drivers/input/misc/uinput.c:401:1-17: ERROR: uinput_fops: .read() can deadlock .write(); change nonseekable_open -> stream_open to fix.
drivers/isdn/capi/capi.c:963:8-24: ERROR: capi_fops: .read() can deadlock .write(); change nonseekable_open -> stream_open to fix.
drivers/leds/uleds.c:77:1-17: ERROR: uleds_fops: .read() can deadlock .write(); change nonseekable_open -> stream_open to fix.
drivers/media/rc/lirc_dev.c:198:1-17: ERROR: lirc_fops: .read() can deadlock .write(); change nonseekable_open -> stream_open to fix.
drivers/s390/char/fs3270.c:488:1-17: ERROR: fs3270_fops: .read() can deadlock .write(); change nonseekable_open -> stream_open to fix.
drivers/usb/misc/ldusb.c:310:1-17: ERROR: ld_usb_fops: .read() can deadlock .write(); change nonseekable_open -> stream_open to fix.
drivers/xen/evtchn.c:667:8-24: ERROR: evtchn_fops: .read() can deadlock .write(); change nonseekable_open -> stream_open to fix.
net/batman-adv/icmp_socket.c:80:1-17: ERROR: batadv_fops: .read() can deadlock .write(); change nonseekable_open -> stream_open to fix.
net/rfkill/core.c:1146:8-24: ERROR: rfkill_fops: .read() can deadlock .write(); change nonseekable_open -> stream_open to fix.
and the rest were just safe to convert to stream_open because their read and
write do not use ppos at all and corresponding file_operations do not
have methods that assume @offset file access(*):
arch/powerpc/platforms/52xx/mpc52xx_gpt.c:631:8-24: WARNING: mpc52xx_wdt_fops: .write() has stream semantic; safe to change nonseekable_open -> stream_open.
arch/powerpc/platforms/cell/spufs/file.c:591:8-24: WARNING: spufs_ibox_fops: .read() has stream semantic; safe to change nonseekable_open -> stream_open.
arch/powerpc/platforms/cell/spufs/file.c:591:8-24: WARNING: spufs_ibox_stat_fops: .read() has stream semantic; safe to change nonseekable_open -> stream_open.
arch/powerpc/platforms/cell/spufs/file.c:591:8-24: WARNING: spufs_mbox_fops: .read() has stream semantic; safe to change nonseekable_open -> stream_open.
arch/powerpc/platforms/cell/spufs/file.c:591:8-24: WARNING: spufs_mbox_stat_fops: .read() has stream semantic; safe to change nonseekable_open -> stream_open.
arch/powerpc/platforms/cell/spufs/file.c:591:8-24: WARNING: spufs_wbox_fops: .write() has stream semantic; safe to change nonseekable_open -> stream_open.
arch/powerpc/platforms/cell/spufs/file.c:591:8-24: WARNING: spufs_wbox_stat_fops: .read() has stream semantic; safe to change nonseekable_open -> stream_open.
arch/um/drivers/harddog_kern.c:88:8-24: WARNING: harddog_fops: .write() has stream semantic; safe to change nonseekable_open -> stream_open.
arch/x86/kernel/cpu/microcode/core.c:430:33-49: WARNING: microcode_fops: .write() has stream semantic; safe to change nonseekable_open -> stream_open.
drivers/char/ds1620.c:215:8-24: WARNING: ds1620_fops: .read() has stream semantic; safe to change nonseekable_open -> stream_open.
drivers/char/dtlk.c:301:1-17: WARNING: dtlk_fops: .read() and .write() have stream semantic; safe to change nonseekable_open -> stream_open.
drivers/char/ipmi/ipmi_watchdog.c:840:9-25: WARNING: ipmi_wdog_fops: .read() and .write() have stream semantic; safe to change nonseekable_open -> stream_open.
drivers/char/pcmcia/scr24x_cs.c:95:8-24: WARNING: scr24x_fops: .read() and .write() have stream semantic; safe to change nonseekable_open -> stream_open.
drivers/char/tb0219.c:246:9-25: WARNING: tb0219_fops: .read() and .write() have stream semantic; safe to change nonseekable_open -> stream_open.
drivers/firewire/nosy.c:306:8-24: WARNING: nosy_ops: .read() has stream semantic; safe to change nonseekable_open -> stream_open.
drivers/hwmon/fschmd.c:840:8-24: WARNING: watchdog_fops: .write() has stream semantic; safe to change nonseekable_open -> stream_open.
drivers/hwmon/w83793.c:1344:8-24: WARNING: watchdog_fops: .write() has stream semantic; safe to change nonseekable_open -> stream_open.
drivers/infiniband/core/ucma.c:1747:8-24: WARNING: ucma_fops: .write() has stream semantic; safe to change nonseekable_open -> stream_open.
drivers/infiniband/core/ucm.c:1178:8-24: WARNING: ucm_fops: .write() has stream semantic; safe to change nonseekable_open -> stream_open.
drivers/infiniband/core/uverbs_main.c:1086:8-24: WARNING: uverbs_fops: .write() has stream semantic; safe to change nonseekable_open -> stream_open.
drivers/input/joydev.c:282:1-17: WARNING: joydev_fops: .read() has stream semantic; safe to change nonseekable_open -> stream_open.
drivers/pci/switch/switchtec.c:393:1-17: WARNING: switchtec_fops: .read() and .write() have stream semantic; safe to change nonseekable_open -> stream_open.
drivers/platform/chrome/cros_ec_debugfs.c:135:8-24: WARNING: cros_ec_console_log_fops: .read() has stream semantic; safe to change nonseekable_open -> stream_open.
drivers/rtc/rtc-ds1374.c:470:9-25: WARNING: ds1374_wdt_fops: .read() and .write() have stream semantic; safe to change nonseekable_open -> stream_open.
drivers/rtc/rtc-m41t80.c:805:9-25: WARNING: wdt_fops: .read() and .write() have stream semantic; safe to change nonseekable_open -> stream_open.
drivers/s390/char/tape_char.c:293:2-18: WARNING: tape_fops: .read() and .write() have stream semantic; safe to change nonseekable_open -> stream_open.
drivers/s390/char/zcore.c:194:8-24: WARNING: zcore_reipl_fops: .write() has stream semantic; safe to change nonseekable_open -> stream_open.
drivers/s390/crypto/zcrypt_api.c:528:8-24: WARNING: zcrypt_fops: .read() and .write() have stream semantic; safe to change nonseekable_open -> stream_open.
drivers/spi/spidev.c:594:1-17: WARNING: spidev_fops: .read() and .write() have stream semantic; safe to change nonseekable_open -> stream_open.
drivers/staging/pi433/pi433_if.c:974:1-17: WARNING: pi433_fops: .read() and .write() have stream semantic; safe to change nonseekable_open -> stream_open.
drivers/watchdog/acquirewdt.c:203:8-24: WARNING: acq_fops: .write() has stream semantic; safe to change nonseekable_open -> stream_open.
drivers/watchdog/advantechwdt.c:202:8-24: WARNING: advwdt_fops: .write() has stream semantic; safe to change nonseekable_open -> stream_open.
drivers/watchdog/alim1535_wdt.c:252:8-24: WARNING: ali_fops: .write() has stream semantic; safe to change nonseekable_open -> stream_open.
drivers/watchdog/alim7101_wdt.c:217:8-24: WARNING: wdt_fops: .write() has stream semantic; safe to change nonseekable_open -> stream_open.
drivers/watchdog/ar7_wdt.c:166:8-24: WARNING: ar7_wdt_fops: .write() has stream semantic; safe to change nonseekable_open -> stream_open.
drivers/watchdog/at91rm9200_wdt.c:113:8-24: WARNING: at91wdt_fops: .write() has stream semantic; safe to change nonseekable_open -> stream_open.
drivers/watchdog/ath79_wdt.c:135:8-24: WARNING: ath79_wdt_fops: .write() has stream semantic; safe to change nonseekable_open -> stream_open.
drivers/watchdog/bcm63xx_wdt.c:119:8-24: WARNING: bcm63xx_wdt_fops: .write() has stream semantic; safe to change nonseekable_open -> stream_open.
drivers/watchdog/cpu5wdt.c:143:8-24: WARNING: cpu5wdt_fops: .write() has stream semantic; safe to change nonseekable_open -> stream_open.
drivers/watchdog/cpwd.c:397:8-24: WARNING: cpwd_fops: .read() and .write() have stream semantic; safe to change nonseekable_open -> stream_open.
drivers/watchdog/eurotechwdt.c:319:8-24: WARNING: eurwdt_fops: .write() has stream semantic; safe to change nonseekable_open -> stream_open.
drivers/watchdog/f71808e_wdt.c:528:8-24: WARNING: watchdog_fops: .write() has stream semantic; safe to change nonseekable_open -> stream_open.
drivers/watchdog/gef_wdt.c:232:8-24: WARNING: gef_wdt_fops: .write() has stream semantic; safe to change nonseekable_open -> stream_open.
drivers/watchdog/geodewdt.c:95:8-24: WARNING: geodewdt_fops: .write() has stream semantic; safe to change nonseekable_open -> stream_open.
drivers/watchdog/ib700wdt.c:241:8-24: WARNING: ibwdt_fops: .write() has stream semantic; safe to change nonseekable_open -> stream_open.
drivers/watchdog/ibmasr.c:326:8-24: WARNING: asr_fops: .write() has stream semantic; safe to change nonseekable_open -> stream_open.
drivers/watchdog/indydog.c:80:8-24: WARNING: indydog_fops: .write() has stream semantic; safe to change nonseekable_open -> stream_open.
drivers/watchdog/intel_scu_watchdog.c:307:8-24: WARNING: intel_scu_fops: .write() has stream semantic; safe to change nonseekable_open -> stream_open.
drivers/watchdog/iop_wdt.c:104:8-24: WARNING: iop_wdt_fops: .write() has stream semantic; safe to change nonseekable_open -> stream_open.
drivers/watchdog/it8712f_wdt.c:330:8-24: WARNING: it8712f_wdt_fops: .write() has stream semantic; safe to change nonseekable_open -> stream_open.
drivers/watchdog/ixp4xx_wdt.c:68:8-24: WARNING: ixp4xx_wdt_fops: .write() has stream semantic; safe to change nonseekable_open -> stream_open.
drivers/watchdog/ks8695_wdt.c:145:8-24: WARNING: ks8695wdt_fops: .write() has stream semantic; safe to change nonseekable_open -> stream_open.
drivers/watchdog/m54xx_wdt.c:88:8-24: WARNING: m54xx_wdt_fops: .write() has stream semantic; safe to change nonseekable_open -> stream_open.
drivers/watchdog/machzwd.c:336:8-24: WARNING: zf_fops: .write() has stream semantic; safe to change nonseekable_open -> stream_open.
drivers/watchdog/mixcomwd.c:153:8-24: WARNING: mixcomwd_fops: .write() has stream semantic; safe to change nonseekable_open -> stream_open.
drivers/watchdog/mtx-1_wdt.c:121:8-24: WARNING: mtx1_wdt_fops: .write() has stream semantic; safe to change nonseekable_open -> stream_open.
drivers/watchdog/mv64x60_wdt.c:136:8-24: WARNING: mv64x60_wdt_fops: .write() has stream semantic; safe to change nonseekable_open -> stream_open.
drivers/watchdog/nuc900_wdt.c:134:8-24: WARNING: nuc900wdt_fops: .write() has stream semantic; safe to change nonseekable_open -> stream_open.
drivers/watchdog/nv_tco.c:164:8-24: WARNING: nv_tco_fops: .write() has stream semantic; safe to change nonseekable_open -> stream_open.
drivers/watchdog/pc87413_wdt.c:289:8-24: WARNING: pc87413_fops: .write() has stream semantic; safe to change nonseekable_open -> stream_open.
drivers/watchdog/pcwd.c:698:8-24: WARNING: pcwd_fops: .write() has stream semantic; safe to change nonseekable_open -> stream_open.
drivers/watchdog/pcwd.c:737:8-24: WARNING: pcwd_temp_fops: .read() has stream semantic; safe to change nonseekable_open -> stream_open.
drivers/watchdog/pcwd_pci.c:581:8-24: WARNING: pcipcwd_fops: .write() has stream semantic; safe to change nonseekable_open -> stream_open.
drivers/watchdog/pcwd_pci.c:623:8-24: WARNING: pcipcwd_temp_fops: .read() has stream semantic; safe to change nonseekable_open -> stream_open.
drivers/watchdog/pcwd_usb.c:488:8-24: WARNING: usb_pcwd_fops: .write() has stream semantic; safe to change nonseekable_open -> stream_open.
drivers/watchdog/pcwd_usb.c:527:8-24: WARNING: usb_pcwd_temperature_fops: .read() has stream semantic; safe to change nonseekable_open -> stream_open.
drivers/watchdog/pika_wdt.c:121:8-24: WARNING: pikawdt_fops: .write() has stream semantic; safe to change nonseekable_open -> stream_open.
drivers/watchdog/pnx833x_wdt.c:119:8-24: WARNING: pnx833x_wdt_fops: .write() has stream semantic; safe to change nonseekable_open -> stream_open.
drivers/watchdog/rc32434_wdt.c:153:8-24: WARNING: rc32434_wdt_fops: .write() has stream semantic; safe to change nonseekable_open -> stream_open.
drivers/watchdog/rdc321x_wdt.c:145:8-24: WARNING: rdc321x_wdt_fops: .write() has stream semantic; safe to change nonseekable_open -> stream_open.
drivers/watchdog/riowd.c:79:1-17: WARNING: riowd_fops: .write() has stream semantic; safe to change nonseekable_open -> stream_open.
drivers/watchdog/sa1100_wdt.c:62:8-24: WARNING: sa1100dog_fops: .write() has stream semantic; safe to change nonseekable_open -> stream_open.
drivers/watchdog/sbc60xxwdt.c:211:8-24: WARNING: wdt_fops: .write() has stream semantic; safe to change nonseekable_open -> stream_open.
drivers/watchdog/sbc7240_wdt.c:139:8-24: WARNING: wdt_fops: .write() has stream semantic; safe to change nonseekable_open -> stream_open.
drivers/watchdog/sbc8360.c:274:8-24: WARNING: sbc8360_fops: .write() has stream semantic; safe to change nonseekable_open -> stream_open.
drivers/watchdog/sbc_epx_c3.c:81:8-24: WARNING: epx_c3_fops: .write() has stream semantic; safe to change nonseekable_open -> stream_open.
drivers/watchdog/sbc_fitpc2_wdt.c:78:8-24: WARNING: fitpc2_wdt_fops: .write() has stream semantic; safe to change nonseekable_open -> stream_open.
drivers/watchdog/sb_wdog.c:108:1-17: WARNING: sbwdog_fops: .write() has stream semantic; safe to change nonseekable_open -> stream_open.
drivers/watchdog/sc1200wdt.c:181:8-24: WARNING: sc1200wdt_fops: .write() has stream semantic; safe to change nonseekable_open -> stream_open.
drivers/watchdog/sc520_wdt.c:261:8-24: WARNING: wdt_fops: .write() has stream semantic; safe to change nonseekable_open -> stream_open.
drivers/watchdog/sch311x_wdt.c:319:8-24: WARNING: sch311x_wdt_fops: .write() has stream semantic; safe to change nonseekable_open -> stream_open.
drivers/watchdog/scx200_wdt.c:105:8-24: WARNING: scx200_wdt_fops: .write() has stream semantic; safe to change nonseekable_open -> stream_open.
drivers/watchdog/smsc37b787_wdt.c:369:8-24: WARNING: wb_smsc_wdt_fops: .write() has stream semantic; safe to change nonseekable_open -> stream_open.
drivers/watchdog/w83877f_wdt.c:227:8-24: WARNING: wdt_fops: .write() has stream semantic; safe to change nonseekable_open -> stream_open.
drivers/watchdog/w83977f_wdt.c:301:8-24: WARNING: wdt_fops: .write() has stream semantic; safe to change nonseekable_open -> stream_open.
drivers/watchdog/wafer5823wdt.c:200:8-24: WARNING: wafwdt_fops: .write() has stream semantic; safe to change nonseekable_open -> stream_open.
drivers/watchdog/watchdog_dev.c:828:8-24: WARNING: watchdog_fops: .write() has stream semantic; safe to change nonseekable_open -> stream_open.
drivers/watchdog/wdrtas.c:379:8-24: WARNING: wdrtas_fops: .write() has stream semantic; safe to change nonseekable_open -> stream_open.
drivers/watchdog/wdrtas.c:445:8-24: WARNING: wdrtas_temp_fops: .read() has stream semantic; safe to change nonseekable_open -> stream_open.
drivers/watchdog/wdt285.c:104:1-17: WARNING: watchdog_fops: .write() has stream semantic; safe to change nonseekable_open -> stream_open.
drivers/watchdog/wdt977.c:276:8-24: WARNING: wdt977_fops: .write() has stream semantic; safe to change nonseekable_open -> stream_open.
drivers/watchdog/wdt.c:424:8-24: WARNING: wdt_fops: .write() has stream semantic; safe to change nonseekable_open -> stream_open.
drivers/watchdog/wdt.c:484:8-24: WARNING: wdt_temp_fops: .read() has stream semantic; safe to change nonseekable_open -> stream_open.
drivers/watchdog/wdt_pci.c:464:8-24: WARNING: wdtpci_fops: .write() has stream semantic; safe to change nonseekable_open -> stream_open.
drivers/watchdog/wdt_pci.c:527:8-24: WARNING: wdtpci_temp_fops: .read() has stream semantic; safe to change nonseekable_open -> stream_open.
net/batman-adv/log.c:105:1-17: WARNING: batadv_log_fops: .read() has stream semantic; safe to change nonseekable_open -> stream_open.
sound/core/control.c:57:7-23: WARNING: snd_ctl_f_ops: .read() has stream semantic; safe to change nonseekable_open -> stream_open.
sound/core/rawmidi.c:385:7-23: WARNING: snd_rawmidi_f_ops: .read() and .write() have stream semantic; safe to change nonseekable_open -> stream_open.
sound/core/seq/seq_clientmgr.c:310:7-23: WARNING: snd_seq_f_ops: .read() and .write() have stream semantic; safe to change nonseekable_open -> stream_open.
sound/core/timer.c:1428:7-23: WARNING: snd_timer_f_ops: .read() has stream semantic; safe to change nonseekable_open -> stream_open.
One can also recheck/review the patch via generating it with explanation comments included via
$ make coccicheck MODE=patch COCCI=scripts/coccinelle/api/stream_open.cocci SPFLAGS="-D explain"
(*) This second group also contains cases with read/write deadlocks that
stream_open.cocci don't yet detect, but which are still valid to convert to
stream_open since ppos is not used. For example drivers/pci/switch/switchtec.c
calls wait_for_completion_interruptible() in its .read, but stream_open.cocci
currently detects only "wait_event*" as blocking.
Cc: Michael Kerrisk <mtk.manpages@gmail.com>
Cc: Yongzhi Pan <panyongzhi@gmail.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: David Vrabel <david.vrabel@citrix.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Miklos Szeredi <miklos@szeredi.hu>
Cc: Tejun Heo <tj@kernel.org>
Cc: Kirill Tkhai <ktkhai@virtuozzo.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Julia Lawall <Julia.Lawall@lip6.fr>
Cc: Nikolaus Rath <Nikolaus@rath.org>
Cc: Han-Wen Nienhuys <hanwen@google.com>
Cc: Anatolij Gustschin <agust@denx.de>
Cc: Jeff Dike <jdike@addtoit.com>
Cc: Richard Weinberger <richard@nod.at>
Cc: Anton Ivanov <anton.ivanov@cambridgegreys.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: "James R. Van Zandt" <jrv@vanzandt.mv.com>
Cc: Corey Minyard <minyard@acm.org>
Cc: Harald Welte <laforge@gnumonks.org>
Acked-by: Lubomir Rintel <lkundrak@v3.sk> [scr24x_cs]
Cc: Stefan Richter <stefanr@s5r6.in-berlin.de>
Cc: Johan Hovold <johan@kernel.org>
Cc: David Herrmann <dh.herrmann@googlemail.com>
Cc: Jiri Kosina <jikos@kernel.org>
Cc: Benjamin Tissoires <benjamin.tissoires@redhat.com>
Cc: Jean Delvare <jdelvare@suse.com>
Acked-by: Guenter Roeck <linux@roeck-us.net> [watchdog/* hwmon/*]
Cc: Rudolf Marek <r.marek@assembler.cz>
Cc: Dmitry Torokhov <dmitry.torokhov@gmail.com>
Cc: Karsten Keil <isdn@linux-pingi.de>
Cc: Jacek Anaszewski <jacek.anaszewski@gmail.com>
Cc: Pavel Machek <pavel@ucw.cz>
Cc: Mauro Carvalho Chehab <mchehab@kernel.org>
Cc: Kurt Schwemmer <kurt.schwemmer@microsemi.com>
Acked-by: Logan Gunthorpe <logang@deltatee.com> [drivers/pci/switch/switchtec]
Acked-by: Bjorn Helgaas <bhelgaas@google.com> [drivers/pci/switch/switchtec]
Cc: Benson Leung <bleung@chromium.org>
Acked-by: Enric Balletbo i Serra <enric.balletbo@collabora.com> [platform/chrome]
Cc: Alessandro Zummo <a.zummo@towertech.it>
Acked-by: Alexandre Belloni <alexandre.belloni@bootlin.com> [rtc/*]
Cc: Mark Brown <broonie@kernel.org>
Cc: Wim Van Sebroeck <wim@linux-watchdog.org>
Cc: Florian Fainelli <f.fainelli@gmail.com>
Cc: bcm-kernel-feedback-list@broadcom.com
Cc: Wan ZongShun <mcuos.com@gmail.com>
Cc: Zwane Mwaikambo <zwanem@gmail.com>
Cc: Marek Lindner <mareklindner@neomailbox.ch>
Cc: Simon Wunderlich <sw@simonwunderlich.de>
Cc: Antonio Quartulli <a@unstable.cc>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Johannes Berg <johannes@sipsolutions.net>
Cc: Jaroslav Kysela <perex@perex.cz>
Cc: Takashi Iwai <tiwai@suse.com>
Signed-off-by: Kirill Smelkov <kirr@nexedi.com>
In the compacted form, XSAVES may save only the XMM+SSE state but skip
FP (x87 state).
This is denoted by header->xfeatures = 6. The fastpath
(copy_fpregs_to_sigframe()) does that but _also_ initialises the FP
state (cwd to 0x37f, mxcsr as we do, remaining fields to 0).
The slowpath (copy_xstate_to_user()) leaves most of the FP
state untouched. Only mxcsr and mxcsr_flags are set due to
xfeatures_mxcsr_quirk(). Now that XFEATURE_MASK_FP is set
unconditionally, see
04944b793e ("x86: xsave: set FP, SSE bits in the xsave header in the user sigcontext"),
on return from the signal, random garbage is loaded as the FP state.
Instead of utilizing copy_xstate_to_user(), fault-in the user memory
and retry the fast path. Ideally, the fast path succeeds on the second
attempt but may be retried again if the memory is swapped out due
to memory pressure. If the user memory can not be faulted-in then
get_user_pages() returns an error so we don't loop forever.
Fault in memory via get_user_pages_unlocked() so
copy_fpregs_to_sigframe() succeeds without a fault.
Fixes: 69277c98f5 ("x86/fpu: Always store the registers in copy_fpstate_to_sigframe()")
Reported-by: Kurt Kanzenbach <kurt.kanzenbach@linutronix.de>
Suggested-by: Dave Hansen <dave.hansen@intel.com>
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Jann Horn <jannh@google.com>
Cc: "linux-mm@kvack.org" <linux-mm@kvack.org>
Cc: Qian Cai <cai@lca.pw>
Cc: Rik van Riel <riel@surriel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/20190502171139.mqtegctsg35cir2e@linutronix.de
pfn_valid check is not sufficient because it only checks if a page has a struct
page or not, if "mem=" was passed to the kernel some valid pages won't have a
struct page. This means that if guests were assigned valid memory that lies
after the mem= boundary it will be passed uncached to the guest no matter what
the guest caching attributes are for this memory.
Introduce a new function e820__mapped_raw_any which is equivalent to
e820__mapped_any but uses the original e820 unmodified and use it to
identify real *RAM*.
Signed-off-by: KarimAllah Ahmed <karahmed@amazon.de>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Add a comment to clarify that users of text_poke() must ensure that
no races with module removal take place.
Signed-off-by: Nadav Amit <namit@vmware.com>
Signed-off-by: Rick Edgecombe <rick.p.edgecombe@intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: <akpm@linux-foundation.org>
Cc: <ard.biesheuvel@linaro.org>
Cc: <deneen.t.dock@intel.com>
Cc: <kernel-hardening@lists.openwall.com>
Cc: <kristen@linux.intel.com>
Cc: <linux_dti@icloud.com>
Cc: <will.deacon@arm.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Rik van Riel <riel@surriel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/20190426001143.4983-22-namit@vmware.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Use new flag VM_FLUSH_RESET_PERMS for handling freeing of special
permissioned memory in vmalloc and remove places where memory was set NX
and RW before freeing which is no longer needed.
Signed-off-by: Rick Edgecombe <rick.p.edgecombe@intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: <akpm@linux-foundation.org>
Cc: <ard.biesheuvel@linaro.org>
Cc: <deneen.t.dock@intel.com>
Cc: <kernel-hardening@lists.openwall.com>
Cc: <kristen@linux.intel.com>
Cc: <linux_dti@icloud.com>
Cc: <will.deacon@arm.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Nadav Amit <nadav.amit@gmail.com>
Cc: Rik van Riel <riel@surriel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/20190426001143.4983-21-namit@vmware.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Use new flag VM_FLUSH_RESET_PERMS for handling freeing of special
permissioned memory in vmalloc and remove places where memory was set NX
and RW before freeing which is no longer needed.
