Commit fccb84c94 moved added some helpers to cleanup our sanity tests,
but it looks like both Dave and I always compile with the tests enabled.
This fixes things to work when they are turned off too.
Signed-off-by: Chris Mason <clm@fb.com>
This patch adds support for volatile writes which keep data pages in memory
until f2fs_evict_inode is called by iput.
For instance, we can use this feature for the sqlite database as follows.
While supporting atomic writes for main database file, we can keep its journal
data temporarily in the page cache by the following sequence.
1. open
-> ioctl(F2FS_IOC_START_VOLATILE_WRITE);
2. writes
: keep all the data in the page cache.
3. flush to the database file with atomic writes
a. ioctl(F2FS_IOC_START_ATOMIC_WRITE);
b. writes
c. ioctl(F2FS_IOC_COMMIT_ATOMIC_WRITE);
4. close
-> drop the cached data
Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org>
Like flock locks, leases are owned by the file description. Now that the
i_have_this_lease check in __break_lease is gone, we don't