Tested-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Signed-off-by: Rick Edgecombe <rick.p.edgecombe@intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Cc: <akpm@linux-foundation.org>
Cc: <ard.biesheuvel@linaro.org>
Cc: <deneen.t.dock@intel.com>
Cc: <kernel-hardening@lists.openwall.com>
Cc: <kristen@linux.intel.com>
Cc: <linux_dti@icloud.com>
Cc: <will.deacon@arm.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Nadav Amit <nadav.amit@gmail.com>
Cc: Rik van Riel <riel@surriel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/20190426001143.4983-20-namit@vmware.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
There are only two types of text poking: early and breakpoint based. The use
of a function pointer to perform text poking complicates the code and is
probably inefficient due to the use of indirect branches.
Signed-off-by: Nadav Amit <namit@vmware.com>
Signed-off-by: Rick Edgecombe <rick.p.edgecombe@intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: <akpm@linux-foundation.org>
Cc: <ard.biesheuvel@linaro.org>
Cc: <deneen.t.dock@intel.com>
Cc: <kernel-hardening@lists.openwall.com>
Cc: <kristen@linux.intel.com>
Cc: <linux_dti@icloud.com>
Cc: <will.deacon@arm.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Rik van Riel <riel@surriel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/20190426001143.4983-13-namit@vmware.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
When modules and BPF filters are loaded, there is a time window in
which some memory is both writable and executable. An attacker that has
already found another vulnerability (e.g., a dangling pointer) might be
able to exploit this behavior to overwrite kernel code. Prevent having
writable executable PTEs in this stage.
In addition, avoiding having W+X mappings can also slightly simplify the
patching of modules code on initialization (e.g., by alternatives and
static-key), as would be done in the next patch. This was actually the
main motivation for this patch.
To avoid having W+X mappings, set them initially as RW (NX) and after
they are set as RO set them as X as well. Setting them as executable is
done as a separate step to avoid one core in which the old PTE is cached
(hence writable), and another which sees the updated PTE (executable),
which would break the W^X protection.
Suggested-by: Thomas Gleixner <tglx@linutronix.de>
Suggested-by: Andy Lutomirski <luto@amacapital.net>
Signed-off-by: Nadav Amit <namit@vmware.com>
Signed-off-by: Rick Edgecombe <rick.p.edgecombe@intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: <akpm@linux-foundation.org>
Cc: <ard.biesheuvel@linaro.org>
Cc: <deneen.t.dock@intel.com>
Cc: <kernel-hardening@lists.openwall.com>
Cc: <kristen@linux.intel.com>
Cc: <linux_dti@icloud.com>
Cc: <will.deacon@arm.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Jessica Yu <jeyu@kernel.org>
Cc: Kees Cook <keescook@chromium.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Rik van Riel <riel@surriel.com>
Link: https://lkml.kernel.org/r/20190426001143.4983-12-namit@vmware.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Set the page as executable after allocation. This patch is a
preparatory patch for a following patch that makes module allocated
pages non-executable.
While at it, do some small cleanup of what appears to be unnecessary
masking.
Signed-off-by: Nadav Amit <namit@vmware.com>
Signed-off-by: Rick Edgecombe <rick.p.edgecombe@intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: <akpm@linux-foundation.org>
Cc: <ard.biesheuvel@linaro.org>
Cc: <deneen.t.dock@intel.com>
Cc: <kernel-hardening@lists.openwall.com>
Cc: <kristen@linux.intel.com>
Cc: <linux_dti@icloud.com>
Cc: <will.deacon@arm.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Rik van Riel <riel@surriel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/20190426001143.4983-11-namit@vmware.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Since alloc_module() will not set the pages as executable soon, set
ftrace trampoline pages as executable after they are allocated.
For the time being, do not change ftrace to use the text_poke()
interface. As a result, ftrace still breaks W^X.
Signed-off-by: Nadav Amit <namit@vmware.com>
Signed-off-by: Rick Edgecombe <rick.p.edgecombe@intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Cc: <akpm@linux-foundation.org>
Cc: <ard.biesheuvel@linaro.org>
Cc: <deneen.t.dock@intel.com>
Cc: <kernel-hardening@lists.openwall.com>
Cc: <kristen@linux.intel.com>
Cc: <linux_dti@icloud.com>
Cc: <will.deacon@arm.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Rik van Riel <riel@surriel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/20190426001143.4983-10-namit@vmware.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
text_poke() already ensures that the written value is the correct one
and fails if that is not the case. There is no need for an additional
comparison. Remove it.
Signed-off-by: Nadav Amit <namit@vmware.com>
Signed-off-by: Rick Edgecombe <rick.p.edgecombe@intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: <akpm@linux-foundation.org>
Cc: <ard.biesheuvel@linaro.org>
Cc: <deneen.t.dock@intel.com>
Cc: <kernel-hardening@lists.openwall.com>
Cc: <kristen@linux.intel.com>
Cc: <linux_dti@icloud.com>
Cc: <will.deacon@arm.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Rik van Riel <riel@surriel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/20190426001143.4983-9-namit@vmware.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
text_poke() can potentially compromise security as it sets temporary
PTEs in the fixmap. These PTEs might be used to rewrite the kernel code
from other cores accidentally or maliciously, if an attacker gains the
ability to write onto kernel memory.
Moreover, since remote TLBs are not flushed after the temporary PTEs are
removed, the time-window in which the code is writable is not limited if
the fixmap PTEs - maliciously or accidentally - are cached in the TLB.
To address these potential security hazards, use a temporary mm for
patching the code.
Finally, text_poke() is also not conservative enough when mapping pages,
as it always tries to map 2 pages, even when a single one is sufficient.
So try to be more conservative, and do not map more than needed.
Signed-off-by: Nadav Amit <namit@vmware.com>
Signed-off-by: Rick Edgecombe <rick.p.edgecombe@intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: <akpm@linux-foundation.org>
Cc: <ard.biesheuvel@linaro.org>
Cc: <deneen.t.dock@intel.com>
Cc: <kernel-hardening@lists.openwall.com>
Cc: <kristen@linux.intel.com>
Cc: <linux_dti@icloud.com>
Cc: <will.deacon@arm.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Rik van Riel <riel@surriel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/20190426001143.4983-8-namit@vmware.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
To prevent improper use of the PTEs that are used for text patching, the
next patches will use a temporary mm struct. Initailize it by copying
the init mm.
The address that will be used for patching is taken from the lower area
that is usually used for the task memory. Doing so prevents the need to
frequently synchronize the temporary-mm (e.g., when BPF programs are
installed), since different PGDs are used for the task memory.
Finally, randomize the address of the PTEs to harden against exploits
that use these PTEs.
Suggested-by: Andy Lutomirski <luto@kernel.org>
Tested-by: Masami Hiramatsu <mhiramat@kernel.org>
Signed-off-by: Nadav Amit <namit@vmware.com>
Signed-off-by: Rick Edgecombe <rick.p.edgecombe@intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Rik van Riel <riel@surriel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: akpm@linux-foundation.org
Cc: ard.biesheuvel@linaro.org
Cc: deneen.t.dock@intel.com
Cc: kernel-hardening@lists.openwall.com
Cc: kristen@linux.intel.com
Cc: linux_dti@icloud.com
Cc: will.deacon@arm.com
Link: https://lkml.kernel.org/r/20190426232303.28381-8-nadav.amit@gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
There is no apparent reason not to use text_poke_early() during
early-init, since no patching of code that might be on the stack is done
and only a single core is running.
This is required for the next patches that would set a temporary mm for
text poking, and this mm is only initialized after some static-keys are
enabled/disabled.
Signed-off-by: Nadav Amit <namit@vmware.com>
Signed-off-by: Rick Edgecombe <rick.p.edgecombe@intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: <akpm@linux-foundation.org>
Cc: <ard.biesheuvel@linaro.org>
Cc: <deneen.t.dock@intel.com>
Cc: <kernel-hardening@lists.openwall.com>
Cc: <kristen@linux.intel.com>
Cc: <linux_dti@icloud.com>
Cc: <will.deacon@arm.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Rik van Riel <riel@surriel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/20190426001143.4983-3-namit@vmware.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
text_mutex is currently expected to be held before text_poke() is
called, but kgdb does not take the mutex, and instead *supposedly*
ensures the lock is not taken and will not be acquired by any other core
while text_poke() is running.
The reason for the "supposedly" comment is that it is not entirely clear
that this would be the case if gdb_do_roundup is zero.
Create two wrapper functions, text_poke() and text_poke_kgdb(), which do
or do not run the lockdep assertion respectively.
While we are at it, change the return code of text_poke() to something
meaningful. One day, callers might actually respect it and the existing
BUG_ON() when patching fails could be removed. For kgdb, the return
value can actually be used.
Suggested-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Nadav Amit <namit@vmware.com>
Signed-off-by: Rick Edgecombe <rick.p.edgecombe@intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Masami Hiramatsu <mhiramat@kernel.org>
Acked-by: Jiri Kosina <jkosina@suse.cz>
Cc: <akpm@linux-foundation.org>
Cc: <ard.biesheuvel@linaro.org>
Cc: <deneen.t.dock@intel.com>
Cc: <kernel-hardening@lists.openwall.com>
Cc: <kristen@linux.intel.com>
Cc: <linux_dti@icloud.com>
Cc: <will.deacon@arm.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Rik van Riel <riel@surriel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Fixes: 9222f60650 ("x86/alternatives: Lockdep-enforce text_mutex in text_poke*()")
Link: https://lkml.kernel.org/r/20190426001143.4983-2-namit@vmware.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
It's used as 'type' in almost every paravirt patching function, so standardize
the field name from the somewhat weird 'instrtype' name to 'type'.
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@surriel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
We currently have 6 (!) separate naming variants to name temporary instruction
buffers that are used for code patching:
- insnbuf
- insnbuff
- insn_buff
- insn_buffer
- ibuf
- ibuffer
These are used as local variables, percpu fields and function parameters.
Standardize all the names to a single variant: 'insn_buff'.
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@surriel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
There are problems with running time_cpufreq_notifier() on SMP
systems.
First off, the rdtsc() called from there runs on the CPU executing
that code and not necessarily on the CPU whose sched_clock() rate is
updated which is questionable at best.
Second, in the cases when the frequencies of all CPUs in an SMP
system are always in sync, it is not sufficient to update just
one of them or the set associated with a given cpufreq policy on
frequency changes - all CPUs in the system should be updated and
that would require more than a simple transition notifier.
Note, however, that the underlying issue (the TSC rate depending on
the CPU frequency) has not been present in hardware shipping for the
last few years and in quite a few relevant cases (acpi-cpufreq in
particular) running time_cpufreq_notifier() will cause the TSC to
be marked as unstable anyway.
For this reason, make time_cpufreq_notifier() simply mark the TSC
as unstable and give up when run on SMP and only try to carry out
any adjustments otherwise.
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Reviewed-by: Viresh Kumar <viresh.kumar@linaro.org>
Local APIC timer clockevent parameters can be calculated based on platform
specific methods. However the code is mostly duplicated with the interrupt
based calibration. The commit which increased the max_delta parameter
updated only one place and made the implementations diverge.
Unify it to prevent further damage.
[ tglx: Rename function to lapic_init_clockevent() and adjust changelog a bit ]
Fixes: 4aed89d6b5 ("x86, lapic-timer: Increase the max_delta to 31 bits")
Reported-by: Daniel Drake <drake@endlessm.com>
Signed-off-by: Jacob Pan <jacob.jun.pan@linux.intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Len Brown <lenb@kernel.org>
Link: https://lkml.kernel.org/r/1556213272-63568-1-git-send-email-jacob.jun.pan@linux.intel.com
The magic macro DEF_NATIVE() in the paravirt patching code uses inline
assembly to generate a data table for patching in the native instructions.
While clever this is falling apart with LTO and even aside of LTO the
construct is just working by chance according to GCC folks.
Aside of that the tables are constant data and not some form of magic
text.
As these constructs are not subject to frequent changes it is not a
maintenance issue to convert them to regular data tables which are
initialized with hex bytes.
Create a new set of macros and data structures to store the instruction
sequences and convert the code over.
Reported-by: Andi Kleen <ak@linux.intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@surriel.com>
Link: http://lkml.kernel.org/r/20190424134223.690835713@linutronix.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Large parts of these two files are identical. Merge them together.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@surriel.com>
Link: http://lkml.kernel.org/r/20190424134223.603491680@linutronix.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
paravirt_patch_call() currently handles patching failures inconsistently:
we generate a warning in the retpoline case, but don't in other cases where
we might end up with a non-working kernel as well.
So just convert it all to a BUG_ON(), these patching calls are *not* supposed
to fail, and if they do we want to know it immediately.
This also makes the kernel smaller and removes an #ifdef ugly.
I tried it with a richly paravirt-enabled kernel and no patching bugs
were detected.
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20190425095039.GC115378@gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
So paravirt_patch_insns() contains this gem of logic:
unsigned paravirt_patch_insns(void *insnbuf, unsigned len,
const char *start, const char *end)
{
unsigned insn_len = end - start;
if (insn_len > len || start == NULL)
insn_len = len;
else
memcpy(insnbuf, start, insn_len);
return insn_len;
}
Note how 'len' (size of the original instruction) is checked against the new
instruction, and silently discarded with no warning printed whatsoever.
This crashes the kernel in funny ways if the patching template is buggy,
and usually in much later places.
Instead do a direct BUG_ON(), there's no way to continue successfully at that point.
I've tested this patch, with the vanilla kernel check never triggers, and
if I intentionally increase the size of one of the patch templates to a
too high value the assert triggers:
[ 0.164385] kernel BUG at arch/x86/kernel/paravirt.c:167!
Without this patch a broken kernel randomly crashes in later places,
after the silent patching failure.
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@surriel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20190425091717.GA72229@gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
When building x86 with Clang LTO and CFI, CFI jump regions are
automatically added to the end of the .text section late in linking. As a
result, the _etext position was being labelled before the appended jump
regions, causing confusion about where the boundaries of the executable
region actually are in the running kernel, and broke at least the fault
injection code. This moves the _etext mark to outside (and immediately
after) the .text area, as it already the case on other architectures
(e.g. arm64, arm).
Reported-and-tested-by: Sami Tolvanen <samitolvanen@google.com>
Signed-off-by: Kees Cook <keescook@chromium.org>
Cc: Borislav Petkov <bp@suse.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20190423183827.GA4012@beast
Signed-off-by: Ingo Molnar <mingo@kernel.org>
UAPI Changes:
- uAPI "Fixes:" patch for the upcoming kernel 5.1, included here too
We have an Ack from the media folks (only current user) for this
late tweak
Cross-subsystem Changes:
- ALSA: hda: Fix racy display power access (Takashi, Chris)
Driver Changes:
- DDI and MIPI-DSI clocks fixes for Icelake (Vandita)
- Fix Icelake frequency change/locking (RPS) (Mika)
- Temporarily disable ppGTT read-only bit on Icelake (Mika)
- Add missing Icelake W/As (Mika)
- Enable 12 deep CSB status FIFO on Icelake (Mika)
- Inherit more Icelake code for Elkhartlake (Bob, Jani)
- Handle catastrophic error on engine reset (Mika)
- Shortcut readiness to reset check (Mika)
- Regression fix for GEM_BUSY causing us to report a mixed uabi-class request as not busy (Chris)
- Revert back to max link rate and lane count on eDP (Jani)
- Fix pipe BPP readout for BXT/GLK DSI (Ville)
- Set DP min_bpp to 8*3 for non-RGB output formats (Ville)
- Enable coarse preemption boundaries for Gen8 (Chris)
- Do not enable FEC without DSC (Ville)
- Restore correct BXT DDI latency optim setting calculation (Ville)
- Always reset context's RING registers to avoid running workload twice during reset (Chris)
- Set GPU wedged on driver unload (Janusz)
- Consolidate two similar barries from timeline into one (Chris)
- Only reset the pinned kernel contexts on resume (Chris)
- Wakeref tracking improvements (Chris, Imre)
- Lockdep fixes for shrinker interactions (Chris)
- Bump ready tasks ahead of busywaits in prep of semaphore use (Chris)
- Huge step in splitting display code into fine grained files (Jani)
- Refactor the IRQ init/reset macros for code saving (Paulo)
- Convert IRQ initialization code to uncore MMIO access (Paulo)
- Convert workarounds code to use uncore MMIO access (Chris)
- Nuke drm_crtc_state and use intel_atomic_state instead (Manasi)
- Update SKL clock-gating WA (Radhakrishna, Ville)
- Isolate GuC reset code flow (Chris)
- Expose force_dsc_enable through debugfs (Manasi)
- Header standalone compile testing framework (Jani)
- Code cleanups to reduce driver footprint (Chris)
- PSR code fixes and cleanups (Jose)
- Sparse and kerneldoc updates (Chris)
- Suppress spurious combo PHY B warning (Vile)
Signed-off-by: Dave Airlie <airlied@redhat.com>
From: Joonas Lahtinen <joonas.lahtinen@linux.intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20190418080426.GA6409@jlahtine-desk.ger.corp.intel.com
AMD family 17h Models 10h-2Fh may report a high number of L1 BTB MCA
errors under certain conditions. The errors are benign and can safely be
ignored. However, the high error rate may cause the MCA threshold
counter to overflow causing a high rate of thresholding interrupts.
In addition, users may see the errors reported through the AMD MCE
decoder module, even with the interrupt disabled, due to MCA polling.
Clear the "Counter Present" bit in the Instruction Fetch bank's
MCA_MISC0 register. This will prevent enabling MCA thresholding on this
bank which will prevent the high interrupt rate due to this error.
Define an AMD-specific function to filter these errors from the MCE
event pool so that they don't get reported during early boot.
Rename filter function in EDAC/mce_amd to avoid a naming conflict, while
at it.
[ bp: Move function prototype to the internal header and
massage/cleanup, fix typos. ]
Reported-by: Rafał Miłecki <rafal@milecki.pl>
Signed-off-by: Yazen Ghannam <yazen.ghannam@amd.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: "clemej@gmail.com" <clemej@gmail.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: James Morse <james.morse@arm.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Mauro Carvalho Chehab <mchehab@kernel.org>
Cc: Pu Wen <puwen@hygon.cn>
Cc: Qiuxu Zhuo <qiuxu.zhuo@intel.com>
Cc: Shirish S <Shirish.S@amd.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Vishal Verma <vishal.l.verma@intel.com>
Cc: linux-edac <linux-edac@vger.kernel.org>
Cc: x86-ml <x86@kernel.org>
Cc: <stable@vger.kernel.org> # 5.0.x: c95b323dcd: x86/MCE/AMD: Turn off MC4_MISC thresholding on all family 0x15 models
Cc: <stable@vger.kernel.org> # 5.0.x: 30aa3d26ed: x86/MCE/AMD: Carve out the MC4_MISC thresholding quirk
Cc: <stable@vger.kernel.org> # 5.0.x: 9308fd4074: x86/MCE: Group AMD function prototypes in <asm/mce.h>
Cc: <stable@vger.kernel.org> # 5.0.x
Link: https://lkml.kernel.org/r/20190325163410.171021-2-Yazen.Ghannam@amd.com
Some systems may report spurious MCA errors. In general, spurious MCA
errors may be disabled by clearing a particular bit in MCA_CTL. However,
clearing a bit in MCA_CTL may not be recommended for some errors, so the
only option is to ignore them.
An MCA error is printed and handled after it has been added to the MCE
event pool. So an MCA error can be ignored by not adding it to that pool
in the first place.
Add such a filtering function.
[ bp: Move function prototype to the internal header and massage. ]
Signed-off-by: Yazen Ghannam <yazen.ghannam@amd.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: "clemej@gmail.com" <clemej@gmail.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Pu Wen <puwen@hygon.cn>
Cc: Qiuxu Zhuo <qiuxu.zhuo@intel.com>
Cc: "rafal@milecki.pl" <rafal@milecki.pl>
Cc: Shirish S <Shirish.S@amd.com>
Cc: <stable@vger.kernel.org> # 5.0.x
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Vishal Verma <vishal.l.verma@intel.com>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/20190325163410.171021-1-Yazen.Ghannam@amd.com
crashkernel=xM tries to reserve memory for the crash kernel under 4G,
which is enough, usually. But this could fail sometimes, for example
when one tries to reserve a big chunk like 2G, for example.
So let the crashkernel=xM just fall back to use high memory in case it
fails to find a suitable low range. Do not set the ,high as default
because it allocates extra low memory for DMA buffers and swiotlb, and
this is not always necessary for all machines.
Typically, crashkernel=128M usually works with low reservation under 4G,
so keep <4G as default.
[ bp: Massage. ]
Signed-off-by: Dave Young <dyoung@redhat.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Baoquan He <bhe@redhat.com>
Cc: Dave Young <dyoung@redhat.com>
Cc: David Howells <dhowells@redhat.com>
Cc: Eric Biederman <ebiederm@xmission.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jiri Kosina <jkosina@suse.cz>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Juergen Gross <jgross@suse.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Cc: linux-doc@vger.kernel.org
Cc: "Paul E. McKenney" <paulmck@linux.ibm.com>
Cc: Petr Tesarik <ptesarik@suse.cz>
Cc: piliu@redhat.com
Cc: Ram Pai <linuxram@us.ibm.com>
Cc: Sinan Kaya <okaya@codeaurora.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Thymo van Beers <thymovanbeers@gmail.com>
Cc: vgoyal@redhat.com
Cc: x86-ml <x86@kernel.org>
Cc: Yinghai Lu <yinghai@kernel.org>
Cc: Zhimin Gu <kookoo.gu@intel.com>
Link: https://lkml.kernel.org/r/20190422031905.GA8387@dhcp-128-65.nay.redhat.com
The kdump crashkernel low reservation is limited to under 896M even for
X86_64. This obscure and miserable limitation exists for compatibility
with old kexec-tools but the reason is not documented anywhere.
Some more tests/investigations about the background:
a) Previously, old kexec-tools could only load purgatory to memory under
2G. Eric removed that limitation in 2012 in kexec-tools:
b4f9f8599679 ("kexec x86_64: Make purgatory relocatable anywhere
in the 64bit address space.")
b) Back in 2013 Yinghai removed all the limitations in new kexec-tools,
bzImage64 can be loaded anywhere:
82c3dd2280d2 ("kexec, x86_64: Load bzImage64 above 4G")
c) Test results with old kexec-tools with old and latest kernels:
1. Old kexec-tools can not build with modern toolchain anymore,
I built it in a RHEL6 vm.
2. 2.0.0 kexec-tools does not work with the latest kernel even with
memory under 896M and gives an error:
"ELF core (kcore) parse failed"
For that it needs below kexec-tools fix:
ed15ba1b9977 ("build_mem_phdrs(): check if p_paddr is invalid")
3. Even with patched kexec-tools which fixes 2), it still needs some
other fixes to work correctly for KASLR-enabled kernels.
So the situation is:
* Old kexec-tools is already broken with latest kernels.
* We can not keep these limitations forever just for compatibility with very
old kexec-tools.
* If one must use old tools then he/she can choose crashkernel=X@Y.
* People have reported bugs where crashkernel=384M failed because KASLR
makes the 0-896M space sparse.
* Crashkernel can reserve in low or high area, it is natural to understand
low as memory under 4G.
Hence drop the 896M limitation and change crashkernel low reservation to
reserve under 4G by default.
Signed-off-by: Dave Young <dyoung@redhat.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Baoquan He <bhe@redhat.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: David Howells <dhowells@redhat.com>
Cc: Eric Biederman <ebiederm@xmission.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Petr Tesarik <ptesarik@suse.cz>
Cc: piliu@redhat.com
Cc: Ram Pai <linuxram@us.ibm.com>
Cc: Sinan Kaya <okaya@codeaurora.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: vgoyal@redhat.com
Cc: x86-ml <x86@kernel.org>
Cc: Yinghai Lu <yinghai@kernel.org>
Cc: Zhimin Gu <kookoo.gu@intel.com>
Link: https://lkml.kernel.org/r/20190421035058.943630505@redhat.com
Pull perf fixes from Ingo Molnar:
"Misc fixes:
- various tooling fixes
- kretprobe fixes
- kprobes annotation fixes
- kprobes error checking fix
- fix the default events for AMD Family 17h CPUs
- PEBS fix
- AUX record fix
- address filtering fix"
* 'perf-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/kprobes: Avoid kretprobe recursion bug
kprobes: Mark ftrace mcount handler functions nokprobe
x86/kprobes: Verify stack frame on kretprobe
perf/x86/amd: Add event map for AMD Family 17h
perf bpf: Return NULL when RB tree lookup fails in perf_env__find_btf()
perf tools: Fix map reference counting
perf evlist: Fix side band thread draining
perf tools: Check maps for bpf programs
perf bpf: Return NULL when RB tree lookup fails in perf_env__find_bpf_prog_info()
tools include uapi: Sync sound/asound.h copy
perf top: Always sample time to satisfy needs of use of ordered queuing
perf evsel: Use hweight64() instead of hweight_long(attr.sample_regs_user)
tools lib traceevent: Fix missing equality check for strcmp
perf stat: Disable DIR_FORMAT feature for 'perf stat record'
perf scripts python: export-to-sqlite.py: Fix use of parent_id in calls_view
perf header: Fix lock/unlock imbalances when processing BPF/BTF info
perf/x86: Fix incorrect PEBS_REGS
perf/ring_buffer: Fix AUX record suppression
perf/core: Fix the address filtering fix
kprobes: Fix error check when reusing optimized probes
DEBUG_HOTPLUG_CPU0 debug feature offlines a CPU as early as possible
allowing userspace to boot up without that CPU (so that it is possible
to check for unwanted dependencies towards the offlined CPU). After
doing so it emits a "CPU %u is now offline" pr_info, which is not enough
descriptive of why the CPU was offlined (e.g., one might be running with
a config that triggered some problem, not being aware that CONFIG_DEBUG_
HOTPLUG_CPU0 is set).
Add a bit more of informative text to the pr_info, so that it is
immediately obvious why a CPU has been offlined in early boot stages.
Background:
Got to scratch my head a bit while debugging a WARNING splat related to
the offlining of CPU0. Without being aware yet of this debug option it
wasn't immediately obvious why CPU0 was being offlined by the kernel.
Signed-off-by: Juri Lelli <juri.lelli@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: fenghua.yu@intel.com
Link: http://lkml.kernel.org/r/20181219151647.15073-1-juri.lelli@redhat.com
[ Merge line-broken line. ]
Signed-off-by: Ingo Molnar <mingo@kernel.org>
For new Centaur CPUs the ucode will take care of the preservation of cache coherence
between CPU cores in C-states regardless of how deep the C-states are. So, it is not
necessary to flush the caches in software befor entering C3. This useless operation
will cause performance drop for the cores which share some caches with the idling core.
Signed-off-by: David Wang <davidwang@zhaoxin.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Pavel Machek <pavel@ucw.cz>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: brucechang@via-alliance.com
Cc: cooperyan@zhaoxin.com
Cc: len.brown@intel.com
Cc: linux-pm@kernel.org
Cc: qiyuanwang@zhaoxin.com
Cc: rjw@rjwysocki.net
Cc: timguo@zhaoxin.com
Link: http://lkml.kernel.org/r/1545900110-2757-1-git-send-email-davidwang@zhaoxin.com
[ Tidy up the comment. ]
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The "ENERGY_PERF_BIAS: Set to 'normal', was 'performance'" message triggers
on pretty much every Intel machine. The purpose of log messages with
a warning level is to notify the user of something which potentially is
a problem, or at least somewhat unexpected.
This message clearly does not match those criteria, so lower its log
priority from warning to info.
Signed-off-by: Hans de Goede <hdegoede@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20181230172715.17469-1-hdegoede@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The "vide" inline assembler is only needed on 32bit kernels for old
32bit only CPUs.
Guard it with an #ifdef so it's not included in 64bit builds.
Signed-off-by: Andi Kleen <ak@linux.intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/20190330004743.29541-2-andi@firstfloor.org
With gcc toplevel assembler statements that do not mark themselves as .text
may end up in other sections. This causes LTO boot crashes because various
assembler statements ended up in the middle of the initcall section. It's
also a latent problem without LTO, although it's currently not known to
cause any real problems.
According to the gcc team it's expected behavior.
Always mark all the top level assembler statements as text so that they
switch to the right section.
Signed-off-by: Andi Kleen <ak@linux.intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/20190330004743.29541-1-andi@firstfloor.org
Avoid kretprobe recursion loop bg by setting a dummy
kprobes to current_kprobe per-CPU variable.
This bug has been introduced with the asm-coded trampoline
code, since previously it used another kprobe for hooking
the function return placeholder (which only has a nop) and
trampoline handler was called from that kprobe.
This revives the old lost kprobe again.
With this fix, we don't see deadlock anymore.
And you can see that all inner-called kretprobe are skipped.
event_1 235 0
event_2 19375 19612
The 1st column is recorded count and the 2nd is missed count.
Above shows (event_1 rec) + (event_2 rec) ~= (event_2 missed)
(some difference are here because the counter is racy)
Reported-by: Andrea Righi <righi.andrea@gmail.com>
Tested-by: Andrea Righi <righi.andrea@gmail.com>
Signed-off-by: Masami Hiramatsu <mhiramat@kernel.org>
Acked-by: Steven Rostedt <rostedt@goodmis.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: stable@vger.kernel.org
Fixes: c9becf58d9 ("[PATCH] kretprobe: kretprobe-booster")
Link: http://lkml.kernel.org/r/155094064889.6137.972160690963039.stgit@devbox
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Verify the stack frame pointer on kretprobe trampoline handler,
If the stack frame pointer does not match, it skips the wrong
entry and tries to find correct one.
This can happen if user puts the kretprobe on the function
which can be used in the path of ftrace user-function call.
Such functions should not be probed, so this adds a warning
message that reports which function should be blacklisted.
Tested-by: Andrea Righi <righi.andrea@gmail.com>
Signed-off-by: Masami Hiramatsu <mhiramat@kernel.org>
Acked-by: Steven Rostedt <rostedt@goodmis.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: stable@vger.kernel.org
Link: http://lkml.kernel.org/r/155094059185.6137.15527904013362842072.stgit@devbox
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The "event counter" was removed from rseq before it was merged upstream.
However, a few comments in the source code still refer to it. Adapt the
comments to match reality.
Signed-off-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Ben Maurer <bmaurer@fb.com>
Cc: Boqun Feng <boqun.feng@gmail.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Chris Lameter <cl@linux.com>
Cc: Dave Watson <davejwatson@fb.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Joel Fernandes <joelaf@google.com>
Cc: Josh Triplett <josh@joshtriplett.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Michael Kerrisk <mtk.manpages@gmail.com>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Paul Turner <pjt@google.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Russell King <linux@arm.linux.org.uk>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Will Deacon <will.deacon@arm.com>
Cc: linux-api@vger.kernel.org
Link: http://lkml.kernel.org/r/20190305194755.2602-2-mathieu.desnoyers@efficios.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Syntax only, no functional or semantic change.
This routine matches packages, not die, so name it thus.
Signed-off-by: Len Brown <len.brown@intel.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Will Deacon <will.deacon@arm.com>
Link: http://lkml.kernel.org/r/7ca18c4ae7816a1f9eda37414725df676e63589d.1551160674.git.len.brown@intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Add MDS to the new 'mitigations=' cmdline option.
Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Currently, when a new resource group is created, the allocation values
of the MBA resource are not initialized and remain meaningless data.
For example:
mkdir /sys/fs/resctrl/p1
cat /sys/fs/resctrl/p1/schemata
MB:0=100;1=100
echo "MB:0=10;1=20" > /sys/fs/resctrl/p1/schemata
cat /sys/fs/resctrl/p1/schemata
MB:0= 10;1= 20
rmdir /sys/fs/resctrl/p1
mkdir /sys/fs/resctrl/p2
cat /sys/fs/resctrl/p2/schemata
MB:0= 10;1= 20
Therefore, when the new group is created, it is reasonable to initialize
MBA resource with default values.
Initialize the MBA resource and cache resources in separate functions.
[ bp: Add newlines between code blocks for better readability. ]
Signed-off-by: Xiaochen Shen <xiaochen.shen@intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Fenghua Yu <fenghua.yu@intel.com>
Reviewed-by: Reinette Chatre <reinette.chatre@intel.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: pei.p.jia@intel.com
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tony Luck <tony.luck@intel.com>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/1555499329-1170-3-git-send-email-xiaochen.shen@intel.com
Carve out per rdt_domain initialization code from rdtgroup_init_alloc()
into a separate function.
No functional change, make the code more readable and save us at least
two indentation levels.
Signed-off-by: Xiaochen Shen <xiaochen.shen@intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: pei.p.jia@intel.com
Cc: Reinette Chatre <reinette.chatre@intel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tony Luck <tony.luck@intel.com>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/1555499329-1170-2-git-send-email-xiaochen.shen@intel.com
This code is only for CPUs which are affected by MSBDS, but are *not*
affected by the other two MDS issues.
For such CPUs, enabling the mds_idle_clear mitigation is enough to
mitigate SMT.
However if user boots with 'mds=off' and still has SMT enabled, we should
not report that SMT is mitigated:
$cat /sys//devices/system/cpu/vulnerabilities/mds
Vulnerable; SMT mitigated
But rather:
Vulnerable; SMT vulnerable
Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Tyler Hicks <tyhicks@canonical.com>
Reviewed-by: Josh Poimboeuf <jpoimboe@redhat.com>
Link: https://lkml.kernel.org/r/20190412215118.294906495@localhost.localdomain
All stack types on x86 64-bit have guard pages now.
So there is no point in executing probabilistic overflow checks as the
guard pages are a accurate and reliable overflow prevention.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Nicolai Stange <nstange@suse.de>
Cc: Sean Christopherson <sean.j.christopherson@intel.com>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/20190414160146.466354762@linutronix.de
The IRQ stack lives in percpu space, so an IRQ handler that overflows it
will overwrite other data structures.
Use vmap() to remap the IRQ stack so that it will have the usual guard
pages that vmap()/vmalloc() allocations have. With this, the kernel will
panic immediately on an IRQ stack overflow.
[ tglx: Move the map code to a proper place and invoke it only when a CPU
is about to be brought online. No point in installing the map at
early boot for all possible CPUs. Fail the CPU bringup if the vmap()
fails as done for all other preparatory stages in CPU hotplug. ]
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Nicolai Stange <nstange@suse.de>
Cc: Sean Christopherson <sean.j.christopherson@intel.com>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/20190414160146.363733568@linutronix.de
Currently, the IRQ stack is hardcoded as the first page of the percpu
area, and the stack canary lives on the IRQ stack. The former gets in
the way of adding an IRQ stack guard page, and the latter is a potential
weakness in the stack canary mechanism.
Split the IRQ stack into its own private percpu pages.
[ tglx: Make 64 and 32 bit share struct irq_stack ]
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Alexey Dobriyan <adobriyan@gmail.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: Brijesh Singh <brijesh.singh@amd.com>
Cc: "Chang S. Bae" <chang.seok.bae@intel.com>
Cc: Dominik Brodowski <linux@dominikbrodowski.net>
Cc: Feng Tang <feng.tang@intel.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jan Beulich <JBeulich@suse.com>
Cc: Jiri Kosina <jkosina@suse.cz>
Cc: Joerg Roedel <jroedel@suse.de>
Cc: Jordan Borgner <mail@jordan-borgner.de>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Cc: Maran Wilson <maran.wilson@oracle.com>
Cc: Masahiro Yamada <yamada.masahiro@socionext.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Mike Rapoport <rppt@linux.vnet.ibm.com>
Cc: Nick Desaulniers <ndesaulniers@google.com>
Cc: Nicolai Stange <nstange@suse.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Pu Wen <puwen@hygon.cn>
Cc: "Rafael Ávila de Espíndola" <rafael@espindo.la>
Cc: Sean Christopherson <sean.j.christopherson@intel.com>
Cc: Stefano Stabellini <sstabellini@kernel.org>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: x86-ml <x86@kernel.org>
Cc: xen-devel@lists.xenproject.org
Link: https://lkml.kernel.org/r/20190414160146.267376656@linutronix.de
Preparatory change for disentangling the irq stack union as a
prerequisite for irq stacks with guard pages.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: "Chang S. Bae" <chang.seok.bae@intel.com>
Cc: Dominik Brodowski <linux@dominikbrodowski.net>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Cc: Nicolai Stange <nstange@suse.de>
Cc: Pavel Tatashin <pasha.tatashin@oracle.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Sean Christopherson <sean.j.christopherson@intel.com>
Cc: x86-ml <x86@kernel.org>
Cc: Yi Wang <wang.yi59@zte.com.cn>
Link: https://lkml.kernel.org/r/20190414160146.177558566@linutronix.de
irq_ctx_init() crashes hard on page allocation failures. While that's ok
during early boot, it's just wrong in the CPU hotplug bringup code.
Check the page allocation failure and return -ENOMEM and handle it at the
call sites. On early boot the only way out is to BUG(), but on CPU hotplug
there is no reason to crash, so just abort the operation.
Rename the function to something more sensible while at it.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Alison Schofield <alison.schofield@intel.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Anshuman Khandual <anshuman.khandual@arm.com>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Cc: Nicolai Stange <nstange@suse.de>
Cc: Pu Wen <puwen@hygon.cn>
Cc: Sean Christopherson <sean.j.christopherson@intel.com>
Cc: Shaokun Zhang <zhangshaokun@hisilicon.com>
Cc: Stefano Stabellini <sstabellini@kernel.org>
Cc: Suravee Suthikulpanit <suravee.suthikulpanit@amd.com>
Cc: x86-ml <x86@kernel.org>
Cc: xen-devel@lists.xenproject.org
Cc: Yazen Ghannam <yazen.ghannam@amd.com>
Cc: Yi Wang <wang.yi59@zte.com.cn>
Cc: Zhenzhong Duan <zhenzhong.duan@oracle.com>
Link: https://lkml.kernel.org/r/20190414160146.089060584@linutronix.de
irq_ctx_init() is invoked from native_init_IRQ() or from xen_init_IRQ()
code. There is no reason to have this split. The interrupt stacks must be
allocated no matter what.
Invoke it from init_IRQ() before invoking the native or XEN init
implementation.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Juergen Gross <jgross@suse.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Josh Abraham <j.abraham1776@gmail.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Mike Rapoport <rppt@linux.vnet.ibm.com>
Cc: Nicolai Stange <nstange@suse.de>
Cc: Sean Christopherson <sean.j.christopherson@intel.com>
Cc: Stefano Stabellini <sstabellini@kernel.org>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Cc: x86-ml <x86@kernel.org>
Cc: xen-devel@lists.xenproject.org
Link: https://lkml.kernel.org/r/20190414160146.001162606@linutronix.de
The current implementation of in_exception_stack() iterates over the
exception stacks array. Most of the time this is an useless exercise, but
even for the actual use cases (perf and ftrace) it takes at least 2
iterations to get to the NMI stack.
As the exception stacks and the guard pages are page aligned the loop can
be avoided completely.
Add a initial check whether the stack pointer is inside the full exception
stack area and leave early if not.
Create a lookup table which describes the stack area. The table index is
the page offset from the beginning of the exception stacks. So for any
given stack pointer the page offset is computed and a lookup in the
description table is performed. If it is inside a guard page, return. If
not, use the descriptor to fill in the info structure.
The table is filled at compile time and for the !KASAN case the interesting
page descriptors exactly fit into a single cache line. Just the last guard
page descriptor is in the next cacheline, but that should not be accessed
in the regular case.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Acked-by: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Sean Christopherson <sean.j.christopherson@intel.com>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/20190414160145.543320386@linutronix.de
The debug IST stack is actually two separate debug stacks to handle #DB
recursion. This is required because the CPU starts always at top of stack
on exception entry, which means on #DB recursion the second #DB would
overwrite the stack of the first.
The low level entry code therefore adjusts the top of stack on entry so a
secondary #DB starts from a different stack page. But the stack pages are
adjacent without a guard page between them.
Split the debug stack into 3 stacks which are separated by guard pages. The
3rd stack is never mapped into the cpu_entry_area and is only there to
catch triple #DB nesting:
--- top of DB_stack <- Initial stack
--- end of DB_stack
guard page
--- top of DB1_stack <- Top of stack after entering first #DB
--- end of DB1_stack
guard page
--- top of DB2_stack <- Top of stack after entering second #DB
--- end of DB2_stack
guard page
If DB2 would not act as the final guard hole, a second #DB would point the
top of #DB stack to the stack below #DB1 which would be valid and not catch
the not so desired triple nesting.
The backing store does not allocate any memory for DB2 and its guard page
as it is not going to be mapped into the cpu_entry_area.
- Adjust the low level entry code so it adjusts top of #DB with the offset
between the stacks instead of exception stack size.
- Make the dumpstack code aware of the new stacks.
- Adjust the in_debug_stack() implementation and move it into the NMI code
where it belongs. As this is NMI hotpath code, it just checks the full
area between top of DB_stack and bottom of DB1_stack without checking
for the guard page. That's correct because the NMI cannot hit a
stackpointer pointing to the guard page between DB and DB1 stack. Even
if it would, then the NMI operation still is unaffected, but the resume
of the debug exception on the topmost DB stack will crash by touching
the guard page.
[ bp: Make exception_stack_names static const char * const ]
Suggested-by: Andy Lutomirski <luto@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Sean Christopherson <sean.j.christopherson@intel.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Baoquan He <bhe@redhat.com>
Cc: "Chang S. Bae" <chang.seok.bae@intel.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Dominik Brodowski <linux@dominikbrodowski.net>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Joerg Roedel <jroedel@suse.de>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Cc: linux-doc@vger.kernel.org
Cc: Masahiro Yamada <yamada.masahiro@socionext.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Qian Cai <cai@lca.pw>
Cc: Sean Christopherson <sean.j.christopherson@intel.com>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/20190414160145.439944544@linutronix.de
The entry order of the TSS.IST array and the order of the stack
storage/mapping are not required to be the same.
With the upcoming split of the debug stack this is going to fall apart as
the number of TSS.IST array entries stays the same while the actual stacks
are increasing.
Make them separate so that code like dumpstack can just utilize the mapping
order. The IST index is solely required for the actual TSS.IST array
initialization.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Baoquan He <bhe@redhat.com>
Cc: "Chang S. Bae" <chang.seok.bae@intel.com>
Cc: Dominik Brodowski <linux@dominikbrodowski.net>
Cc: Dou Liyang <douly.fnst@cn.fujitsu.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jann Horn <jannh@google.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Cc: Nicolai Stange <nstange@suse.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Qian Cai <cai@lca.pw>
Cc: Sean Christopherson <sean.j.christopherson@intel.com>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/20190414160145.241588113@linutronix.de
Convert the TSS.IST setup code to use the cpu entry area information
directly instead of assuming a linear mapping of the IST stacks.
The store to orig_ist[] is no longer required as there are no users
anymore.
This is the last preparatory step towards IST guard pages.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: "Chang S. Bae" <chang.seok.bae@intel.com>
Cc: Dominik Brodowski <linux@dominikbrodowski.net>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Sean Christopherson <sean.j.christopherson@intel.com>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/20190414160145.061686012@linutronix.de
The orig_ist[] array is a shadow copy of the IST array in the TSS. The
reason why it exists is that older kernels used two TSS variants with
different pointers into the debug stack. orig_ist[] contains the real
starting points.
There is no point anymore to do so because the same information can be
retrieved using the base address of the cpu entry area mapping and the
offsets of the various exception stacks.
No functional change. Preparation for removing orig_ist.
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Sean Christopherson <sean.j.christopherson@intel.com>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/20190414160144.974900463@linutronix.de
The orig_ist[] array is a shadow copy of the IST array in the TSS. The
reason why it exists is that older kernels used two TSS variants with
different pointers into the debug stack. orig_ist[] contains the real
starting points.
There is no point anymore to do so because the same information can be
retrieved using the base address of the cpu entry area mapping and the
offsets of the various exception stacks.
No functional change. Preparation for removing orig_ist.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Nicolai Stange <nstange@suse.de>
Cc: Sean Christopherson <sean.j.christopherson@intel.com>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/20190414160144.885741626@linutronix.de
At the moment everything assumes a full linear mapping of the various
exception stacks. Adding guard pages to the cpu entry area mapping of the
exception stacks will break that assumption.
As a preparatory step convert both the real storage and the effective
mapping in the cpu entry area from character arrays to structures.
To ensure that both arrays have the same ordering and the same size of the
individual stacks fill the members with a macro. The guard size is the only
difference between the two resulting structures. For now both have guard
size 0 until the preparation of all usage sites is done.
Provide a couple of helper macros which are used in the following
conversions.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Sean Christopherson <sean.j.christopherson@intel.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: "Chang S. Bae" <chang.seok.bae@intel.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Dominik Brodowski <linux@dominikbrodowski.net>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/20190414160144.506807893@linutronix.de
The defines for the exception stack (IST) array in the TSS are using the
SDM convention IST1 - IST7. That causes all sorts of code to subtract 1 for
array indices related to IST. That's confusing at best and does not provide
any value.
Make the indices zero based and fixup the usage sites. The only code which
needs to adjust the 0 based index is the interrupt descriptor setup which
needs to add 1 now.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Sean Christopherson <sean.j.christopherson@intel.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Baoquan He <bhe@redhat.com>
Cc: "Chang S. Bae" <chang.seok.bae@intel.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Dominik Brodowski <linux@dominikbrodowski.net>
Cc: Dou Liyang <douly.fnst@cn.fujitsu.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Cc: linux-doc@vger.kernel.org
Cc: Nicolai Stange <nstange@suse.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Qian Cai <cai@lca.pw>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/20190414160144.331772825@linutronix.de
Commit
d8ba61ba58 ("x86/entry/64: Don't use IST entry for #BP stack")
removed the last user but left the macro around.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Andy Lutomirski <luto@kernel.org>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Dou Liyang <douly.fnst@cn.fujitsu.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Nicolai Stange <nstange@suse.de>
Cc: Sean Christopherson <sean.j.christopherson@intel.com>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/20190414160144.050689789@linutronix.de
On x86, stacks go top to bottom, but the stack overflow check uses it
the other way round, which is just confusing. Clean it up and sanitize
the warning string a bit.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Sean Christopherson <sean.j.christopherson@intel.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Nicolai Stange <nstange@suse.de>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/20190414160143.961241397@linutronix.de
stack_overflow_check() is using both irq_stack_ptr and irq_stack_union
to find the IRQ stack. That's going to break when vmapped irq stacks are
introduced.
Change it to just use irq_stack_ptr.
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Sean Christopherson <sean.j.christopherson@intel.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Nicolai Stange <nstange@suse.de>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/20190414160143.872549191@linutronix.de
The get_stack_info() function is off-by-one when checking whether an
address is on a IRQ stack or a IST stack. This prevents an overflowed
IRQ or IST stack from being dumped properly.
[ tglx: Do the same for 32-bit ]
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Sean Christopherson <sean.j.christopherson@intel.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/20190414160143.785651055@linutronix.de
Commit
37fe6a42b3 ("x86: Check stack overflow in detail")
added a broad check for the full exception stack area, i.e. it considers
the full exception stack area as valid.
That's wrong in two aspects:
1) It does not check the individual areas one by one
2) #DF, NMI and #MCE are not enabling interrupts which means that a
regular device interrupt cannot happen in their context. In fact if a
device interrupt hits one of those IST stacks that's a bug because some
code path enabled interrupts while handling the exception.
Limit the check to the #DB stack and consider all other IST stacks as
'overflow' or invalid.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Mitsuo Hayasaka <mitsuo.hayasaka.hu@hitachi.com>
Cc: Nicolai Stange <nstange@suse.de>
Cc: Sean Christopherson <sean.j.christopherson@intel.com>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/20190414160143.682135110@linutronix.de
Starting from Icelake, XMM registers can be collected in PEBS record.
But current code only output the pt_regs.
Add a new struct x86_perf_regs for both pt_regs and xmm_regs. The
xmm_regs will be used later to keep a pointer to PEBS record which has
XMM information.
XMM registers are 128 bit. To simplify the code, they are handled like
two different registers, which means setting two bits in the register
bitmap. This also allows only sampling the lower 64bit bits in XMM.
The index of XMM registers starts from 32. There are 16 XMM registers.
So all reserved space for regs are used. Remove REG_RESERVED.
Add PERF_REG_X86_XMM_MAX, which stands for the max number of all x86
regs including both GPRs and XMM.
Add REG_NOSUPPORT for 32bit to exclude unsupported registers.
Previous platforms can not collect XMM information in PEBS record.
Adding pebs_no_xmm_regs to indicate the unsupported platforms.
The common code still validates the supported registers. However, it
cannot check model specific registers, e.g. XMM. Add extra check in
x86_pmu_hw_config() to reject invalid config of regs_user and regs_intr.
The regs_user never supports XMM collection.
The regs_intr only supports XMM collection when sampling PEBS event on
icelake and later platforms.
Originally-by: Andi Kleen <ak@linux.intel.com>
Suggested-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Cc: acme@kernel.org
Cc: jolsa@kernel.org
Link: https://lkml.kernel.org/r/20190402194509.2832-3-kan.liang@linux.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Upon reboot, the Acer TravelMate X514-51T laptop appears to complete the
shutdown process, but then it hangs in BIOS POST with a black screen.
The problem is intermittent - at some points it has appeared related to
Secure Boot settings or different kernel builds, but ultimately we have
not been able to identify the exact conditions that trigger the issue to
come and go.
Besides, the EFI mode cannot be disabled in the BIOS of this model.
However, after extensive testing, we observe that using the EFI reboot
method reliably avoids the issue in all cases.
So add a boot time quirk to use EFI reboot on such systems.
Buglink: https://bugzilla.kernel.org/show_bug.cgi?id=203119
Signed-off-by: Jian-Hong Pan <jian-hong@endlessm.com>
Signed-off-by: Daniel Drake <drake@endlessm.com>
Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Matt Fleming <matt@codeblueprint.co.uk>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-efi@vger.kernel.org
Cc: linux@endlessm.com
Link: http://lkml.kernel.org/r/20190412080152.3718-1-jian-hong@endlessm.com
[ Fix !CONFIG_EFI build failure, clarify the code and the changelog a bit. ]
Signed-off-by: Ingo Molnar <mingo@kernel.org>
With CONFIG_LD_DEAD_CODE_DATA_ELIMINATION=y, we compile the kernel with
-fdata-sections, which also splits the .bss section.
The new section, with a new .bss.* name, which pattern gets missed by the
main x86 linker script which only expects the '.bss' name. This results
in the discarding of the second part and a too small, truncated .bss
section and an unhappy, non-working kernel.
Use the common BSS_MAIN macro in the linker script to properly capture
and merge all the generated BSS sections.
Signed-off-by: Sami Tolvanen <samitolvanen@google.com>
Reviewed-by: Nick Desaulniers <ndesaulniers@google.com>
Reviewed-by: Kees Cook <keescook@chromium.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Kees Cook <keescook@chromium.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Nick Desaulniers <ndesaulniers@google.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20190415164956.124067-1-samitolvanen@google.com
[ Extended the changelog. ]
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Mikhail reported a lockdep splat related to the AMD specific ssb_state
lock:
CPU0 CPU1
lock(&st->lock);
local_irq_disable();
lock(&(&sighand->siglock)->rlock);
lock(&st->lock);
<Interrupt>
lock(&(&sighand->siglock)->rlock);
*** DEADLOCK ***
The connection between sighand->siglock and st->lock comes through seccomp,
which takes st->lock while holding sighand->siglock.
Make sure interrupts are disabled when __speculation_ctrl_update() is
invoked via prctl() -> speculation_ctrl_update(). Add a lockdep assert to
catch future offenders.
Fixes: 1f50ddb4f4 ("x86/speculation: Handle HT correctly on AMD")
Reported-by: Mikhail Gavrilov <mikhail.v.gavrilov@gmail.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Mikhail Gavrilov <mikhail.v.gavrilov@gmail.com>
Cc: Thomas Lendacky <thomas.lendacky@amd.com>
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/alpine.DEB.2.21.1904141948200.4917@nanos.tec.linutronix.de
Terminating the last trace entry with ULONG_MAX is a completely pointless
exercise and none of the consumers can rely on it because it's
inconsistently implemented across architectures. In fact quite some of the
callers remove the entry and adjust stack_trace.nr_entries afterwards.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Alexander Potapenko <glider@google.com>
Link: https://lkml.kernel.org/r/20190410103643.750954603@linutronix.de
When cache allocation is supported and the user creates a new resctrl
resource group, the allocations of the new resource group are
initialized to all regions that it can possibly use. At this time these
regions are all that are shareable by other resource groups as well as
regions that are not currently used. The new resource group's mode is
also initialized to reflect this initialization and set to "shareable".
The new resource group's mode is currently repeatedly initialized within
the loop that configures the hardware with the resource group's default
allocations.
Move the initialization of the resource group's mode outside the
hardware configuration loop. The resource group's mode is now
initialized only once as the final step to reflect that its configured
allocations are "shareable".
Fixes: 95f0b77efa ("x86/intel_rdt: Initialize new resource group with sane defaults")
Signed-off-by: Xiaochen Shen <xiaochen.shen@intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Fenghua Yu <fenghua.yu@intel.com>
Acked-by: Reinette Chatre <reinette.chatre@intel.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: pei.p.jia@intel.com
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tony Luck <tony.luck@intel.com>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/1554839629-5448-1-git-send-email-xiaochen.shen@intel.com
The task's initial PKRU value is set partly for fpu__clear()/
copy_init_pkru_to_fpregs(). It is not part of init_fpstate.xsave and
instead it is set explicitly.
If the user removes the PKRU state from XSAVE in the signal handler then
__fpu__restore_sig() will restore the missing bits from `init_fpstate'
and initialize the PKRU value to 0.
Add the `init_pkru_value' to `init_fpstate' so it is set to the init
value in such a case.
In theory copy_init_pkru_to_fpregs() could be removed because restoring
the PKRU at return-to-userland should be enough.
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Dave Hansen <dave.hansen@intel.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: "Chang S. Bae" <chang.seok.bae@intel.com>
Cc: Dominik Brodowski <linux@dominikbrodowski.net>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: "Jason A. Donenfeld" <Jason@zx2c4.com>
Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Cc: kvm ML <kvm@vger.kernel.org>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Pavel Tatashin <pasha.tatashin@oracle.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Rik van Riel <riel@surriel.com>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/20190403164156.19645-28-bigeasy@linutronix.de
If a task is scheduled out and receives a signal then it won't be
able to take the fastpath because the registers aren't available. The
slowpath is more expensive compared to XRSTOR + XSAVE which usually
succeeds.
Here are some clock_gettime() numbers from a bigger box with AVX512
during bootup:
- __fpregs_load_activate() takes 140ns - 350ns. If it was the most recent
FPU context on the CPU then the optimisation in __fpregs_load_activate()
will skip the load (which was disabled during the test).
- copy_fpregs_to_sigframe() takes 200ns - 450ns if it succeeds. On a
pagefault it is 1.8us - 3us usually in the 2.6us area.
- The slowpath takes 1.5us - 6us. Usually in the 2.6us area.
My testcases (including lat_sig) take the fastpath without
__fpregs_load_activate(). I expect this to be the majority.
Since the slowpath is in the >1us area it makes sense to load the
registers and attempt to save them directly. The direct save may fail
but should only happen on the first invocation or after fork() while the
page is read-only.
[ bp: Massage a bit. ]
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Dave Hansen <dave.hansen@intel.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jann Horn <jannh@google.com>
Cc: "Jason A. Donenfeld" <Jason@zx2c4.com>
Cc: kvm ML <kvm@vger.kernel.org>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Rik van Riel <riel@surriel.com>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/20190403164156.19645-27-bigeasy@linutronix.de
Try to save the FPU registers directly to the userland stack frame if
the CPU holds the FPU registers for the current task. This has to be
done with the pagefault disabled because we can't fault (while the FPU
registers are locked) and therefore the operation might fail. If it
fails try the slowpath which can handle faults.
[ bp: Massage a bit. ]
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Dave Hansen <dave.hansen@intel.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jann Horn <jannh@google.com>
Cc: "Jason A. Donenfeld" <Jason@zx2c4.com>
Cc: kvm ML <kvm@vger.kernel.org>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Rik van Riel <riel@surriel.com>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/20190403164156.19645-26-bigeasy@linutronix.de
The previous commits refactor the restoration of the FPU registers so
that they can be loaded from in-kernel memory. This overhead can be
avoided if the load can be performed without a pagefault.
Attempt to restore FPU registers by invoking
copy_user_to_fpregs_zeroing(). If it fails try the slowpath which can
handle pagefaults.
[ bp: Add a comment over the fastpath to be able to find one's way
around the function. ]
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Dave Hansen <dave.hansen@intel.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jann Horn <jannh@google.com>
Cc: "Jason A. Donenfeld" <Jason@zx2c4.com>
Cc: kvm ML <kvm@vger.kernel.org>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Rik van Riel <riel@surriel.com>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/20190403164156.19645-25-bigeasy@linutronix.de
Defer loading of FPU state until return to userspace. This gives
the kernel the potential to skip loading FPU state for tasks that
stay in kernel mode, or for tasks that end up with repeated
invocations of kernel_fpu_begin() & kernel_fpu_end().
The fpregs_lock/unlock() section ensures that the registers remain
unchanged. Otherwise a context switch or a bottom half could save the
registers to its FPU context and the processor's FPU registers would
became random if modified at the same time.
KVM swaps the host/guest registers on entry/exit path. This flow has
been kept as is. First it ensures that the registers are loaded and then
saves the current (host) state before it loads the guest's registers. The
swap is done at the very end with disabled interrupts so it should not
change anymore before theg guest is entered. The read/save version seems
to be cheaper compared to memcpy() in a micro benchmark.
Each thread gets TIF_NEED_FPU_LOAD set as part of fork() / fpu__copy().
For kernel threads, this flag gets never cleared which avoids saving /
restoring the FPU state for kernel threads and during in-kernel usage of
the FPU registers.
[
bp: Correct and update commit message and fix checkpatch warnings.
s/register/registers/ where it is used in plural.
minor comment corrections.
remove unused trace_x86_fpu_activate_state() TP.
]
Signed-off-by: Rik van Riel <riel@surriel.com>
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Dave Hansen <dave.hansen@intel.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Aubrey Li <aubrey.li@intel.com>
Cc: Babu Moger <Babu.Moger@amd.com>
Cc: "Chang S. Bae" <chang.seok.bae@intel.com>
Cc: Dmitry Safonov <dima@arista.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jann Horn <jannh@google.com>
Cc: "Jason A. Donenfeld" <Jason@zx2c4.com>
Cc: Joerg Roedel <jroedel@suse.de>
Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Cc: kvm ML <kvm@vger.kernel.org>
Cc: Nicolai Stange <nstange@suse.de>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: "Radim Krčmář" <rkrcmar@redhat.com>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: Waiman Long <longman@redhat.com>
Cc: x86-ml <x86@kernel.org>
Cc: Yi Wang <wang.yi59@zte.com.cn>
Link: https://lkml.kernel.org/r/20190403164156.19645-24-bigeasy@linutronix.de
The ia32_fxstate case (32bit with fxsr) and the other (64bit frames or
32bit frames without fxsr) restore both from kernel memory and sanitize
the content.
The !ia32_fxstate version restores missing xstates from "init state"
while the ia32_fxstate doesn't and skips it.
Merge the two code paths and keep the !ia32_fxstate one. Copy only the
user_i387_ia32_struct data structure in the ia32_fxstate.
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Dave Hansen <dave.hansen@intel.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jann Horn <jannh@google.com>
Cc: "Jason A. Donenfeld" <Jason@zx2c4.com>
Cc: kvm ML <kvm@vger.kernel.org>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Rik van Riel <riel@surriel.com>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/20190403164156.19645-23-bigeasy@linutronix.de
The 64-bit case (both 64-bit and 32-bit frames) loads the new state from
user memory.
However, doing this is not desired if the FPU state is going to be
restored on return to userland: it would be required to disable
preemption in order to avoid a context switch which would set
TIF_NEED_FPU_LOAD. If this happens before the restore operation then the
loaded registers would become volatile.
Furthermore, disabling preemption while accessing user memory requires
to disable the pagefault handler. An error during FXRSTOR would then
mean that either a page fault occurred (and it would have to be retried
with enabled page fault handler) or a #GP occurred because the xstate is
bogus (after all, the signal handler can modify it).
In order to avoid that mess, copy the FPU state from userland, validate
it and then load it. The copy_kernel_…() helpers are basically just
like the old helpers except that they operate on kernel memory and the
fault handler just sets the error value and the caller handles it.
copy_user_to_fpregs_zeroing() and its helpers remain and will be used
later for a fastpath optimisation.
[ bp: Clarify commit message. ]
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Dave Hansen <dave.hansen@intel.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Aubrey Li <aubrey.li@intel.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jann Horn <jannh@google.com>
Cc: "Jason A. Donenfeld" <Jason@zx2c4.com>
Cc: kvm ML <kvm@vger.kernel.org>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Rik van Riel <riel@surriel.com>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/20190403164156.19645-22-bigeasy@linutronix.de
Start refactoring __fpu__restore_sig() by inlining
copy_user_to_fpregs_zeroing(). The original function remains and will be
used to restore from userland memory if possible.
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Dave Hansen <dave.hansen@intel.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jann Horn <jannh@google.com>
Cc: "Jason A. Donenfeld" <Jason@zx2c4.com>
Cc: kvm ML <kvm@vger.kernel.org>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Rik van Riel <riel@surriel.com>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/20190403164156.19645-21-bigeasy@linutronix.de
The FPU registers need only to be saved if TIF_NEED_FPU_LOAD is not set.
Otherwise this has been already done and can be skipped.
[ bp: Massage a bit. ]
Signed-off-by: Rik van Riel <riel@surriel.com>
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Dave Hansen <dave.hansen@intel.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jann Horn <jannh@google.com>
Cc: "Jason A. Donenfeld" <Jason@zx2c4.com>
Cc: kvm ML <kvm@vger.kernel.org>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Rik van Riel <riel@surriel.com>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/20190403164156.19645-19-bigeasy@linutronix.de
copy_fpstate_to_sigframe() stores the registers directly to user space.
This is okay because the FPU registers are valid and saving them
directly avoids saving them into kernel memory and making a copy.
However, this cannot be done anymore if the FPU registers are going
to be restored on the return to userland. It is possible that the FPU
registers will be invalidated in the middle of the save operation and
this should be done with disabled preemption / BH.
Save the FPU registers to the task's FPU struct and copy them to the
user memory later on.
Signed-off-by: Rik van Riel <riel@surriel.com>
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Dave Hansen <dave.hansen@intel.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jann Horn <jannh@google.com>
Cc: "Jason A. Donenfeld" <Jason@zx2c4.com>
Cc: kvm ML <kvm@vger.kernel.org>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/20190403164156.19645-18-bigeasy@linutronix.de
Commit
2613f36ed9 ("x86/microcode: Attempt late loading only when new microcode is present")
added the new define UCODE_NEW to denote that an update should happen
only when newer microcode (than installed on the system) has been found.
But it missed adjusting that for the old /dev/cpu/microcode loading
interface. Fix it.
Fixes: 2613f36ed9 ("x86/microcode: Attempt late loading only when new microcode is present")
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Jann Horn <jannh@google.com>
Link: https://lkml.kernel.org/r/20190405133010.24249-3-bp@alien8.de
As reported by 0-DAY kernel test infrastructure:
arch/x86//kernel/ima_arch.c: In function 'arch_get_ima_policy':
>> arch/x86//kernel/ima_arch.c:78:4: error: implicit declaration of
function 'set_module_sig_enforced' [-Werror=implicit-function-declaration]
Signed-off-by: Mimi Zohar <zohar@linux.ibm.com>
Change generic_load_microcode() to use the iov_iter API instead of a
clumsy open-coded version which has to pay attention to __user data
or kernel data, depending on the loading method. This allows to avoid
explicit casting between user and kernel pointers.
Because the iov_iter API makes it hard to read the same location twice,
as a side effect, also fix a double-read of the microcode header (which
could e.g. lead to out-of-bounds reads in microcode_sanity_check()).
Not that it matters much, only root is allowed to load microcode
anyway...
[ bp: Massage a bit, sort function-local variables. ]
Signed-off-by: Jann Horn <jannh@google.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/20190404111128.131157-1-jannh@google.com
After changing the argument of __raw_xsave_addr() from a mask to
number Dave suggested to check if it makes sense to do the same for
get_xsave_addr(). As it turns out it does.
Only get_xsave_addr() needs the mask to check if the requested feature
is part of what is supported/saved and then uses the number again. The
shift operation is cheaper compared to fls64() (find last bit set).
Also, the feature number uses less opcode space compared to the mask. :)
Make the get_xsave_addr() argument a xfeature number instead of a mask
and fix up its callers.
Furthermore, use xfeature_nr and xfeature_mask consistently.
This results in the following changes to the kvm code:
feature -> xfeature_mask
index -> xfeature_nr
Suggested-by: Dave Hansen <dave.hansen@linux.intel.com>
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Dave Hansen <dave.hansen@intel.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jann Horn <jannh@google.com>
Cc: "Jason A. Donenfeld" <Jason@zx2c4.com>
Cc: kvm ML <kvm@vger.kernel.org>
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: "Radim Krčmář" <rkrcmar@redhat.com>
Cc: Rasmus Villemoes <linux@rasmusvillemoes.dk>
Cc: Rik van Riel <riel@surriel.com>
Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Cc: Siarhei Liakh <Siarhei.Liakh@concurrent-rt.com>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/20190403164156.19645-12-bigeasy@linutronix.de
Most users of __raw_xsave_addr() use a feature number, shift it to a
mask and then __raw_xsave_addr() shifts it back to the feature number.
Make __raw_xsave_addr() use the feature number as an argument.
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Dave Hansen <dave.hansen@intel.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: "Jason A. Donenfeld" <Jason@zx2c4.com>
Cc: kvm ML <kvm@vger.kernel.org>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Rik van Riel <riel@surriel.com>
Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/20190403164156.19645-11-bigeasy@linutronix.de
user_fpu_begin() sets fpu_fpregs_owner_ctx to task's fpu struct. This is
always the case since there is no lazy FPU anymore.
fpu_fpregs_owner_ctx is used during context switch to decide if it needs
to load the saved registers or if the currently loaded registers are
valid. It could be skipped during a
taskA -> kernel thread -> taskA
switch because the switch to the kernel thread would not alter the CPU's
sFPU tate.
Since this field is always updated during context switch and
never invalidated, setting it manually (in user context) makes no
difference. A kernel thread with kernel_fpu_begin() block could
set fpu_fpregs_owner_ctx to NULL but a kernel thread does not use
user_fpu_begin().
This is a leftover from the lazy-FPU time.
Remove user_fpu_begin(), it does not change fpu_fpregs_owner_ctx's
content.
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Dave Hansen <dave.hansen@intel.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Aubrey Li <aubrey.li@intel.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jann Horn <jannh@google.com>
Cc: "Jason A. Donenfeld" <Jason@zx2c4.com>
Cc: kvm ML <kvm@vger.kernel.org>
Cc: Nicolai Stange <nstange@suse.de>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Rik van Riel <riel@surriel.com>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/20190403164156.19645-9-bigeasy@linutronix.de
The struct fpu.initialized member is always set to one for user tasks
and zero for kernel tasks. This avoids saving/restoring the FPU
registers for kernel threads.
The ->initialized = 0 case for user tasks has been removed in previous
changes, for instance, by doing an explicit unconditional init at fork()
time for FPU-less systems which was otherwise delayed until the emulated
opcode.
The context switch code (switch_fpu_prepare() + switch_fpu_finish())
can't unconditionally save/restore registers for kernel threads. Not
only would it slow down the switch but also load a zeroed xcomp_bv for
XSAVES.
For kernel_fpu_begin() (+end) the situation is similar: EFI with runtime
services uses this before alternatives_patched is true. Which means that
this function is used too early and it wasn't the case before.
For those two cases, use current->mm to distinguish between user and
kernel thread. For kernel_fpu_begin() skip save/restore of the FPU
registers.
During the context switch into a kernel thread don't do anything. There
is no reason to save the FPU state of a kernel thread.
The reordering in __switch_to() is important because the current()
pointer needs to be valid before switch_fpu_finish() is invoked so ->mm
is seen of the new task instead the old one.
N.B.: fpu__save() doesn't need to check ->mm because it is called by
user tasks only.
[ bp: Massage. ]
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Dave Hansen <dave.hansen@intel.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Aubrey Li <aubrey.li@intel.com>
Cc: Babu Moger <Babu.Moger@amd.com>
Cc: "Chang S. Bae" <chang.seok.bae@intel.com>
Cc: Dmitry Safonov <dima@arista.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jann Horn <jannh@google.com>
Cc: "Jason A. Donenfeld" <Jason@zx2c4.com>
Cc: Joerg Roedel <jroedel@suse.de>
Cc: kvm ML <kvm@vger.kernel.org>
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Nicolai Stange <nstange@suse.de>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Rik van Riel <riel@surriel.com>
Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/20190403164156.19645-8-bigeasy@linutronix.de
In commit
72a671ced6 ("x86, fpu: Unify signal handling code paths for x86 and x86_64 kernels")
the 32bit and 64bit path of the signal delivery code were merged.
The 32bit version:
int save_i387_xstate_ia32(void __user *buf)
…
if (cpu_has_xsave)
return save_i387_xsave(fp);
if (cpu_has_fxsr)
return save_i387_fxsave(fp);
The 64bit version:
int save_i387_xstate(void __user *buf)
…
if (user_has_fpu()) {
if (use_xsave())
err = xsave_user(buf);
else
err = fxsave_user(buf);
if (unlikely(err)) {
__clear_user(buf, xstate_size);
return err;
The merge:
int save_xstate_sig(void __user *buf, void __user *buf_fx, int size)
…
if (user_has_fpu()) {
/* Save the live register state to the user directly. */
if (save_user_xstate(buf_fx))
return -1;
/* Update the thread's fxstate to save the fsave header. */
if (ia32_fxstate)
fpu_fxsave(&tsk->thread.fpu);
I don't think that we needed to save the FPU registers to ->thread.fpu
because the registers were stored in buf_fx. Today the state will be
restored from buf_fx after the signal was handled (I assume that this
was also the case with lazy-FPU).
Since commit
66463db4fc ("x86, fpu: shift drop_init_fpu() from save_xstate_sig() to handle_signal()")
it is ensured that the signal handler starts with clear/fresh set of FPU
registers which means that the previous store is futile.
Remove the copy_fxregs_to_kernel() call because task's FPU state is
cleared later in handle_signal() via fpu__clear().
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Dave Hansen <dave.hansen@intel.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jann Horn <jannh@google.com>
Cc: "Jason A. Donenfeld" <Jason@zx2c4.com>
Cc: kvm ML <kvm@vger.kernel.org>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Rik van Riel <riel@surriel.com>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/20190403164156.19645-7-bigeasy@linutronix.de
With lazy-FPU support the (now named variable) ->initialized was set to
true if the CPU's FPU registers were holding a valid state of the
FPU registers for the active process. If it was set to false then the
FPU state was saved in fpu->state and the FPU was deactivated.
With lazy-FPU gone, ->initialized is always true for user threads and
kernel threads never call this function so ->initialized is always true
in copy_fpstate_to_sigframe().
The using_compacted_format() check is also a leftover from the lazy-FPU
time. In the
->initialized == false
case copy_to_user() would copy the compacted buffer while userland would
expect the non-compacted format instead. So in order to save the FPU
state in the non-compacted form it issues XSAVE to save the *current*
FPU state.
If the FPU is not enabled, the attempt raises the FPU trap, the trap
restores the FPU contents and re-enables the FPU and XSAVE is invoked
again and succeeds.
*This* does not longer work since commit
bef8b6da95 ("x86/fpu: Handle #NM without FPU emulation as an error")
Remove the check for ->initialized because it is always true and remove
the false condition. Update the comment to reflect that the state is
always live.
[ bp: Massage. ]
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Dave Hansen <dave.hansen@intel.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jann Horn <jannh@google.com>
Cc: "Jason A. Donenfeld" <Jason@zx2c4.com>
Cc: kvm ML <kvm@vger.kernel.org>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Rik van Riel <riel@surriel.com>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/20190403164156.19645-6-bigeasy@linutronix.de
fpu__clear() only initializes the state if the CPU has FPU support.
This initialisation is also required for FPU-less systems and takes
place in math_emulate(). Since fpu__initialize() only performs the
initialization if ->initialized is zero it does not matter that it
is invoked each time an opcode is emulated. It makes the removal of
->initialized easier if the struct is also initialized in the FPU-less
case at the same time.
Move fpu__initialize() before the FPU feature check so it is also
performed in the FPU-less case too.
[ bp: Massage a bit. ]
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Dave Hansen <dave.hansen@intel.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Aubrey Li <aubrey.li@intel.com>
Cc: Bill Metzenthen <billm@melbpc.org.au>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jann Horn <jannh@google.com>
Cc: "Jason A. Donenfeld" <Jason@zx2c4.com>
Cc: kvm ML <kvm@vger.kernel.org>
Cc: Nicolai Stange <nstange@suse.de>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Rik van Riel <riel@surriel.com>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/20190403164156.19645-5-bigeasy@linutronix.de
The preempt_disable() section was introduced in commit
a10b6a16cd ("x86/fpu: Make the fpu state change in fpu__clear() scheduler-atomic")
and it was said to be temporary.
fpu__initialize() initializes the FPU struct to its initial value and
then sets ->initialized to 1. The last part is the important one.
The content of the state does not matter because it gets set via
copy_init_fpstate_to_fpregs().
A preemption here has little meaning because the registers will always be
set to the same content after copy_init_fpstate_to_fpregs(). A softirq
with a kernel_fpu_begin() could also force to save FPU's registers after
fpu__initialize() without changing the outcome here.
Remove the preempt_disable() section in fpu__clear(), preemption here
does not hurt.
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Dave Hansen <dave.hansen@intel.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: "Jason A. Donenfeld" <Jason@zx2c4.com>
Cc: kvm ML <kvm@vger.kernel.org>
Cc: Nicolai Stange <nstange@suse.de>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Rik van Riel <riel@surriel.com>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/20190403164156.19645-4-bigeasy@linutronix.de
There are no users of fpu__restore() so it is time to remove it. The
comment regarding fpu__restore() and TS bit is stale since commit
b3b0870ef3 ("i387: do not preload FPU state at task switch time")
and has no meaning since.
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Dave Hansen <dave.hansen@intel.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Aubrey Li <aubrey.li@intel.com>
Cc: Babu Moger <Babu.Moger@amd.com>
Cc: "Chang S. Bae" <chang.seok.bae@intel.com>
Cc: Dmitry Safonov <dima@arista.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jann Horn <jannh@google.com>
Cc: "Jason A. Donenfeld" <Jason@zx2c4.com>
Cc: Joerg Roedel <jroedel@suse.de>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: kvm ML <kvm@vger.kernel.org>
Cc: linux-doc@vger.kernel.org
Cc: Nicolai Stange <nstange@suse.de>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Rik van Riel <riel@surriel.com>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/20190403164156.19645-3-bigeasy@linutronix.de
This is a preparation for the removal of the ->initialized member in the
fpu struct.
__fpu__restore_sig() is deactivating the FPU via fpu__drop() and then
setting manually ->initialized followed by fpu__restore(). The result is
that it is possible to manipulate fpu->state and the state of registers
won't be saved/restored on a context switch which would overwrite
fpu->state:
fpu__drop(fpu):
...
fpu->initialized = 0;
preempt_enable();
<--- context switch
Don't access the fpu->state while the content is read from user space
and examined/sanitized. Use a temporary kmalloc() buffer for the
preparation of the FPU registers and once the state is considered okay,
load it. Should something go wrong, return with an error and without
altering the original FPU registers.
The removal of fpu__initialize() is a nop because fpu->initialized is
already set for the user task.
[ bp: Massage a bit. ]
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Dave Hansen <dave.hansen@intel.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Borislav Petkov <bp@suse.de>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jann Horn <jannh@google.com>
Cc: "Jason A. Donenfeld" <Jason@zx2c4.com>
Cc: kvm ML <kvm@vger.kernel.org>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Rik van Riel <riel@surriel.com>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/20190403164156.19645-2-bigeasy@linutronix.de
Now that we removed support for the NULL device argument in the DMA API,
there is no need to cater for that in the x86 code.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Using static_cpu_has() is pointless on those paths, convert them to the
boot_cpu_has() variant.
No functional changes.
Reported-by: Nadav Amit <nadav.amit@gmail.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Rik van Riel <riel@surriel.com>
Reviewed-by: Juergen Gross <jgross@suse.com> # for paravirt
Cc: Aubrey Li <aubrey.li@intel.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Dominik Brodowski <linux@dominikbrodowski.net>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jann Horn <jannh@google.com>
Cc: Joerg Roedel <jroedel@suse.de>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Cc: Thomas Lendacky <Thomas.Lendacky@amd.com>
Cc: linux-edac@vger.kernel.org
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: "Rafael J. Wysocki" <rafael.j.wysocki@intel.com>
Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tony Luck <tony.luck@intel.com>
Cc: virtualization@lists.linux-foundation.org
Cc: x86@kernel.org
Link: https://lkml.kernel.org/r/20190330112022.28888-3-bp@alien8.de
The Performance and Energy Bias Hint (EPB) is expected to be set by
user space through the generic MSR interface, but that interface is
not particularly nice and there are security concerns regarding it,
so it is not always available.
For this reason, add a sysfs interface for reading and updating the
EPB, in the form of a new attribute, energy_perf_bias, located
under /sys/devices/system/cpu/cpu#/power/ for online CPUs that
support the EPB feature.
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Reviewed-by: Hannes Reinecke <hare@suse.com>
Acked-by: Borislav Petkov <bp@suse.de>
The current handling of MSR_IA32_ENERGY_PERF_BIAS in the kernel is
problematic, because it may cause changes made by user space to that
MSR (with the help of the x86_energy_perf_policy tool, for example)
to be lost every time a CPU goes offline and then back online as well
as during system-wide power management transitions into sleep states
and back into the working state.
The first problem is that if the current EPB value for a CPU going
online is 0 ('performance'), the kernel will change it to 6 ('normal')
regardless of whether or not this is the first bring-up of that CPU.
That also happens during system-wide resume from sleep states
(including, but not limited to, hibernation). However, the EPB may
have been adjusted by user space this way and the kernel should not
blindly override that setting.
The second problem is that if the platform firmware resets the EPB
values for any CPUs during system-wide resume from a sleep state,
the kernel will not restore their previous EPB values that may
have been set by user space before the preceding system-wide
suspend transition. Again, that behavior may at least be confusing
from the user space perspective.
In order to address these issues, rework the handling of
MSR_IA32_ENERGY_PERF_BIAS so that the EPB value is saved on CPU
offline and restored on CPU online as well as (for the boot CPU)
during the syscore stages of system-wide suspend and resume
transitions, respectively.
However, retain the policy by which the EPB is set to 6 ('normal')
on the first bring-up of each CPU if its initial value is 0, based
on the observation that 0 may mean 'not initialized' just as well as
'performance' in that case.
While at it, move the MSR_IA32_ENERGY_PERF_BIAS handling code into
a separate file and document it in Documentation/admin-guide.
Fixes: abe48b1082 (x86, intel, power: Initialize MSR_IA32_ENERGY_PERF_BIAS)
Fixes: b51ef52df7 (x86/cpu: Restore MSR_IA32_ENERGY_PERF_BIAS after resume)
Reported-by: Thomas Renninger <trenn@suse.de>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Reviewed-by: Hannes Reinecke <hare@suse.com>
Acked-by: Borislav Petkov <bp@suse.de>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
One of the more common cases of allocation size calculations is finding the
size of a structure that has a zero-sized array at the end, along with
memory for some number of elements for that array. For example:
struct foo {
int stuff;
struct boo entry[];
};
instance = vzalloc(sizeof(struct foo) + count * sizeof(struct boo));
Instead of leaving these open-coded and prone to type mistakes, use the new
struct_size() helper:
instance = vzalloc(struct_size(instance, entry, count));
This code was detected with the help of Coccinelle.
Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Link: https://lkml.kernel.org/r/20190403184230.GA5295@embeddedor
Parsing entries in an ACPI table had assumed a generic header
structure. There is no standard ACPI header, though, so less common
layouts with different field sizes required custom parsers to go through
their subtable entry list.
Create the infrastructure for adding different table types so parsing
the entries array may be more reused for all ACPI system tables and
the common code doesn't need to be duplicated.
Reviewed-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Tested-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Signed-off-by: Keith Busch <keith.busch@intel.com>
Tested-by: Brice Goglin <Brice.Goglin@inria.fr>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
In save_xstate_epilog(), use __user when type-casting userspace
pointers.
In setup_sigcontext() and x32_setup_rt_frame(), cast the userspace
pointers to 'unsigned long __user *' before writing into them. These
pointers are originally '__u32 __user *' or '__u64 __user *', causing
sparse to complain when a userspace pointer is written into them. The
casts are okay because the pointers always point to pointer-sized
values.
Thanks to Luc Van Oostenryck and Al Viro for explaining this to me.
Signed-off-by: Jann Horn <jannh@google.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Mukesh Ojha <mojha@codeaurora.org>
Cc: Qiaowei Ren <qiaowei.ren@intel.com>
Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Will Deacon <will.deacon@arm.com>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/20190329214652.258477-3-jannh@google.com
Now that we have objtool validating AC=1 state for all x86_64 code,
we can once again guarantee clean flags on schedule.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Occasionally GCC is less agressive with inlining and the following is
observed:
arch/x86/kernel/signal.o: warning: objtool: restore_sigcontext()+0x3cc: call to force_valid_ss.isra.5() with UACCESS enabled
arch/x86/kernel/signal.o: warning: objtool: do_signal()+0x384: call to frame_uc_flags.isra.0() with UACCESS enabled
Cure this by moving this code out of the AC=1 region, since it really
isn't needed for the user access.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Effectively reverts commit:
2c7577a758 ("sched/x86_64: Don't save flags on context switch")
Specifically because SMAP uses FLAGS.AC which invalidates the claim
that the kernel has clean flags.
In particular; while preemption from interrupt return is fine (the
IRET frame on the exception stack contains FLAGS) it breaks any code
that does synchonous scheduling, including preempt_enable().
This has become a significant issue ever since commit:
5b24a7a2aa ("Add 'unsafe' user access functions for batched accesses")
provided for means of having 'normal' C code between STAC / CLAC,
exposing the FLAGS.AC state. So far this hasn't led to trouble,
however fix it before it comes apart.
Reported-by: Julien Thierry <julien.thierry@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Andy Lutomirski <luto@amacapital.net>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: stable@kernel.org
Fixes: 5b24a7a2aa ("Add 'unsafe' user access functions for batched accesses")
Signed-off-by: Ingo Molnar <mingo@kernel.org>
MDS is vulnerable with SMT. Make that clear with a one-time printk
whenever SMT first gets enabled.
Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Tyler Hicks <tyhicks@canonical.com>
Acked-by: Jiri Kosina <jkosina@suse.cz>
arch_smt_update() now has a dependency on both Spectre v2 and MDS
mitigations. Move its initial call to after all the mitigation decisions
have been made.
Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Tyler Hicks <tyhicks@canonical.com>
Acked-by: Jiri Kosina <jkosina@suse.cz>
Add the mds=full,nosmt cmdline option. This is like mds=full, but with
SMT disabled if the CPU is vulnerable.
Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Tyler Hicks <tyhicks@canonical.com>
Acked-by: Jiri Kosina <jkosina@suse.cz>
Let's reserve EHL stolen memory for graphics.
ElkhartLake is a gen11 platform which is compatible with
ICL changes.
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: x86@kernel.org
Cc: José Roberto de Souza <jose.souza@intel.com>
Signed-off-by: Rodrigo Vivi <rodrigo.vivi@intel.com>
Reviewed-by: José Roberto de Souza <jose.souza@intel.com>
Acked-by: Borislav Petkov <bp@suse.de>
Link: https://patchwork.freedesktop.org/patch/msgid/20190315191938.22211-2-rodrigo.vivi@intel.com
The user can control the MBA memory bandwidth in MBps (Mega
Bytes per second) units of the MBA Software Controller (mba_sc)
by using the "mba_MBps" mount option. For details, see
Documentation/x86/resctrl_ui.txt.
However, commit
23bf1b6be9 ("kernfs, sysfs, cgroup, intel_rdt: Support fs_context")
changed the mount option name from "mba_MBps" to "mba_mpbs" by mistake.
Change it back from to "mba_MBps" because it is user-visible, and
correct "Opt_mba_mpbs" spelling to "Opt_mba_mbps".
[ bp: massage commit message. ]
Fixes: 23bf1b6be9 ("kernfs, sysfs, cgroup, intel_rdt: Support fs_context")
Signed-off-by: Xiaochen Shen <xiaochen.shen@intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: dhowells@redhat.com
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: pei.p.jia@intel.com
Cc: Reinette Chatre <reinette.chatre@intel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tony Luck <tony.luck@intel.com>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/1553896238-22130-1-git-send-email-xiaochen.shen@intel.com
This allows the IS_PINEVIEW_<G|M> macros to be removed and avoid
duplication of device ids already defined in i915_pciids.h.
!IS_MOBILE check can be used in place of existing IS_PINEVIEW_G call
sites.
Signed-off-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Suggested-by: Ville Syrjälä <ville.syrjala@linux.intel.com>
Cc: Ville Syrjälä <ville.syrjala@linux.intel.com>
Cc: Chris Wilson <chris@chris-wilson.co.uk>
Reviewed-by: Chris Wilson <chris@chris-wilson.co.uk>
Link: https://patchwork.freedesktop.org/patch/msgid/20190326074057.27833-2-tvrtko.ursulin@linux.intel.com
Calling this function has been wrong for a while now:
* Can't call schedule_work() in #MC context.
* mce_notify_irq() either.
* None of that noodling is needed anymore - all it needs to do is kick
the IRQ work which would self-IPI so that once the #MC handler is done,
the work queue will run and process queued MCE records.
So remove it.
Reported-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Tony Luck <tony.luck@intel.com>
Cc: x86@kernel.org
Link: https://lkml.kernel.org/r/20190325172121.7926-1-bp@alien8.de
All architectures (arm/arm64, ia64 and x86) do the same here, so unify
the code.
Note: We do not need to call dump_stack_set_arch_desc() in case of
!dmi_available. Both strings, dmi_ids_string and dump_stack_arch_
desc_str are initialized zero and thus nothing would change.
Signed-off-by: Robert Richter <rrichter@marvell.com>
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Reviewed-by: Jean Delvare <jdelvare@suse.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Matt Fleming <matt@codeblueprint.co.uk>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-efi@vger.kernel.org
Link: http://lkml.kernel.org/r/20190328193429.21373-5-ard.biesheuvel@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Have the IMA architecture specific policy require signed kernel modules
on systems with secure boot mode enabled; and coordinate the different
signature verification methods, so only one signature is required.
Requiring appended kernel module signatures may be configured, enabled
on the boot command line, or with this patch enabled in secure boot
mode. This patch defines set_module_sig_enforced().
To coordinate between appended kernel module signatures and IMA
signatures, only define an IMA MODULE_CHECK policy rule if
CONFIG_MODULE_SIG is not enabled. A custom IMA policy may still define
and require an IMA signature.
Signed-off-by: Mimi Zohar <zohar@linux.ibm.com>
Reviewed-by: Luis Chamberlain <mcgrof@kernel.org>
Acked-by: Jessica Yu <jeyu@kernel.org>
Linux reads MCG_CAP[Count] to find the number of MCA banks visible to a
CPU. Currently, this number is the same for all CPUs and a warning is
shown if there is a difference. The number of banks is overwritten with
the MCG_CAP[Count] value of each following CPU that boots.
According to the Intel SDM and AMD APM, the MCG_CAP[Count] value gives
the number of banks that are available to a "processor implementation".
The AMD BKDGs/PPRs further clarify that this value is per core. This
value has historically been the same for every core in the system, but
that is not an architectural requirement.
Future AMD systems may have different MCG_CAP[Count] values per core,
so the assumption that all CPUs will have the same MCG_CAP[Count] value
will no longer be valid.
Also, the first CPU to boot will allocate the struct mce_banks[] array
using the number of banks based on its MCG_CAP[Count] value. The machine
check handler and other functions use the global number of banks to
iterate and index into the mce_banks[] array. So it's possible to use an
out-of-bounds index on an asymmetric system where a following CPU sees a
MCG_CAP[Count] value greater than its predecessors.
Thus, allocate the mce_banks[] array to the maximum number of banks.
This will avoid the potential out-of-bounds index since the value of
mca_cfg.banks is capped to MAX_NR_BANKS.
Set the value of mca_cfg.banks equal to the max of the previous value
and the value for the current CPU. This way mca_cfg.banks will always
represent the max number of banks detected on any CPU in the system.
This will ensure that all CPUs will access all the banks that are
visible to them. A CPU that can access fewer than the max number of
banks will find the registers of the extra banks to be read-as-zero.
Furthermore, print the resulting number of MCA banks in use. Do this in
mcheck_late_init() so that the final value is printed after all CPUs
have been initialized.
Finally, get bank count from target CPU when doing injection with mce-inject
module.
[ bp: Remove out-of-bounds example, passify and cleanup commit message. ]
Signed-off-by: Yazen Ghannam <yazen.ghannam@amd.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: linux-edac <linux-edac@vger.kernel.org>
Cc: Pu Wen <puwen@hygon.cn>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Vishal Verma <vishal.l.verma@intel.com>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/20180727214009.78289-1-Yazen.Ghannam@amd.com
There has been a lurking "TBD" in the machine check poll routine ever
since it was first split out from the machine check handler. The
potential issue is that the poll routine may have just begun a read from
the STATUS register in a machine check bank when the hardware logs an
error in that bank and signals a machine check.
That race used to be pretty small back when machine checks were
broadcast, but the addition of local machine check means that the poll
code could continue running and clear the error from the bank before the
local machine check handler on another CPU gets around to reading it.
Fix the code to be sure to only process errors that need to be processed
in the poll code, leaving other logged errors alone for the machine
check handler to find and process.
[ bp: Massage a bit and flip the "== 0" check to the usual !(..) test. ]
Fixes: b79109c3bb ("x86, mce: separate correct machine check poller and fatal exception handler")
Fixes: ed7290d0ee ("x86, mce: implement new status bits")
Reported-by: Ashok Raj <ashok.raj@intel.com>
Signed-off-by: Tony Luck <tony.luck@intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Ashok Raj <ashok.raj@intel.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: linux-edac <linux-edac@vger.kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: x86-ml <x86@kernel.org>
Cc: Yazen Ghannam <Yazen.Ghannam@amd.com>
Link: https://lkml.kernel.org/r/20190312170938.GA23035@agluck-desk
The Hygon family 18h multi-die processor platform supports 1, 2 or
4-Dies per socket. The topology looks like this:
System View (with 1-Die 2-Socket):
|------------|
------ -----
SOCKET0 | D0 | | D1 | SOCKET1
------ -----
System View (with 2-Die 2-socket):
--------------------
| -------------|------
| | | |
------------ ------------
SOCKET0 | D1 -- D0 | | D3 -- D2 | SOCKET1
------------ ------------
System View (with 4-Die 2-Socket) :
--------------------
| -------------|------
| | | |
------------ ------------
| D1 -- D0 | | D7 -- D6 |
| | \/ | | | | \/ | |
SOCKET0 | | /\ | | | | /\ | | SOCKET1
| D2 -- D3 | | D4 -- D5 |
------------ ------------
| | | |
------|------------| |
--------------------
Currently
phys_proc_id = initial_apicid >> bits
calculates the physical processor ID from the initial_apicid by shifting
*bits*.
However, this does not work for 1-Die and 2-Die 2-socket systems.
According to document [1] section 2.1.11.1, the bits is the value of
CPUID_Fn80000008_ECX[12:15]. The possible values are 4, 5 or 6 which
mean:
4 - 1 die
5 - 2 dies
6 - 3/4 dies.
Hygon programs the initial ApicId the same way as AMD. The ApicId is
read from CPUID_Fn00000001_EBX (see section 2.1.11.1 of referrence [1])
and the definition is as below (see section 2.1.10.2.1.3 of [1]):
-------------------------------------------------
Bit | 6 | 5 4 | 3 | 2 1 0 |
|-----------|---------|--------|----------------|
IDs | Socket ID | Node ID | CCX ID | Core/Thread ID |
-------------------------------------------------
So for 3/4-Die configurations, the bits variable is 6, which is the same
as the ApicID definition field.
For 1-Die and 2-Die configurations, bits is 4 or 5, which will cause the
right shifted result to not be exactly the value of socket ID.
However, the socket ID should be obtained from ApicId[6]. To fix the
problem and match the ApicID field definition, set the shift bits to 6
for all Hygon family 18h multi-die CPUs.
Because AMD doesn't have 2-Socket systems with 1-Die/2-Die processors
(see reference [2]), this doesn't need to be changed on the AMD side but
only for Hygon.
References:
[1] https://www.amd.com/system/files/TechDocs/54945_PPR_Family_17h_Models_00h-0Fh.pdf
[2] https://www.amd.com/en/products/specifications/processors
[bp: heavily massage commit message. ]
Signed-off-by: Pu Wen <puwen@hygon.cn>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Thomas Lendacky <Thomas.Lendacky@amd.com>
Cc: Yazen Ghannam <yazen.ghannam@amd.com>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/1553355740-19999-1-git-send-email-puwen@hygon.cn
On machines where the GART aperture is mapped over physical RAM,
/proc/kcore contains the GART aperture range. Accessing the GART range via
/proc/kcore results in a kernel crash.
vmcore used to have the same issue, until it was fixed with commit
2a3e83c6f9 ("x86/gart: Exclude GART aperture from vmcore")', leveraging
existing hook infrastructure in vmcore to let /proc/vmcore return zeroes
when attempting to read the aperture region, and so it won't read from the
actual memory.
Apply the same workaround for kcore. First implement the same hook
infrastructure for kcore, then reuse the hook functions introduced in the
previous vmcore fix. Just with some minor adjustment, rename some functions
for more general usage, and simplify the hook infrastructure a bit as there
is no module usage yet.
Suggested-by: Baoquan He <bhe@redhat.com>
Signed-off-by: Kairui Song <kasong@redhat.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Jiri Bohac <jbohac@suse.cz>
Acked-by: Baoquan He <bhe@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Alexey Dobriyan <adobriyan@gmail.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Omar Sandoval <osandov@fb.com>
Cc: Dave Young <dyoung@redhat.com>
Link: https://lkml.kernel.org/r/20190308030508.13548-1-kasong@redhat.com
When building with -Wsometimes-uninitialized, Clang warns:
arch/x86/kernel/hw_breakpoint.c:355:2: warning: variable 'align' is used
uninitialized whenever switch default is taken
[-Wsometimes-uninitialized]
The default cannot be reached because arch_build_bp_info() initializes
hw->len to one of the specified cases. Nevertheless the warning is valid
and returning -EINVAL makes sure that this cannot be broken by future
modifications.
Suggested-by: Nick Desaulniers <ndesaulniers@google.com>
Signed-off-by: Nathan Chancellor <natechancellor@gmail.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Nick Desaulniers <ndesaulniers@google.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: clang-built-linux@googlegroups.com
Link: https://github.com/ClangBuiltLinux/linux/issues/392
Link: https://lkml.kernel.org/r/20190307212756.4648-1-natechancellor@gmail.com
There are comments in processor-cyrix.h advising you to _not_ make calls
using the deprecated macros in this style:
setCx86_old(CX86_CCR4, getCx86_old(CX86_CCR4) | 0x80);
This is because it expands the macro into a non-functioning calling
sequence. The calling order must be:
outb(CX86_CCR2, 0x22);
inb(0x23);
From the comments:
* When using the old macros a line like
* setCx86(CX86_CCR2, getCx86(CX86_CCR2) | 0x88);
* gets expanded to:
* do {
* outb((CX86_CCR2), 0x22);
* outb((({
* outb((CX86_CCR2), 0x22);
* inb(0x23);
* }) | 0x88), 0x23);
* } while (0);
The new macros fix this problem, so use them instead. Tested on an
actual Geode processor.
Signed-off-by: Matthew Whitehead <tedheadster@gmail.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: luto@kernel.org
Link: https://lkml.kernel.org/r/1552596361-8967-2-git-send-email-tedheadster@gmail.com
By popular demand, issue a single line to dmesg after the reload
operation completes to let the user know that a reload has at least been
attempted.
Signed-off-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/20190313110022.8229-1-bp@alien8.de
hpet_virt_address may be NULL when ioremap_nocache fail, but the code lacks
a check.
Add a check to prevent NULL pointer dereference.
Signed-off-by: Aditya Pakki <pakki001@umn.edu>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: kjlu@umn.edu
Cc: Borislav Petkov <bp@alien8.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Joe Perches <joe@perches.com>
Cc: Nicolai Stange <nstange@suse.de>
Cc: Roland Dreier <roland@purestorage.com>
Link: https://lkml.kernel.org/r/20190319021958.17275-1-pakki001@umn.edu
Since commit:
ad67b74d24 ("printk: hash addresses printed with %p")
at boot "____ptrval____" is printed instead of actual addresses:
found SMP MP-table at [mem 0x000f5cc0-0x000f5ccf] mapped at [(____ptrval____)]
Instead of changing the print to "%px", and leaking a kernel addresses,
just remove the print completely, like in:
071929dbdd ("arm64: Stop printing the virtual memory layout").
Signed-off-by: Matteo Croce <mcroce@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
for 32-bit guests
s390: interrupt cleanup, introduction of the Guest Information Block,
preparation for processor subfunctions in cpu models
PPC: bug fixes and improvements, especially related to machine checks
and protection keys
x86: many, many cleanups, including removing a bunch of MMU code for
unnecessary optimizations; plus AVIC fixes.
Generic: memcg accounting
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2.0.22 (GNU/Linux)
iQEcBAABAgAGBQJci+7XAAoJEL/70l94x66DUMkIAKvEefhceySHYiTpfefjLjIC
16RewgHa+9CO4Oo5iXiWd90fKxtXLXmxDQOS4VGzN0rxvLGRw/fyXIxL1MDOkaAO
l8SLSNuewY4XBUgISL3PMz123r18DAGOuy9mEcYU/IMesYD2F+wy5lJ17HIGq6X2
RpoF1p3qO1jfkPTKOob6Ixd4H5beJNPKpdth7LY3PJaVhDxgouj32fxnLnATVSnN
gENQ10fnt8BCjshRYW6Z2/9bF15JCkUFR1xdBW2/xh1oj+kvPqqqk2bEN1eVQzUy
2hT/XkwtpthqjSbX8NNavWRSFnOnbMLTRKQyIXmFVsM5VoSrwtiGsCFzBgcT++I=
=XIzU
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull KVM updates from Paolo Bonzini:
"ARM:
- some cleanups
- direct physical timer assignment
- cache sanitization for 32-bit guests
s390:
- interrupt cleanup
- introduction of the Guest Information Block
- preparation for processor subfunctions in cpu models
PPC:
- bug fixes and improvements, especially related to machine checks
and protection keys
x86:
- many, many cleanups, including removing a bunch of MMU code for
unnecessary optimizations
- AVIC fixes
Generic:
- memcg accounting"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (147 commits)
kvm: vmx: fix formatting of a comment
KVM: doc: Document the life cycle of a VM and its resources
MAINTAINERS: Add KVM selftests to existing KVM entry
Revert "KVM/MMU: Flush tlb directly in the kvm_zap_gfn_range()"
KVM: PPC: Book3S: Add count cache flush parameters to kvmppc_get_cpu_char()
KVM: PPC: Fix compilation when KVM is not enabled
KVM: Minor cleanups for kvm_main.c
KVM: s390: add debug logging for cpu model subfunctions
KVM: s390: implement subfunction processor calls
arm64: KVM: Fix architecturally invalid reset value for FPEXC32_EL2
KVM: arm/arm64: Remove unused timer variable
KVM: PPC: Book3S: Improve KVM reference counting
KVM: PPC: Book3S HV: Fix build failure without IOMMU support
Revert "KVM: Eliminate extra function calls in kvm_get_dirty_log_protect()"
x86: kvmguest: use TSC clocksource if invariant TSC is exposed
KVM: Never start grow vCPU halt_poll_ns from value below halt_poll_ns_grow_start
KVM: Expose the initial start value in grow_halt_poll_ns() as a module parameter
KVM: grow_halt_poll_ns() should never shrink vCPU halt_poll_ns
KVM: x86/mmu: Consolidate kvm_mmu_zap_all() and kvm_mmu_zap_mmio_sptes()
KVM: x86/mmu: WARN if zapping a MMIO spte results in zapping children
...
Pull vfs mount infrastructure updates from Al Viro:
"The rest of core infrastructure; no new syscalls in that pile, but the
old parts are switched to new infrastructure. At that point
conversions of individual filesystems can happen independently; some
are done here (afs, cgroup, procfs, etc.), there's also a large series
outside of that pile dealing with NFS (quite a bit of option-parsing
stuff is getting used there - it's one of the most convoluted
filesystems in terms of mount-related logics), but NFS bits are the
next cycle fodder.
It got seriously simplified since the last cycle; documentation is
probably the weakest bit at the moment - I considered dropping the
commit introducing Documentation/filesystems/mount_api.txt (cutting
the size increase by quarter ;-), but decided that it would be better
to fix it up after -rc1 instead.
That pile allows to do followup work in independent branches, which
should make life much easier for the next cycle. fs/super.c size
increase is unpleasant; there's a followup series that allows to
shrink it considerably, but I decided to leave that until the next
cycle"
* 'work.mount' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs: (41 commits)
afs: Use fs_context to pass parameters over automount
afs: Add fs_context support
vfs: Add some logging to the core users of the fs_context log
vfs: Implement logging through fs_context
vfs: Provide documentation for new mount API
vfs: Remove kern_mount_data()
hugetlbfs: Convert to fs_context
cpuset: Use fs_context
kernfs, sysfs, cgroup, intel_rdt: Support fs_context
cgroup: store a reference to cgroup_ns into cgroup_fs_context
cgroup1_get_tree(): separate "get cgroup_root to use" into a separate helper
cgroup_do_mount(): massage calling conventions
cgroup: stash cgroup_root reference into cgroup_fs_context
cgroup2: switch to option-by-option parsing
cgroup1: switch to option-by-option parsing
cgroup: take options parsing into ->parse_monolithic()
cgroup: fold cgroup1_mount() into cgroup1_get_tree()
cgroup: start switching to fs_context
ipc: Convert mqueue fs to fs_context
proc: Add fs_context support to procfs
...
Merge misc updates from Andrew Morton:
- a few misc things
- the rest of MM
- remove flex_arrays, replace with new simple radix-tree implementation
* emailed patches from Andrew Morton <akpm@linux-foundation.org>: (38 commits)
Drop flex_arrays
sctp: convert to genradix
proc: commit to genradix
generic radix trees
selinux: convert to kvmalloc
md: convert to kvmalloc
openvswitch: convert to kvmalloc
of: fix kmemleak crash caused by imbalance in early memory reservation
mm: memblock: update comments and kernel-doc
memblock: split checks whether a region should be skipped to a helper function
memblock: remove memblock_{set,clear}_region_flags
memblock: drop memblock_alloc_*_nopanic() variants
memblock: memblock_alloc_try_nid: don't panic
treewide: add checks for the return value of memblock_alloc*()
swiotlb: add checks for the return value of memblock_alloc*()
init/main: add checks for the return value of memblock_alloc*()
mm/percpu: add checks for the return value of memblock_alloc*()
sparc: add checks for the return value of memblock_alloc*()
ia64: add checks for the return value of memblock_alloc*()
arch: don't memset(0) memory returned by memblock_alloc()
...
As all the memblock allocation functions return NULL in case of error
rather than panic(), the duplicates with _nopanic suffix can be removed.
Link: http://lkml.kernel.org/r/1548057848-15136-22-git-send-email-rppt@linux.ibm.com
Signed-off-by: Mike Rapoport <rppt@linux.ibm.com>
Acked-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Reviewed-by: Petr Mladek <pmladek@suse.com> [printk]
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Christophe Leroy <christophe.leroy@c-s.fr>
Cc: Christoph Hellwig <hch@lst.de>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Dennis Zhou <dennis@kernel.org>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Greentime Hu <green.hu@gmail.com>
Cc: Guan Xuetao <gxt@pku.edu.cn>
Cc: Guo Ren <guoren@kernel.org>
Cc: Guo Ren <ren_guo@c-sky.com> [c-sky]
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Juergen Gross <jgross@suse.com> [Xen]
Cc: Mark Salter <msalter@redhat.com>
Cc: Matt Turner <mattst88@gmail.com>
Cc: Max Filippov <jcmvbkbc@gmail.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Michal Simek <monstr@monstr.eu>
Cc: Paul Burton <paul.burton@mips.com>
Cc: Richard Weinberger <richard@nod.at>
Cc: Rich Felker <dalias@libc.org>
Cc: Rob Herring <robh+dt@kernel.org>
Cc: Rob Herring <robh@kernel.org>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Stafford Horne <shorne@gmail.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Vineet Gupta <vgupta@synopsys.com>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Add check for the return value of memblock_alloc*() functions and call
panic() in case of error. The panic message repeats the one used by
panicing memblock allocators with adjustment of parameters to include
only relevant ones.
The replacement was mostly automated with semantic patches like the one
below with manual massaging of format strings.
@@
expression ptr, size, align;
@@
ptr = memblock_alloc(size, align);
+ if (!ptr)
+ panic("%s: Failed to allocate %lu bytes align=0x%lx\n", __func__, size, align);
[anders.roxell@linaro.org: use '%pa' with 'phys_addr_t' type]
Link: http://lkml.kernel.org/r/20190131161046.21886-1-anders.roxell@linaro.org
[rppt@linux.ibm.com: fix format strings for panics after memblock_alloc]
Link: http://lkml.kernel.org/r/1548950940-15145-1-git-send-email-rppt@linux.ibm.com
[rppt@linux.ibm.com: don't panic if the allocation in sparse_buffer_init fails]
Link: http://lkml.kernel.org/r/20190131074018.GD28876@rapoport-lnx
[akpm@linux-foundation.org: fix xtensa printk warning]
Link: http://lkml.kernel.org/r/1548057848-15136-20-git-send-email-rppt@linux.ibm.com
Signed-off-by: Mike Rapoport <rppt@linux.ibm.com>
Signed-off-by: Anders Roxell <anders.roxell@linaro.org>
Reviewed-by: Guo Ren <ren_guo@c-sky.com> [c-sky]
Acked-by: Paul Burton <paul.burton@mips.com> [MIPS]
Acked-by: Heiko Carstens <heiko.carstens@de.ibm.com> [s390]
Reviewed-by: Juergen Gross <jgross@suse.com> [Xen]
Reviewed-by: Geert Uytterhoeven <geert@linux-m68k.org> [m68k]
Acked-by: Max Filippov <jcmvbkbc@gmail.com> [xtensa]
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Christophe Leroy <christophe.leroy@c-s.fr>
Cc: Christoph Hellwig <hch@lst.de>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Dennis Zhou <dennis@kernel.org>
Cc: Greentime Hu <green.hu@gmail.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Guan Xuetao <gxt@pku.edu.cn>
Cc: Guo Ren <guoren@kernel.org>
Cc: Mark Salter <msalter@redhat.com>
Cc: Matt Turner <mattst88@gmail.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Michal Simek <monstr@monstr.eu>
Cc: Petr Mladek <pmladek@suse.com>
Cc: Richard Weinberger <richard@nod.at>
Cc: Rich Felker <dalias@libc.org>
Cc: Rob Herring <robh+dt@kernel.org>
Cc: Rob Herring <robh@kernel.org>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Stafford Horne <shorne@gmail.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Vineet Gupta <vgupta@synopsys.com>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The __memblock_alloc_base() function tries to allocate a memory up to
the limit specified by its max_addr parameter. Depending on the value
of this parameter, the __memblock_alloc_base() can is replaced with the
appropriate memblock_phys_alloc*() variant.
Link: http://lkml.kernel.org/r/1548057848-15136-9-git-send-email-rppt@linux.ibm.com
Signed-off-by: Mike Rapoport <rppt@linux.ibm.com>
Acked-by: Rob Herring <robh@kernel.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Christophe Leroy <christophe.leroy@c-s.fr>
Cc: Christoph Hellwig <hch@lst.de>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Dennis Zhou <dennis@kernel.org>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Greentime Hu <green.hu@gmail.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Guan Xuetao <gxt@pku.edu.cn>
Cc: Guo Ren <guoren@kernel.org>
Cc: Guo Ren <ren_guo@c-sky.com> [c-sky]
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Juergen Gross <jgross@suse.com> [Xen]
Cc: Mark Salter <msalter@redhat.com>
Cc: Matt Turner <mattst88@gmail.com>
Cc: Max Filippov <jcmvbkbc@gmail.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Michal Simek <monstr@monstr.eu>
Cc: Paul Burton <paul.burton@mips.com>
Cc: Petr Mladek <pmladek@suse.com>
Cc: Richard Weinberger <richard@nod.at>
Cc: Rich Felker <dalias@libc.org>
Cc: Rob Herring <robh+dt@kernel.org>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Stafford Horne <shorne@gmail.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Vineet Gupta <vgupta@synopsys.com>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-----BEGIN PGP SIGNATURE-----
iHUEABYIAB0WIQRTLbB6QfY48x44uB6AXGG7T9hjvgUCXIYrgwAKCRCAXGG7T9hj
viyuAP4/bKpQ8QUp2V6ddkyEG4NTkA7H87pqQQsxJe9sdoyRRwD5AReS7oitoRS/
cm6SBpwdaPRX/hfVvT2/h1GWxkvDFgA=
=8Zfa
-----END PGP SIGNATURE-----
Merge tag 'for-linus-5.1a-rc1-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/xen/tip
Pull xen updates from Juergen Gross:
"xen fixes and features:
- remove fallback code for very old Xen hypervisors
- three patches for fixing Xen dom0 boot regressions
- an old patch for Xen PCI passthrough which was never applied for
unknown reasons
- some more minor fixes and cleanup patches"
* tag 'for-linus-5.1a-rc1-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/xen/tip:
xen: fix dom0 boot on huge systems
xen, cpu_hotplug: Prevent an out of bounds access
xen: remove pre-xen3 fallback handlers
xen/ACPI: Switch to bitmap_zalloc()
x86/xen: dont add memory above max allowed allocation
x86: respect memory size limiting via mem= parameter
xen/gntdev: Check and release imported dma-bufs on close
xen/gntdev: Do not destroy context while dma-bufs are in use
xen/pciback: Don't disable PCI_COMMAND on PCI device reset.
xen-scsiback: mark expected switch fall-through
xen: mark expected switch fall-through
- Add "onchange(var)" histogram handler that executes a action when $var
changes.
- Add new "snapshot()" action for histogram handlers, that causes a
snapshot of the ring buffer when triggered.
ie. onchange(var).snapshot() will trigger a snapshot if var changes.
- Add alternative for "trace()" action.
Currently, to trigger a synthetic event, the name of that event is used
as the handler name, which is inconsistent with the other actions.
onchange(var).synthetic(param) where it can now be
onchange(var).trace(synthetic, param). The older method will still be
allowed, as long as the synthetic events do not overlap with other
handler names.
- The histogram documentation at testcases were updated for the new
changes.
Added a quicker way to enable set_ftrace_filter files, that will make
it much quicker to bisect tracing a function that shouldn't be traced and
crashes the kernel. (You can echo in numbers to set_ftrace_filter, and it
will select the corresponding function that is in
available_filter_functions).
Some better displaying of the tracing data (and more information was added).
The rest are small fixes and more clean ups to the code.
-----BEGIN PGP SIGNATURE-----
iIoEABYIADIWIQRRSw7ePDh/lE+zeZMp5XQQmuv6qgUCXIXXjRQccm9zdGVkdEBn
b29kbWlzLm9yZwAKCRAp5XQQmuv6qrSJAQCbGXAvZE+shfKRhbU1cu1C1nwRMHhH
eeRecJs1RChGFgD/TwatD4FzARQPjfk7snQD5KWPpoRc9grUACC2cZcaWwQ=
=LVBI
-----END PGP SIGNATURE-----
Merge tag 'trace-v5.1' of git://git.kernel.org/pub/scm/linux/kernel/git/rostedt/linux-trace
Pull tracing updates from Steven Rostedt:
"The biggest change for this release is in the histogram code:
- Add "onchange(var)" histogram handler that executes a action when
$var changes.
- Add new "snapshot()" action for histogram handlers, that causes a
snapshot of the ring buffer when triggered. ie.
onchange(var).snapshot() will trigger a snapshot if var changes.
- Add alternative for "trace()" action. Currently, to trigger a
synthetic event, the name of that event is used as the handler
name, which is inconsistent with the other actions.
onchange(var).synthetic(param) where it can now be
onchange(var).trace(synthetic, param). The older method will still
be allowed, as long as the synthetic events do not overlap with
other handler names.
- The histogram documentation at testcases were updated for the new
changes.
Outside of the histogram code, we have:
- Added a quicker way to enable set_ftrace_filter files, that will
make it much quicker to bisect tracing a function that shouldn't be
traced and crashes the kernel. (You can echo in numbers to
set_ftrace_filter, and it will select the corresponding function
that is in available_filter_functions).
- Some better displaying of the tracing data (and more information
was added).
The rest are small fixes and more clean ups to the code"
* tag 'trace-v5.1' of git://git.kernel.org/pub/scm/linux/kernel/git/rostedt/linux-trace: (37 commits)
tracing: Use strncpy instead of memcpy when copying comm in trace.c
tracing: Use strncpy instead of memcpy when copying comm for hist triggers
tracing: Use strncpy instead of memcpy for string keys in hist triggers
tracing: Use str_has_prefix() in synth_event_create()
x86/ftrace: Fix warning and considate ftrace_jmp_replace() and ftrace_call_replace()
tracing/perf: Use strndup_user() instead of buggy open-coded version
doc: trace: Fix documentation for uprobe_profile
tracing: Fix spelling mistake: "analagous" -> "analogous"
tracing: Comment why cond_snapshot is checked outside of max_lock protection
tracing: Add hist trigger action 'expected fail' test case
tracing: Add alternative synthetic event trace action test case
tracing: Add hist trigger onchange() handler test case
tracing: Add hist trigger snapshot() action test case
tracing: Add SPDX license GPL-2.0 license identifier to inter-event testcases
tracing: Add alternative synthetic event trace action syntax
tracing: Add hist trigger onchange() handler Documentation
tracing: Add hist trigger onchange() handler
tracing: Add hist trigger snapshot() action Documentation
tracing: Add hist trigger snapshot() action
tracing: Add conditional snapshot
...
Pull integrity updates from James Morris:
"Mimi Zohar says:
'Linux 5.0 introduced the platform keyring to allow verifying the IMA
kexec kernel image signature using the pre-boot keys. This pull
request similarly makes keys on the platform keyring accessible for
verifying the PE kernel image signature.
Also included in this pull request is a new IMA hook that tags tmp
files, in policy, indicating the file hash needs to be calculated.
The remaining patches are cleanup'"
* 'next-integrity' of git://git.kernel.org/pub/scm/linux/kernel/git/jmorris/linux-security:
evm: Use defined constant for UUID representation
ima: define ima_post_create_tmpfile() hook and add missing call
evm: remove set but not used variable 'xattr'
encrypted-keys: fix Opt_err/Opt_error = -1
kexec, KEYS: Make use of platform keyring for signature verify
integrity, KEYS: add a reference to platform keyring
Pull x86 fixes from Thomas Gleixner:
"A set of fixes for x86:
- Make the unwinder more robust when it encounters a NULL pointer
call, so the backtrace becomes more useful
- Fix the bogus ORC unwind table alignment
- Prevent kernel panic during kexec on HyperV caused by a cleared but
not disabled hypercall page.
- Remove the now pointless stacksize increase for KASAN_EXTRA, as
KASAN_EXTRA is gone.
- Remove unused variables from the x86 memory management code"
* 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/hyperv: Fix kernel panic when kexec on HyperV
x86/mm: Remove unused variable 'old_pte'
x86/mm: Remove unused variable 'cpu'
Revert "x86_64: Increase stack size for KASAN_EXTRA"
x86/unwind: Add hardcoded ORC entry for NULL
x86/unwind: Handle NULL pointer calls better in frame unwinder
x86/unwind/orc: Fix ORC unwind table alignment
Including:
- A big cleanup and optimization patch-set for the
Tegra GART driver
- Documentation updates and fixes for the IOMMU-API
- Support for page request in Intel VT-d scalable mode
- Intel VT-d dma_[un]map_resource() support
- Updates to the ATS enabling code for PCI (acked by Bjorn) and
Intel VT-d to align with the latest version of the ATS spec
- Relaxed IRQ source checking in the Intel VT-d driver for some
aliased devices, needed for future devices which send IRQ
messages from more than on request-ID
- IRQ remapping driver for Hyper-V
- Patches to make generic IOVA and IO-Page-Table code usable
outside of the IOMMU code
- Various other small fixes and cleanups
-----BEGIN PGP SIGNATURE-----
iQIzBAABCAAdFiEEr9jSbILcajRFYWYyK/BELZcBGuMFAlyCNlIACgkQK/BELZcB
GuNDiRAAscgYj0BdqpZVUNHl4PySR12QJpS1myl/OC4HEbdB/EOh+bYT4Q1vptCU
GNK6Gt9SVfcbtWrLiGfcP9ODXmbqZ6AIOIbHKv9cvw1mnyYAtVvT/kck7B/W5jEr
/aP/5RTO7XcqscWO44zBkrtLFupegtpQFB0jXYTJYTrwQoNKRqCUqfetZGzMkXjL
x/h7kFTTIRcVP8RFcOeAMwC6EieaI8z8HN976Gu7xSV8g0VJqoNsBN8jbUuBh5AN
oPyd9nl1KBcIQEC1HsbN8I5wIhTh1sJ2UDqFHAgtlnO59zWHORuFUUt6SXbC9UqJ
okJTzFp9Dh2BqmFPXxBTxAf3j+eJP2XPpDI9Ask6SytEPhgw39fdlOOn2MWfSFoW
TaBJ4ww/r98GzVxCP7Up98xFZuHGDICL3/M7Mk3mRac/lgbNRbtfcBa5NV4fyQhY
184t656Zm/9gdWgGAvYQtApr6/iI+wRMLkIwuw63wqH09yfbDcpTOo6DEQE3B5KR
4H1qSIiVGVVZlWQateR6N32ZmY4dWzpnL2b8CfsdBytzHHFb/c3dPnZB8fxx9mwF
onyvjg9nkIiv7mdcN4Ox2WXrAExTeSftyPajN0WWawNJU3uPTBgNrqNHyWSkiaN4
dAvEepfGuFQGz2Fj03Pv7OqY8veyRezErVRLwiMJRNyy7pi6Wng=
=cKsD
-----END PGP SIGNATURE-----
Merge tag 'iommu-updates-v5.1' of git://git.kernel.org/pub/scm/linux/kernel/git/joro/iommu
Pull IOMMU updates from Joerg Roedel:
- A big cleanup and optimization patch-set for the Tegra GART driver
- Documentation updates and fixes for the IOMMU-API
- Support for page request in Intel VT-d scalable mode
- Intel VT-d dma_[un]map_resource() support
- Updates to the ATS enabling code for PCI (acked by Bjorn) and Intel
VT-d to align with the latest version of the ATS spec
- Relaxed IRQ source checking in the Intel VT-d driver for some aliased
devices, needed for future devices which send IRQ messages from more
than on request-ID
- IRQ remapping driver for Hyper-V
- Patches to make generic IOVA and IO-Page-Table code usable outside of
the IOMMU code
- Various other small fixes and cleanups
* tag 'iommu-updates-v5.1' of git://git.kernel.org/pub/scm/linux/kernel/git/joro/iommu: (60 commits)
iommu/vt-d: Get domain ID before clear pasid entry
iommu/vt-d: Fix NULL pointer reference in intel_svm_bind_mm()
iommu/vt-d: Set context field after value initialized
iommu/vt-d: Disable ATS support on untrusted devices
iommu/mediatek: Fix semicolon code style issue
MAINTAINERS: Add Hyper-V IOMMU driver into Hyper-V CORE AND DRIVERS scope
iommu/hyper-v: Add Hyper-V stub IOMMU driver
x86/Hyper-V: Set x2apic destination mode to physical when x2apic is available
PCI/ATS: Add inline to pci_prg_resp_pasid_required()
iommu/vt-d: Check identity map for hot-added devices
iommu: Fix IOMMU debugfs fallout
iommu: Document iommu_ops.is_attach_deferred()
iommu: Document iommu_ops.iotlb_sync_map()
iommu/vt-d: Enable ATS only if the device uses page aligned address.
PCI/ATS: Add pci_ats_page_aligned() interface
iommu/vt-d: Fix PRI/PASID dependency issue.
PCI/ATS: Add pci_prg_resp_pasid_required() interface.
iommu/vt-d: Allow interrupts from the entire bus for aliased devices
iommu/vt-d: Add helper to set an IRTE to verify only the bus number
iommu: Fix flush_tlb_all typo
...
Pull RAS updates from Borislav Petkov:
"This time around we have in store:
- Disable MC4_MISC thresholding banks on all AMD family 0x15 models
(Shirish S)
- AMD MCE error descriptions update and error decode improvements
(Yazen Ghannam)
- The usual smaller conversions and fixes"
* 'ras-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/mce: Improve error message when kernel cannot recover, p2
EDAC/mce_amd: Decode MCA_STATUS in bit definition order
EDAC/mce_amd: Decode MCA_STATUS[Scrub] bit
EDAC, mce_amd: Print ExtErrorCode and description on a single line
EDAC, mce_amd: Match error descriptions to latest documentation
x86/MCE/AMD, EDAC/mce_amd: Add new error descriptions for some SMCA bank types
x86/MCE/AMD, EDAC/mce_amd: Add new McaTypes for CS, PSP, and SMU units
x86/MCE/AMD, EDAC/mce_amd: Add new MP5, NBIO, and PCIE SMCA bank types
RAS: Add a MAINTAINERS entry
RAS: Use consistent types for UUIDs
x86/MCE/AMD: Carve out the MC4_MISC thresholding quirk
x86/MCE/AMD: Turn off MC4_MISC thresholding on all family 0x15 models
x86/MCE: Switch to use the new generic UUID API
Pull x86 kdump update from Ingo Molnar:
"Add the AMD SME mask to the vmcoreinfo, and also document our
vmcoreinfo fields"
* 'x86-kdump-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
kdump: Document kernel data exported in the vmcoreinfo note
x86/kdump: Export the SME mask to vmcoreinfo
Pull x86 fpu updates from Ingo Molnar:
"Three changes:
- preparatory patch for AVX state tracking that computing-cluster
folks would like to use for user-space batching - but we are not
happy about the related ABI yet so this is only the kernel tracking
side
- a cleanup for CR0 handling in do_device_not_available()
- plus we removed a workaround for an ancient binutils version"
* 'x86-fpu-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/fpu: Track AVX-512 usage of tasks
x86/fpu: Get rid of CONFIG_AS_FXSAVEQ
x86/traps: Have read_cr0() only once in the #NM handler
Pull x86 cleanups from Ingo Molnar:
"Various cleanups and simplifications, none of them really stands out,
they are all over the place"
* 'x86-cleanups-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/uaccess: Remove unused __addr_ok() macro
x86/smpboot: Remove unused phys_id variable
x86/mm/dump_pagetables: Remove the unused prev_pud variable
x86/fpu: Move init_xstate_size() to __init section
x86/cpu_entry_area: Move percpu_setup_debug_store() to __init section
x86/mtrr: Remove unused variable
x86/boot/compressed/64: Explain paging_prepare()'s return value
x86/resctrl: Remove duplicate MSR_MISC_FEATURE_CONTROL definition
x86/asm/suspend: Drop ENTRY from local data
x86/hw_breakpoints, kprobes: Remove kprobes ifdeffery
x86/boot: Save several bytes in decompressor
x86/trap: Remove useless declaration
x86/mm/tlb: Remove unused cpu variable
x86/events: Mark expected switch-case fall-throughs
x86/asm-prototypes: Remove duplicate include <asm/page.h>
x86/kernel: Mark expected switch-case fall-throughs
x86/insn-eval: Mark expected switch-case fall-through
x86/platform/UV: Replace kmalloc() and memset() with k[cz]alloc() calls
x86/e820: Replace kmalloc() + memcpy() with kmemdup()
Pull x86 build updates from Ingo Molnar:
"Misc cleanups and a retpoline code generation optimization"
* 'x86-build-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86, retpolines: Raise limit for generating indirect calls from switch-case
x86/build: Use the single-argument OUTPUT_FORMAT() linker script command
x86/build: Specify elf_i386 linker emulation explicitly for i386 objects
x86/build: Mark per-CPU symbols as absolute explicitly for LLD
Pull x86 boot updates from Ingo Molnar:
"Most of the changes center around the difficult problem of KASLR
pinning down hot-removable memory regions. At the very early stage
KASRL is making irreversible kernel address layout decisions we don't
have full knowledge about the memory maps yet.
So the changes from Chao Fan add this (parsing the RSDP table early),
together with fixes from Borislav Petkov"
* 'x86-boot-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/boot/compressed/64: Do not read legacy ROM on EFI system
x86/boot: Correct RSDP parsing with 32-bit EFI
x86/kexec: Fill in acpi_rsdp_addr from the first kernel
x86/boot: Fix randconfig build error due to MEMORY_HOTREMOVE
x86/boot: Fix cmdline_find_option() prototype visibility
x86/boot/KASLR: Limit KASLR to extract the kernel in immovable memory only
x86/boot: Parse SRAT table and count immovable memory regions
x86/boot: Early parse RSDP and save it in boot_params
x86/boot: Search for RSDP in memory
x86/boot: Search for RSDP in the EFI tables
x86/boot: Add "acpi_rsdp=" early parsing
x86/boot: Copy kstrtoull() to boot/string.c
x86/boot: Build the command line parsing code unconditionally
When the ORC unwinder is invoked for an oops caused by IP==0,
it currently has no idea what to do because there is no debug information
for the stack frame of NULL.
But if RIP is NULL, it is very likely that the last successfully executed
instruction was an indirect CALL/JMP, and it is possible to unwind out in
the same way as for the first instruction of a normal function. Hardcode
a corresponding ORC entry.
With an artificially-added NULL call in prctl_set_seccomp(), before this
patch, the trace is:
Call Trace:
? __x64_sys_prctl+0x402/0x680
? __ia32_sys_prctl+0x6e0/0x6e0
? __do_page_fault+0x457/0x620
? do_syscall_64+0x6d/0x160
? entry_SYSCALL_64_after_hwframe+0x44/0xa9
After this patch, the trace looks like this:
Call Trace:
__x64_sys_prctl+0x402/0x680
? __ia32_sys_prctl+0x6e0/0x6e0
? __do_page_fault+0x457/0x620
do_syscall_64+0x6d/0x160
entry_SYSCALL_64_after_hwframe+0x44/0xa9
prctl_set_seccomp() still doesn't show up in the trace because for some
reason, tail call optimization is only disabled in builds that use the
frame pointer unwinder.
Signed-off-by: Jann Horn <jannh@google.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: syzbot <syzbot+ca95b2b7aef9e7cbd6ab@syzkaller.appspotmail.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Masahiro Yamada <yamada.masahiro@socionext.com>
Cc: Michal Marek <michal.lkml@markovi.net>
Cc: linux-kbuild@vger.kernel.org
Link: https://lkml.kernel.org/r/20190301031201.7416-2-jannh@google.com
When the frame unwinder is invoked for an oops caused by a call to NULL, it
currently skips the parent function because BP still points to the parent's
stack frame; the (nonexistent) current function only has the first half of
a stack frame, and BP doesn't point to it yet.
Add a special case for IP==0 that calculates a fake BP from SP, then uses
the real BP for the next frame.
Note that this handles first_frame specially: Return information about the
parent function as long as the saved IP is >=first_frame, even if the fake
BP points below it.
With an artificially-added NULL call in prctl_set_seccomp(), before this
patch, the trace is:
Call Trace:
? prctl_set_seccomp+0x3a/0x50
__x64_sys_prctl+0x457/0x6f0
? __ia32_sys_prctl+0x750/0x750
do_syscall_64+0x72/0x160
entry_SYSCALL_64_after_hwframe+0x44/0xa9
After this patch, the trace is:
Call Trace:
prctl_set_seccomp+0x3a/0x50
__x64_sys_prctl+0x457/0x6f0
? __ia32_sys_prctl+0x750/0x750
do_syscall_64+0x72/0x160
entry_SYSCALL_64_after_hwframe+0x44/0xa9
Signed-off-by: Jann Horn <jannh@google.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: syzbot <syzbot+ca95b2b7aef9e7cbd6ab@syzkaller.appspotmail.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Masahiro Yamada <yamada.masahiro@socionext.com>
Cc: Michal Marek <michal.lkml@markovi.net>
Cc: linux-kbuild@vger.kernel.org
Link: https://lkml.kernel.org/r/20190301031201.7416-1-jannh@google.com
Move L!TF to a separate directory so the MDS stuff can be added at the
side. Otherwise the all hardware vulnerabilites have their own top level
entry. Should have done that right away.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Reviewed-by: Jon Masters <jcm@redhat.com>
In virtualized environments it can happen that the host has the microcode
update which utilizes the VERW instruction to clear CPU buffers, but the
hypervisor is not yet updated to expose the X86_FEATURE_MD_CLEAR CPUID bit
to guests.
Introduce an internal mitigation mode VMWERV which enables the invocation
of the CPU buffer clearing even if X86_FEATURE_MD_CLEAR is not set. If the
system has no updated microcode this results in a pointless execution of
the VERW instruction wasting a few CPU cycles. If the microcode is updated,
but not exposed to a guest then the CPU buffers will be cleared.
That said: Virtual Machines Will Eventually Receive Vaccine
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Jon Masters <jcm@redhat.com>
Tested-by: Jon Masters <jcm@redhat.com>
Add the sysfs reporting file for MDS. It exposes the vulnerability and
mitigation state similar to the existing files for the other speculative
hardware vulnerabilities.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Reviewed-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Jon Masters <jcm@redhat.com>
Tested-by: Jon Masters <jcm@redhat.com>
Now that the mitigations are in place, add a command line parameter to
control the mitigation, a mitigation selector function and a SMT update
mechanism.
This is the minimal straight forward initial implementation which just
provides an always on/off mode. The command line parameter is:
mds=[full|off]
This is consistent with the existing mitigations for other speculative
hardware vulnerabilities.
The idle invocation is dynamically updated according to the SMT state of
the system similar to the dynamic update of the STIBP mitigation. The idle
mitigation is limited to CPUs which are only affected by MSBDS and not any
other variant, because the other variants cannot be mitigated on SMT
enabled systems.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Jon Masters <jcm@redhat.com>
Tested-by: Jon Masters <jcm@redhat.com>
Add a static key which controls the invocation of the CPU buffer clear
mechanism on idle entry. This is independent of other MDS mitigations
because the idle entry invocation to mitigate the potential leakage due to
store buffer repartitioning is only necessary on SMT systems.
Add the actual invocations to the different halt/mwait variants which
covers all usage sites. mwaitx is not patched as it's not available on
Intel CPUs.
The buffer clear is only invoked before entering the C-State to prevent
that stale data from the idling CPU is spilled to the Hyper-Thread sibling
after the Store buffer got repartitioned and all entries are available to
the non idle sibling.
When coming out of idle the store buffer is partitioned again so each
sibling has half of it available. Now CPU which returned from idle could be
speculatively exposed to contents of the sibling, but the buffers are
flushed either on exit to user space or on VMENTER.
When later on conditional buffer clearing is implemented on top of this,
then there is no action required either because before returning to user
space the context switch will set the condition flag which causes a flush
on the return to user path.
Note, that the buffer clearing on idle is only sensible on CPUs which are
solely affected by MSBDS and not any other variant of MDS because the other
MDS variants cannot be mitigated when SMT is enabled, so the buffer
clearing on idle would be a window dressing exercise.
This intentionally does not handle the case in the acpi/processor_idle
driver which uses the legacy IO port interface for C-State transitions for
two reasons:
- The acpi/processor_idle driver was replaced by the intel_idle driver
almost a decade ago. Anything Nehalem upwards supports it and defaults
to that new driver.
- The legacy IO port interface is likely to be used on older and therefore
unaffected CPUs or on systems which do not receive microcode updates
anymore, so there is no point in adding that.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
Reviewed-by: Jon Masters <jcm@redhat.com>
Tested-by: Jon Masters <jcm@redhat.com>
CPUs which are affected by L1TF and MDS mitigate MDS with the L1D Flush on
VMENTER when updated microcode is installed.
If a CPU is not affected by L1TF or if the L1D Flush is not in use, then
MDS mitigation needs to be invoked explicitly.
For these cases, follow the host mitigation state and invoke the MDS
mitigation before VMENTER.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
Reviewed-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Jon Masters <jcm@redhat.com>
Tested-by: Jon Masters <jcm@redhat.com>
Add a static key which controls the invocation of the CPU buffer clear
mechanism on exit to user space and add the call into
prepare_exit_to_usermode() and do_nmi() right before actually returning.
Add documentation which kernel to user space transition this covers and
explain why some corner cases are not mitigated.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Reviewed-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
Reviewed-by: Jon Masters <jcm@redhat.com>
Tested-by: Jon Masters <jcm@redhat.com>
This bug bit is set on CPUs which are only affected by Microarchitectural
Store Buffer Data Sampling (MSBDS) and not by any other MDS variant.
This is important because the Store Buffers are partitioned between
Hyper-Threads so cross thread forwarding is not possible. But if a thread
enters or exits a sleep state the store buffer is repartitioned which can
expose data from one thread to the other. This transition can be mitigated.
That means that for CPUs which are only affected by MSBDS SMT can be
enabled, if the CPU is not affected by other SMT sensitive vulnerabilities,
e.g. L1TF. The XEON PHI variants fall into that category. Also the
Silvermont/Airmont ATOMs, but for them it's not really relevant as they do
not support SMT, but mark them for completeness sake.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
Reviewed-by: Jon Masters <jcm@redhat.com>
Tested-by: Jon Masters <jcm@redhat.com>
Microarchitectural Data Sampling (MDS), is a class of side channel attacks
on internal buffers in Intel CPUs. The variants are:
- Microarchitectural Store Buffer Data Sampling (MSBDS) (CVE-2018-12126)
- Microarchitectural Fill Buffer Data Sampling (MFBDS) (CVE-2018-12130)
- Microarchitectural Load Port Data Sampling (MLPDS) (CVE-2018-12127)
MSBDS leaks Store Buffer Entries which can be speculatively forwarded to a
dependent load (store-to-load forwarding) as an optimization. The forward
can also happen to a faulting or assisting load operation for a different
memory address, which can be exploited under certain conditions. Store
buffers are partitioned between Hyper-Threads so cross thread forwarding is
not possible. But if a thread enters or exits a sleep state the store
buffer is repartitioned which can expose data from one thread to the other.
MFBDS leaks Fill Buffer Entries. Fill buffers are used internally to manage
L1 miss situations and to hold data which is returned or sent in response
to a memory or I/O operation. Fill buffers can forward data to a load
operation and also write data to the cache. When the fill buffer is
deallocated it can retain the stale data of the preceding operations which
can then be forwarded to a faulting or assisting load operation, which can
be exploited under certain conditions. Fill buffers are shared between
Hyper-Threads so cross thread leakage is possible.
MLDPS leaks Load Port Data. Load ports are used to perform load operations
from memory or I/O. The received data is then forwarded to the register
file or a subsequent operation. In some implementations the Load Port can
contain stale data from a previous operation which can be forwarded to
faulting or assisting loads under certain conditions, which again can be
exploited eventually. Load ports are shared between Hyper-Threads so cross
thread leakage is possible.
All variants have the same mitigation for single CPU thread case (SMT off),
so the kernel can treat them as one MDS issue.
Add the basic infrastructure to detect if the current CPU is affected by
MDS.
[ tglx: Rewrote changelog ]
Signed-off-by: Andi Kleen <ak@linux.intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
Reviewed-by: Jon Masters <jcm@redhat.com>
Tested-by: Jon Masters <jcm@redhat.com>
The CPU vulnerability whitelists have some overlap and there are more
whitelists coming along.
Use the driver_data field in the x86_cpu_id struct to denote the
whitelisted vulnerabilities and combine all whitelists into one.
Suggested-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Reviewed-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Jon Masters <jcm@redhat.com>
Tested-by: Jon Masters <jcm@redhat.com>
Merge misc updates from Andrew Morton:
- a few misc things
- ocfs2 updates
- most of MM
* emailed patches from Andrew Morton <akpm@linux-foundation.org>: (159 commits)
tools/testing/selftests/proc/proc-self-syscall.c: remove duplicate include
proc: more robust bulk read test
proc: test /proc/*/maps, smaps, smaps_rollup, statm
proc: use seq_puts() everywhere
proc: read kernel cpu stat pointer once
proc: remove unused argument in proc_pid_lookup()
fs/proc/thread_self.c: code cleanup for proc_setup_thread_self()
fs/proc/self.c: code cleanup for proc_setup_self()
proc: return exit code 4 for skipped tests
mm,mremap: bail out earlier in mremap_to under map pressure
mm/sparse: fix a bad comparison
mm/memory.c: do_fault: avoid usage of stale vm_area_struct
writeback: fix inode cgroup switching comment
mm/huge_memory.c: fix "orig_pud" set but not used
mm/hotplug: fix an imbalance with DEBUG_PAGEALLOC
mm/memcontrol.c: fix bad line in comment
mm/cma.c: cma_declare_contiguous: correct err handling
mm/page_ext.c: fix an imbalance with kmemleak
mm/compaction: pass pgdat to too_many_isolated() instead of zone
mm: remove zone_lru_lock() function, access ->lru_lock directly
...
Pull x86 alternative instruction updates from Ingo Molnar:
"Small RDTSCP opimization, enabled by the newly added ALTERNATIVE_3(),
and other small improvements"
* 'x86-alternatives-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/TSC: Use RDTSCP
x86/alternatives: Add an ALTERNATIVE_3() macro
x86/alternatives: Print containing function
x86/alternatives: Add macro comments
Pull perf updates from Ingo Molnar:
"Lots of tooling updates - too many to list, here's a few highlights:
- Various subcommand updates to 'perf trace', 'perf report', 'perf
record', 'perf annotate', 'perf script', 'perf test', etc.
- CPU and NUMA topology and affinity handling improvements,
- HW tracing and HW support updates:
- Intel PT updates
- ARM CoreSight updates
- vendor HW event updates
- BPF updates
- Tons of infrastructure updates, both on the build system and the
library support side
- Documentation updates.
- ... and lots of other changes, see the changelog for details.
Kernel side updates:
- Tighten up kprobes blacklist handling, reduce the number of places
where developers can install a kprobe and hang/crash the system.
- Fix/enhance vma address filter handling.
- Various PMU driver updates, small fixes and additions.
- refcount_t conversions
- BPF updates
- error code propagation enhancements
- misc other changes"
* 'perf-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (238 commits)
perf script python: Add Python3 support to syscall-counts-by-pid.py
perf script python: Add Python3 support to syscall-counts.py
perf script python: Add Python3 support to stat-cpi.py
perf script python: Add Python3 support to stackcollapse.py
perf script python: Add Python3 support to sctop.py
perf script python: Add Python3 support to powerpc-hcalls.py
perf script python: Add Python3 support to net_dropmonitor.py
perf script python: Add Python3 support to mem-phys-addr.py
perf script python: Add Python3 support to failed-syscalls-by-pid.py
perf script python: Add Python3 support to netdev-times.py
perf tools: Add perf_exe() helper to find perf binary
perf script: Handle missing fields with -F +..
perf data: Add perf_data__open_dir_data function
perf data: Add perf_data__(create_dir|close_dir) functions
perf data: Fail check_backup in case of error
perf data: Make check_backup work over directories
perf tools: Add rm_rf_perf_data function
perf tools: Add pattern name checking to rm_rf
perf tools: Add depth checking to rm_rf
perf data: Add global path holder
...
Pull EFI updates from Ingo Molnar:
"The main EFI changes in this cycle were:
- Use 32-bit alignment for efi_guid_t
- Allow the SetVirtualAddressMap() call to be omitted
- Implement earlycon=efifb based on existing earlyprintk code
- Various minor fixes and code cleanups from Sai, Ard and me"
* 'efi-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
efi: Fix build error due to enum collision between efi.h and ima.h
efi/x86: Convert x86 EFI earlyprintk into generic earlycon implementation
x86: Make ARCH_USE_MEMREMAP_PROT a generic Kconfig symbol
efi/arm/arm64: Allow SetVirtualAddressMap() to be omitted
efi: Replace GPL license boilerplate with SPDX headers
efi/fdt: Apply more cleanups
efi: Use 32-bit alignment for efi_guid_t
efi/memattr: Don't bail on zero VA if it equals the region's PA
x86/efi: Mark can_free_region() as an __init function
Patch series "Replace all open encodings for NUMA_NO_NODE", v3.
All these places for replacement were found by running the following
grep patterns on the entire kernel code. Please let me know if this
might have missed some instances. This might also have replaced some
false positives. I will appreciate suggestions, inputs and review.
1. git grep "nid == -1"
2. git grep "node == -1"
3. git grep "nid = -1"
4. git grep "node = -1"
This patch (of 2):
At present there are multiple places where invalid node number is
encoded as -1. Even though implicitly understood it is always better to
have macros in there. Replace these open encodings for an invalid node
number with the global macro NUMA_NO_NODE. This helps remove NUMA
related assumptions like 'invalid node' from various places redirecting
them to a common definition.
Link: http://lkml.kernel.org/r/1545127933-10711-2-git-send-email-anshuman.khandual@arm.com
Signed-off-by: Anshuman Khandual <anshuman.khandual@arm.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Acked-by: Jeff Kirsher <jeffrey.t.kirsher@intel.com> [ixgbe]
Acked-by: Jens Axboe <axboe@kernel.dk> [mtip32xx]
Acked-by: Vinod Koul <vkoul@kernel.org> [dmaengine.c]
Acked-by: Michael Ellerman <mpe@ellerman.id.au> [powerpc]
Acked-by: Doug Ledford <dledford@redhat.com> [drivers/infiniband]
Cc: Joseph Qi <jiangqi903@gmail.com>
Cc: Hans Verkuil <hverkuil@xs4all.nl>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pull x86/pti update from Thomas Gleixner:
"Just a single change from the anti-performance departement:
- Add a new PR_SPEC_DISABLE_NOEXEC option which allows to apply the
speculation protections on a process without inheriting the state
on exec.
This remedies a situation where a Java-launcher has speculation
protections enabled because that's the default for JVMs which
causes the launched regular harmless processes to inherit the
protection state which results in unintended performance
degradation"
* 'x86-pti-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/speculation: Add PR_SPEC_DISABLE_NOEXEC
Arnd reported the following compiler warning:
arch/x86/kernel/ftrace.c:669:23: error: 'ftrace_jmp_replace' defined but not used [-Werror=unused-function]
The ftrace_jmp_replace() function now only has a single user and should be
simply moved by that user. But looking at the code, it shows that
ftrace_jmp_replace() is similar to ftrace_call_replace() except that instead
of using the opcode of 0xe8 it uses 0xe9. It makes more sense to consolidate
that function into one implementation that both ftrace_jmp_replace() and
ftrace_call_replace() use by passing in the op code separate.
The structure in ftrace_code_union is also modified to replace the "e8"
field with the more appropriate name "op".
Cc: stable@vger.kernel.org
Reported-by: Arnd Bergmann <arnd@arndb.de>
Acked-by: Arnd Bergmann <arnd@arndb.de>
Link: http://lkml.kernel.org/r/20190304200748.1418790-1-arnd@arndb.de
Fixes: d2a68c4eff ("x86/ftrace: Do not call function graph from dynamic trampolines")
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Hyper-V doesn't provide irq remapping for IO-APIC. To enable x2apic,
set x2apic destination mode to physcial mode when x2apic is available
and Hyper-V IOMMU driver makes sure cpus assigned with IO-APIC irqs have
8-bit APIC id.
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Michael Kelley <mikelley@microsoft.com>
Signed-off-by: Lan Tianyu <Tianyu.Lan@microsoft.com>
Signed-off-by: Joerg Roedel <jroedel@suse.de>
Make kernfs support superblock creation/mount/remount with fs_context.
This requires that sysfs, cgroup and intel_rdt, which are built on kernfs,
be made to support fs_context also.
Notes:
(1) A kernfs_fs_context struct is created to wrap fs_context and the
kernfs mount parameters are moved in here (or are in fs_context).
(2) kernfs_mount{,_ns}() are made into kernfs_get_tree(). The extra
namespace tag parameter is passed in the context if desired
(3) kernfs_free_fs_context() is provided as a destructor for the
kernfs_fs_context struct, but for the moment it does nothing except
get called in the right places.
(4) sysfs doesn't wrap kernfs_fs_context since it has no parameters to
pass, but possibly this should be done anyway in case someone wants to
add a parameter in future.
(5) A cgroup_fs_context struct is created to wrap kernfs_fs_context and
the cgroup v1 and v2 mount parameters are all moved there.
(6) cgroup1 parameter parsing error messages are now handled by invalf(),
which allows userspace to collect them directly.
(7) cgroup1 parameter cleanup is now done in the context destructor rather
than in the mount/get_tree and remount functions.
Weirdies:
(*) cgroup_do_get_tree() calls cset_cgroup_from_root() with locks held,
but then uses the resulting pointer after dropping the locks. I'm
told this is okay and needs commenting.
(*) The cgroup refcount web. This really needs documenting.
(*) cgroup2 only has one root?
Add a suggestion from Thomas Gleixner in which the RDT enablement code is
placed into its own function.
[folded a leak fix from Andrey Vagin]
Signed-off-by: David Howells <dhowells@redhat.com>
cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
cc: Tejun Heo <tj@kernel.org>
cc: Li Zefan <lizefan@huawei.com>
cc: Johannes Weiner <hannes@cmpxchg.org>
cc: cgroups@vger.kernel.org
cc: fenghua.yu@intel.com
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
In
c7d606f560 ("x86/mce: Improve error message when kernel cannot recover")
a case was added for a machine check caused by a DATA access to poison
memory from the kernel. A case should have been added also for an
uncorrectable error during an instruction fetch in the kernel.
Add that extra case so the error message now reads:
mce: [Hardware Error]: Machine check: Instruction fetch error in kernel
Fixes: c7d606f560 ("x86/mce: Improve error message when kernel cannot recover")
Signed-off-by: Tony Luck <tony.luck@intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Pu Wen <puwen@hygon.cn>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/20190225205940.15226-1-tony.luck@intel.com
The invariant TSC bit has the following meaning:
"The time stamp counter in newer processors may support an enhancement,
referred to as invariant TSC. Processor's support for invariant TSC
is indicated by CPUID.80000007H:EDX[8]. The invariant TSC will run
at a constant rate in all ACPI P-, C-. and T-states. This is the
architectural behavior moving forward. On processors with invariant TSC
support, the OS may use the TSC for wall clock timer services (instead
of ACPI or HPET timers). TSC reads are much more efficient and do not
incur the overhead associated with a ring transition or access to a
platform resource."
IOW, TSC does not change frequency. In such case, and with
TSC scaling hardware available to handle migration, it is possible
to use the TSC clocksource directly, whose system calls are
faster.
Reduce the rating of kvmclock clocksource to allow TSC clocksource
to be the default if invariant TSC is exposed.
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
v2: Use feature bits and tsc_unstable() check (Sean Christopherson)
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
VMs may show incorrect uptime and dmesg printk offsets on hypervisors with
unstable clock. The problem is produced when VM is rebooted without exiting
from qemu.
The fix is to calculate clock offset not only for stable clock but for
unstable clock as well, and use kvm_sched_clock_read() which substracts
the offset for both clocks.
This is safe, because pvclock_clocksource_read() does the right thing and
makes sure that clock always goes forward, so once offset is calculated
with unstable clock, we won't get new reads that are smaller than offset,
and thus won't get negative results.
Thank you Jon DeVree for helping to reproduce this issue.
Fixes: 857baa87b6 ("sched/clock: Enable sched clock early")
Cc: stable@vger.kernel.org
Reported-by: Dominique Martinet <asmadeus@codewreck.org>
Signed-off-by: Pavel Tatashin <pasha.tatashin@soleen.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The 'phys_id' local variable became unused after commit
ce4b1b1650 ("x86/smpboot: Initialize secondary CPU only if master CPU will wait for it").
Remove it.
Signed-off-by: Shaokun Zhang <zhangshaokun@hisilicon.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Alison Schofield <alison.schofield@intel.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Igor Mammedov <imammedo@redhat.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Cc: Mike Rapoport <rppt@linux.vnet.ibm.com>
Cc: Pu Wen <puwen@hygon.cn>
Cc: Suravee Suthikulpanit <suravee.suthikulpanit@amd.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: x86-ml <x86@kernel.org>
Cc: Yazen Ghannam <yazen.ghannam@amd.com>
Cc: Zhenzhong Duan <zhenzhong.duan@oracle.com>
Link: https://lkml.kernel.org/r/1550495101-41755-1-git-send-email-zhangshaokun@hisilicon.com
When limiting memory size via kernel parameter "mem=" this should be
respected even in case of memory made accessible via a PCI card.
Today this kind of memory won't be made usable in initial memory
setup as the memory won't be visible in E820 map, but it might be
added when adding PCI devices due to corresponding ACPI table entries.
Not respecting "mem=" can be corrected by adding a global max_mem_size
variable set by parse_memopt() which will result in rejecting adding
memory areas resulting in a memory size above the allowed limit.
Signed-off-by: Juergen Gross <jgross@suse.com>
Acked-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: William Kucharski <william.kucharski@oracle.com>
Signed-off-by: Juergen Gross <jgross@suse.com>
Prohibit probing on the functions called before kprobe_int3_handler()
in do_int3(). More specifically, ftrace_int3_handler(),
poke_int3_handler(), and ist_enter(). And since rcu_nmi_enter() is
called by ist_enter(), it also should be marked as NOKPROBE_SYMBOL.
Since those are handled before kprobe_int3_handler(), probing those
functions can cause a breakpoint recursion and crash the kernel.
Signed-off-by: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Andrea Righi <righi.andrea@gmail.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/154998793571.31052.11301258949601150994.stgit@devbox
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Move optprobe trampoline code into RODATA since it is
not executed, but copied and modified to be used on
a trampoline buffer.
Signed-off-by: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Andrea Righi <righi.andrea@gmail.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/154998790744.31052.3016106262944915510.stgit@devbox
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Prohibit probing on optprobe template code, since it is not
a code but a template instruction sequence. If we modify
this template, copied template must be broken.
Signed-off-by: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Andrea Righi <righi.andrea@gmail.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: stable@vger.kernel.org
Fixes: 9326638cbe ("kprobes, x86: Use NOKPROBE_SYMBOL() instead of __kprobes annotation")
Link: http://lkml.kernel.org/r/154998787911.31052.15274376330136234452.stgit@devbox
Signed-off-by: Ingo Molnar <mingo@kernel.org>
For bug workarounds or checks, it is useful to check for specific
microcode revisions.
Add a new generic function to match the CPU with stepping.
Add the other function to check the min microcode revisions for
the matched CPU.
A new table format is introduced to facilitate the quirk to
fill the related information.
This does not change the existing x86_cpu_id because it's an ABI
shared with modules, and also has quite different requirements,
as in no wildcards, but everything has to be matched exactly.
Originally-by: Andi Kleen <ak@linux.intel.com>
Suggested-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Borislav Petkov <bp@alien8.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: eranian@google.com
Link: https://lkml.kernel.org/r/1549319013-4522-1-git-send-email-kan.liang@linux.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Pull x86 fixes from Ingo Molnar:
"A handful of fixes:
- Fix an MCE corner case bug/crash found via MCE injection testing
- Fix 5-level paging boot crash
- Fix MCE recovery cache invalidation bug
- Fix regression on Xen guests caused by a recent PMD level mremap
speedup optimization"
* 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/mm: Make set_pmd_at() paravirt aware
x86/mm/cpa: Fix set_mce_nospec()
x86/boot/compressed/64: Do not corrupt EDX on EFER.LME=1 setting
x86/MCE: Initialize mce.bank in the case of a fatal error in mce_no_way_out()
WARNING: vmlinux.o(.text.unlikely+0x1c05): Section mismatch in
reference from the function init_xstate_size() to the
function .init.text:get_xsave_size()
WARNING: vmlinux.o(.text.unlikely+0x1c19): Section mismatch in
reference from the function init_xstate_size() to the
function .init.text:get_xsaves_size()
Signed-off-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: "H . Peter Anvin" <hpa@zytor.com>
Cc: Sergey Senozhatsky <sergey.senozhatsky.work@gmail.com>
Link: https://lkml.kernel.org/r/20190108130225.5066-2-sergey.senozhatsky@gmail.com
Compiling the kernel with W=1 results in the following warning:
arch/x86/kernel/cpu/mtrr/cleanup.c:299:16: warning: variable ‘second_basek’ set but not used [-Wunused-but-set-variable]
unsigned long second_basek, second_sizek;
Remove the unused variable.
[ tglx: Massaged changelog ]
Signed-off-by: Bo Yu <tsu.yubo@gmail.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: bp@alien8.de
Cc: hpa@zytor.com
Cc: puwen@hygon.cn
Link: https://lkml.kernel.org/r/20190208125343.11451-1-tsu.yubo@gmail.com
When efi=noruntime or efi=oldmap is used on the kernel command line, EFI
services won't be available in the second kernel, therefore the second
kernel will not be able to get the ACPI RSDP address from firmware by
calling EFI services and so it won't boot.
Commit
e6e094e053 ("x86/acpi, x86/boot: Take RSDP address from boot params if available")
added an acpi_rsdp_addr field to boot_params which stores the RSDP
address for other kernel users.
Recently, after
3a63f70bf4 ("x86/boot: Early parse RSDP and save it in boot_params")
the acpi_rsdp_addr will always be filled with a valid RSDP address.
So fill in that value into the second kernel's boot_params thus ensuring
that the second kernel receives the RSDP value from the first kernel.
[ bp: massage commit message. ]
Signed-off-by: Kairui Song <kasong@redhat.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: AKASHI Takahiro <takahiro.akashi@linaro.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Baoquan He <bhe@redhat.com>
Cc: Chao Fan <fanc.fnst@cn.fujitsu.com>
Cc: Dave Young <dyoung@redhat.com>
Cc: David Howells <dhowells@redhat.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: kexec@lists.infradead.org
Cc: Philipp Rudo <prudo@linux.vnet.ibm.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: x86-ml <x86@kernel.org>
Cc: Yannik Sembritzki <yannik@sembritzki.me>
Link: https://lkml.kernel.org/r/20190204173852.4863-1-kasong@redhat.com
The definition of MSR_MISC_FEATURE_CONTROL was first introduced in
98af74599e ("x86 msr_index.h: Define MSR_MISC_FEATURE_CONTROL")
and present in Linux since v4.11.
The Cache Pseudo-Locking code added this duplicate definition in more
recent
f2a177292b ("x86/intel_rdt: Discover supported platforms via prefetch disable bits"),
available since v4.19.
Remove the duplicate definition from the resctrl subsystem and let that
code obtain the needed definition from the core architecture msr-index.h
instead.
Fixes: f2a177292b ("x86/intel_rdt: Discover supported platforms via prefetch disable bits")
Signed-off-by: Reinette Chatre <reinette.chatre@intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: gavin.hindman@intel.com
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: jithu.joseph@intel.com
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tony Luck <tony.luck@intel.com>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/ff6b95d9b6ef6f4ac96267f130719ba1af09614b.1549312475.git.reinette.chatre@intel.com
This patch allows the kexec_file_load syscall to verify the PE signed
kernel image signature based on the preboot keys stored in the .platform
keyring, as fall back, if the signature verification failed due to not
finding the public key in the secondary or builtin keyrings.
This commit adds a VERIFY_USE_PLATFORM_KEYRING similar to previous
VERIFY_USE_SECONDARY_KEYRING indicating that verify_pkcs7_signature
should verify the signature using platform keyring. Also, decrease
the error message log level when verification failed with -ENOKEY,
so that if called tried multiple time with different keyring it
won't generate extra noises.
Signed-off-by: Kairui Song <kasong@redhat.com>
Cc: David Howells <dhowells@redhat.com>
Acked-by: Dave Young <dyoung@redhat.com> (for kexec_file_load part)
[zohar@linux.ibm.com: tweaked the first paragraph of the patch description,
and fixed checkpatch warning.]
Signed-off-by: Mimi Zohar <zohar@linux.ibm.com>
Move the x86 EFI earlyprintk implementation to a shared location under
drivers/firmware and tweak it slightly so we can expose it as an earlycon
implementation (which is generic) rather than earlyprintk (which is only
implemented for a few architectures)
This also involves switching to write-combine mappings by default (which
is required on ARM since device mappings lack memory semantics, and so
memcpy/memset may not be used on them), and adding support for shared
memory framebuffers on cache coherent non-x86 systems (which do not
tolerate mismatched attributes).
Note that 32-bit ARM does not populate its struct screen_info early
enough for earlycon=efifb to work, so it is disabled there.
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Reviewed-by: Alexander Graf <agraf@suse.de>
Cc: AKASHI Takahiro <takahiro.akashi@linaro.org>
Cc: Bjorn Andersson <bjorn.andersson@linaro.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Heinrich Schuchardt <xypron.glpk@gmx.de>
Cc: Jeffrey Hugo <jhugo@codeaurora.org>
Cc: Lee Jones <lee.jones@linaro.org>
Cc: Leif Lindholm <leif.lindholm@linaro.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Matt Fleming <matt@codeblueprint.co.uk>
Cc: Peter Jones <pjones@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Sai Praneeth Prakhya <sai.praneeth.prakhya@intel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-efi@vger.kernel.org
Link: http://lkml.kernel.org/r/20190202094119.13230-10-ard.biesheuvel@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Pull x86 fixes from Thomas Gleixner:
"A few updates for x86:
- Fix an unintended sign extension issue in the fault handling code
- Rename the new resource control config switch so it's less
confusing
- Avoid setting up EFI info in kexec when the EFI runtime is
disabled.
- Fix the microcode version check in the AMD microcode loader so it
only loads higher version numbers and never downgrades
- Set EFER.LME in the 32bit trampoline before returning to long mode
to handle older AMD/KVM behaviour properly.
- Add Darren and Andy as x86/platform reviewers"
* 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/resctrl: Avoid confusion over the new X86_RESCTRL config
x86/kexec: Don't setup EFI info if EFI runtime is not enabled
x86/microcode/amd: Don't falsely trick the late loading mechanism
MAINTAINERS: Add Andy and Darren as arch/x86/platform/ reviewers
x86/fault: Fix sign-extend unintended sign extension
x86/boot/compressed/64: Set EFER.LME=1 in 32-bit trampoline before returning to long mode
x86/cpu: Add Atom Tremont (Jacobsville)
Internal injection testing crashed with a console log that said:
mce: [Hardware Error]: CPU 7: Machine Check Exception: f Bank 0: bd80000000100134
This caused a lot of head scratching because the MCACOD (bits 15:0) of
that status is a signature from an L1 data cache error. But Linux says
that it found it in "Bank 0", which on this model CPU only reports L1
instruction cache errors.
The answer was that Linux doesn't initialize "m->bank" in the case that
it finds a fatal error in the mce_no_way_out() pre-scan of banks. If
this was a local machine check, then this partially initialized struct
mce is being passed to mce_panic().
Fix is simple: just initialize m->bank in the case of a fatal error.
Fixes: 40c36e2741 ("x86/mce: Fix incorrect "Machine check from unknown source" message")
Signed-off-by: Tony Luck <tony.luck@intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vishal Verma <vishal.l.verma@intel.com>
Cc: x86-ml <x86@kernel.org>
Cc: stable@vger.kernel.org # v4.18 Note pre-v5.0 arch/x86/kernel/cpu/mce/core.c was called arch/x86/kernel/cpu/mcheck/mce.c
Link: https://lkml.kernel.org/r/20190201003341.10638-1-tony.luck@intel.com
Some SMCA bank types on future systems will report new error types even
though the bank type is not treated as a new version. These new error
types will reported by bits that are reserved in past systems.
Add the new error descriptions to the lists in edac_mce_amd.
Signed-off-by: Yazen Ghannam <yazen.ghannam@amd.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: linux-edac <linux-edac@vger.kernel.org>
Cc: Mauro Carvalho Chehab <mchehab@kernel.org>
Cc: Shirish S <Shirish.S@amd.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tony Luck <tony.luck@intel.com>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/20190201225534.8177-4-Yazen.Ghannam@amd.com
The existing CS, PSP, and SMU SMCA bank types will see new versions (as
indicated by their McaTypes) in future SMCA systems.
Add the new (HWID, MCATYPE) tuples for these new versions. Reuse the
same names as the older versions, since they are logically the same to
the user. SMCA systems won't mix and match IP blocks with different
McaType versions in the same system, so there isn't a need to
distinguish them. The MCA_IPID register is saved when logging an MCA
error, and that can be used to triage the error.
Also, add the new error descriptions to edac_mce_amd. Some error types
(positions in the list) are overloaded compared to the previous
McaTypes. Therefore, just create new lists of the error descriptions to
keep things simple even if some of the error descriptions are the same
between versions.
Signed-off-by: Yazen Ghannam <yazen.ghannam@amd.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: linux-edac <linux-edac@vger.kernel.org>
Cc: Mauro Carvalho Chehab <mchehab@kernel.org>
Cc: Pu Wen <puwen@hygon.cn>
Cc: Qiuxu Zhuo <qiuxu.zhuo@intel.com>
Cc: Shirish S <Shirish.S@amd.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Vishal Verma <vishal.l.verma@intel.com>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/20190201225534.8177-3-Yazen.Ghannam@amd.com
"Resource Control" is a very broad term for this CPU feature, and a term
that is also associated with containers, cgroups etc. This can easily
cause confusion.
Make the user prompt more specific. Match the config symbol name.
[ bp: In the future, the corresponding ARM arch-specific code will be
under ARM_CPU_RESCTRL and the arch-agnostic bits will be carved out
under the CPU_RESCTRL umbrella symbol. ]
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Babu Moger <Babu.Moger@amd.com>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: James Morse <james.morse@arm.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: linux-doc@vger.kernel.org
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Pu Wen <puwen@hygon.cn>
Cc: Reinette Chatre <reinette.chatre@intel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tony Luck <tony.luck@intel.com>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/20190130195621.GA30653@cmpxchg.org
The load_microcode_amd() function searches for microcode patches and
attempts to apply a microcode patch if it is of different level than the
currently installed level.
While the processor won't actually load a level that is less than
what is already installed, the logic wrongly returns UCODE_NEW thus
signaling to its caller reload_store() that a late loading should be
attempted.
If the file-system contains an older microcode revision than what is
currently running, such a late microcode reload can result in these
misleading messages:
x86/CPU: CPU features have changed after loading microcode, but might not take effect.
x86/CPU: Please consider either early loading through initrd/built-in or a potential BIOS update.
These messages were issued on a system where SME/SEV are not
enabled by the BIOS (MSR C001_0010[23] = 0b) because during boot,
early_detect_mem_encrypt() is called and cleared the SME and SEV
features in this case.
However, after the wrong late load attempt, get_cpu_cap() is called and
reloads the SME and SEV feature bits, resulting in the messages.
Update the microcode level check to not attempt microcode loading if the
current level is greater than(!) and not only equal to the current patch
level.
[ bp: massage commit message. ]
Fixes: 2613f36ed9 ("x86/microcode: Attempt late loading only when new microcode is present")
Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/154894518427.9406.8246222496874202773.stgit@tlendack-t1.amdoffice.net
With the following commit:
73d5e2b472 ("cpu/hotplug: detect SMT disabled by BIOS")
... the hotplug code attempted to detect when SMT was disabled by BIOS,
in which case it reported SMT as permanently disabled. However, that
code broke a virt hotplug scenario, where the guest is booted with only
primary CPU threads, and a sibling is brought online later.
The problem is that there doesn't seem to be a way to reliably
distinguish between the HW "SMT disabled by BIOS" case and the virt
"sibling not yet brought online" case. So the above-mentioned commit
was a bit misguided, as it permanently disabled SMT for both cases,
preventing future virt sibling hotplugs.
Going back and reviewing the original problems which were attempted to
be solved by that commit, when SMT was disabled in BIOS:
1) /sys/devices/system/cpu/smt/control showed "on" instead of
"notsupported"; and
2) vmx_vm_init() was incorrectly showing the L1TF_MSG_SMT warning.
I'd propose that we instead consider #1 above to not actually be a
problem. Because, at least in the virt case, it's possible that SMT
wasn't disabled by BIOS and a sibling thread could be brought online
later. So it makes sense to just always default the smt control to "on"
to allow for that possibility (assuming cpuid indicates that the CPU
supports SMT).
The real problem is #2, which has a simple fix: change vmx_vm_init() to
query the actual current SMT state -- i.e., whether any siblings are
currently online -- instead of looking at the SMT "control" sysfs value.
So fix it by:
a) reverting the original "fix" and its followup fix:
73d5e2b472 ("cpu/hotplug: detect SMT disabled by BIOS")
bc2d8d262c ("cpu/hotplug: Fix SMT supported evaluation")
and
b) changing vmx_vm_init() to query the actual current SMT state --
instead of the sysfs control value -- to determine whether the L1TF
warning is needed. This also requires the 'sched_smt_present'
variable to exported, instead of 'cpu_smt_control'.
Fixes: 73d5e2b472 ("cpu/hotplug: detect SMT disabled by BIOS")
Reported-by: Igor Mammedov <imammedo@redhat.com>
Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Joe Mario <jmario@redhat.com>
Cc: Jiri Kosina <jikos@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: kvm@vger.kernel.org
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/e3a85d585da28cc333ecbc1e78ee9216e6da9396.1548794349.git.jpoimboe@redhat.com
ENTRY is intended for functions and shall be paired with ENDPROC. ENTRY
also aligns symbols which creates unnecessary holes between data.
So drop ENTRY from saved_eip in wakeup_32 and many saved_* in wakeup_64,
as these symbols are local only.
One could've used SYM_DATA_LOCAL for these symbols, but it was
discouraged earlier:
https://lkml.kernel.org/r/20170427124310.GC23352@amd
Signed-off-by: Jiri Slaby <jslaby@suse.cz>
Signed-off-by: Borislav Petkov <bp@suse.de>
Acked-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Pavel Machek <pavel@ucw.cz>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Len Brown <len.brown@intel.com>
Cc: linux-arch@vger.kernel.org
Cc: linux-pm@vger.kernel.org
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/20190130124711.12463-3-jslaby@suse.cz
Remove the ifdeffery in the breakpoint parsing arch_build_bp_info() by
adding a within_kprobe_blacklist() stub for the !CONFIG_KPROBES case.
It is returning true when kprobes are not enabled to mean that any
address is within the kprobes blacklist on such kernels and thus not
allow kernel breakpoints on non-kprobes kernels.
Signed-off-by: Borislav Petkov <bp@suse.de>
Acked-by: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Frederic Weisbecker <frederic@kernel.org>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: "Naveen N. Rao" <naveen.n.rao@linux.ibm.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/20190127131237.4557-1-bp@alien8.de
With the default SPEC_STORE_BYPASS_SECCOMP/SPEC_STORE_BYPASS_PRCTL mode,
the TIF_SSBD bit will be inherited when a new task is fork'ed or cloned.
It will also remain when a new program is execve'ed.
Only certain class of applications (like Java) that can run on behalf of
multiple users on a single thread will require disabling speculative store
bypass for security purposes. Those applications will call prctl(2) at
startup time to disable SSB. They won't rely on the fact the SSB might have
been disabled. Other applications that don't need SSBD will just move on
without checking if SSBD has been turned on or not.
The fact that the TIF_SSBD is inherited across execve(2) boundary will
cause performance of applications that don't need SSBD but their
predecessors have SSBD on to be unwittingly impacted especially if they
write to memory a lot.
To remedy this problem, a new PR_SPEC_DISABLE_NOEXEC argument for the
PR_SET_SPECULATION_CTRL option of prctl(2) is added to allow applications
to specify that the SSBD feature bit on the task structure should be
cleared whenever a new program is being execve'ed.
Suggested-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Waiman Long <longman@redhat.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: linux-doc@vger.kernel.org
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: David Woodhouse <dwmw@amazon.co.uk>
Cc: Jiri Kosina <jikos@kernel.org>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: KarimAllah Ahmed <karahmed@amazon.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Link: https://lkml.kernel.org/r/1547676096-3281-1-git-send-email-longman@redhat.com
Pull x86 fixes from Thomas Gleixner:
"A set of fixes for x86:
- Fix the swapped outb() parameters in the KASLR code
- Fix the PKEY handling at fork which missed to preserve the pkey
state for the child. Comes with a test case to validate that.
- Fix the entry stack handling for XEN PV to respect that XEN PV
systems enter the function already on the current thread stack and
not on the trampoline.
- Fix kexec load failure caused by using a stale value when the
kexec_buf structure is reused for subsequent allocations.
- Fix a bogus sizeof() in the memory encryption code
- Enforce PCI dependency for the Intel Low Power Subsystem
- Enforce PCI_LOCKLESS_CONFIG when PCI is enabled"
* 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/Kconfig: Select PCI_LOCKLESS_CONFIG if PCI is enabled
x86/entry/64/compat: Fix stack switching for XEN PV
x86/kexec: Fix a kexec_file_load() failure
x86/mm/mem_encrypt: Fix erroneous sizeof()
x86/selftests/pkeys: Fork() to check for state being preserved
x86/pkeys: Properly copy pkey state at fork()
x86/kaslr: Fix incorrect i8254 outb() parameters
x86/intel/lpss: Make PCI dependency explicit
Pull x86 timer fixes from Thomas Gleixner:
"Two commits which were missed to be sent during the merge window.
- The TSC calibration fix turns out to be more urgent as recent
Skylake-X systems seem to have massive trouble with calibration
disturbance. This should go back into stable for that reason and it
the risk of breakage is rather low.
- Drop an unused define"
* 'x86-timers-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/hpet: Remove unused FSEC_PER_NSEC define
x86/tsc: Make calibration refinement more robust
In preparation to enable -Wimplicit-fallthrough by default, mark
switch-case statements where fall-through is intentional, explicitly in
order to fix a couple of -Wimplicit-fallthrough warnings.
Warning level 3 was used: -Wimplicit-fallthrough=3.
[ bp: Massasge and trim commit message. ]
Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Baoquan He <bhe@redhat.com>
Cc: Christophe Leroy <christophe.leroy@c-s.fr>
Cc: Daniel Thompson <daniel.thompson@linaro.org>
Cc: David Wang <davidwang@zhaoxin.com>
Cc: Douglas Anderson <dianders@chromium.org>
Cc: Frederic Weisbecker <frederic@kernel.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jan Beulich <JBeulich@suse.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mike Rapoport <rppt@linux.vnet.ibm.com>
Cc: Nicolai Stange <nstange@suse.de>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Pu Wen <puwen@hygon.cn>
Cc: Suravee Suthikulpanit <suravee.suthikulpanit@amd.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Will Deacon <will.deacon@arm.com>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/20190125183903.GA4712@embeddedor
KVM hypercalls return a negative value error code in case of a fatal
error, e.g. when the hypercall isn't supported or was made with invalid
parameters. WARN_ONCE on fatal errors when sending PV IPIs as any such
error all but guarantees an SMP system will hang due to a missing IPI.
Fixes: aaffcfd1e8 ("KVM: X86: Implement PV IPIs in linux guest")
Cc: stable@vger.kernel.org
Cc: Wanpeng Li <wanpengli@tencent.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
... instead of twice in the code. In any case, CR0 ends up being read
once anyway:
1. The CONFIG_MATH_EMULATION case does so and exits.
2. The normal case does it once too.
However, read it on function entry instead to make the code even simpler
to follow.
No functional changes.
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Andy Lutomirski <luto@kernel.org>
Acked-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Cc: x86@kernel.org
Link: https://lkml.kernel.org/r/20190117120728.3811-1-bp@alien8.de
Some F17h models do not have CPB set in CPUID even though the CPU
supports it. Set the feature bit unconditionally on all F17h.
[ bp: Rewrite commit message and patch. ]
Signed-off-by: Jiaxun Yang <jiaxun.yang@flygoat.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Acked-by: Tom Lendacky <thomas.lendacky@amd.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Sherry Hurwitz <sherry.hurwitz@amd.com>
Cc: Suravee Suthikulpanit <suravee.suthikulpanit@amd.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/20181120030018.5185-1-jiaxun.yang@flygoat.com
The MC4_MISC thresholding quirk needs to be applied during S5 -> S0 and
S3 -> S0 state transitions, which follow different code paths. Carve it
out into a separate function and call it mce_amd_feature_init() where
the two code paths of the state transitions converge.
[ bp: massage commit message and the carved out function. ]
Signed-off-by: Shirish S <shirish.s@amd.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Vishal Verma <vishal.l.verma@intel.com>
Cc: Yazen Ghannam <yazen.ghannam@amd.com>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/1547651417-23583-3-git-send-email-shirish.s@amd.com
... in the "debug-alternative" output so that one can find her way
easier when staring at the vmlinux disassembly.
For example:
apply_alternatives: feat: 3*32+18, old: (read_tsc+0x0/0x10 (ffffffff8101d1c0) len: 5), repl: (ffffffff824e6d33, len: 5)
^^^^^^^^^^^^^^^^^
ffffffff8101d1c0: old_insn: 0f 31 90 90 90
ffffffff824e6d33: rpl_insn: 0f ae e8 0f 31
ffffffff8101d1c0: final_insn: 0f ae e8 0f 31
No functional changes.
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Tom Lendacky <thomas.lendacky@amd.com>
Cc: X86 ML <x86@kernel.org>
Link: https://lkml.kernel.org/r/20181211222326.14581-3-bp@alien8.de
The various x86 linker scripts use the three-argument linker script
command variant OUTPUT_FORMAT(DEFAULT, BIG, LITTLE) which specifies
three object file formats when the -EL and -EB linker command line
options are used. When -EB is specified, OUTPUT_FORMAT issues the BIG
object file format, when -EL, LITTLE, respectively, and when neither is
specified, DEFAULT.
However, those -E[LB] options are not used by arch/x86/ so switch to the
simple OUTPUT_FORMAT(BFDNAME) macro variant.
No functional changes.
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: x86@kernel.org
Link: https://lkml.kernel.org/r/20190109181531.27513-1-bp@alien8.de
MC4_MISC thresholding is not supported on all family 0x15 processors,
hence skip the x86_model check when applying the quirk.
[ bp: massage commit message. ]
Signed-off-by: Shirish S <shirish.s@amd.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Vishal Verma <vishal.l.verma@intel.com>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/1547106849-3476-2-git-send-email-shirish.s@amd.com
Commit
b6664ba42f ("s390, kexec_file: drop arch_kexec_mem_walk()")
changed the behavior of kexec_locate_mem_hole(): it will try to allocate
free memory only when kbuf.mem is initialized to zero.
However, x86's kexec_file_load() implementation reuses a struct
kexec_buf allocated on the stack and its kbuf.mem member gets set by
each kexec_add_buffer() invocation.
The second kexec_add_buffer() will reuse the same kbuf but not
reinitialize kbuf.mem.
Therefore, explictily reset kbuf.mem each time in order for
kexec_locate_mem_hole() to locate a free memory region each time.
[ bp: massage commit message. ]
Fixes: b6664ba42f ("s390, kexec_file: drop arch_kexec_mem_walk()")
Signed-off-by: Dave Young <dyoung@redhat.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Acked-by: Baoquan He <bhe@redhat.com>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: AKASHI Takahiro <takahiro.akashi@linaro.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Philipp Rudo <prudo@linux.vnet.ibm.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vivek Goyal <vgoyal@redhat.com>
Cc: Yannik Sembritzki <yannik@sembritzki.me>
Cc: Yi Wang <wang.yi59@zte.com.cn>
Cc: kexec@lists.infradead.org
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/20181228011247.GA9999@dhcp-128-65.nay.redhat.com
Switch the code to use the new, generic helpers.
Signed-off-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tony Luck <tony.luck@intel.com>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/20190110153645.40649-1-andriy.shevchenko@linux.intel.com
On AMD SME machines, makedumpfile tools need to know whether the crashed
kernel was encrypted.
If SME is enabled in the first kernel, the crashed kernel's page table
entries (pgd/pud/pmd/pte) contain the memory encryption mask which
makedumpfile needs to remove in order to obtain the true physical
address.
Export that mask in a vmcoreinfo variable.
[ bp: Massage commit message and move define at the end of the
function. ]
Signed-off-by: Lianbo Jiang <lijiang@redhat.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Baoquan He <bhe@redhat.com>
Cc: Dave Young <dyoung@redhat.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tom Lendacky <thomas.lendacky@amd.com>
Cc: anderson@redhat.com
Cc: k-hagio@ab.jp.nec.com
Cc: kexec@lists.infradead.org
Cc: linux-doc@vger.kernel.org
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/20190110121944.6050-3-lijiang@redhat.com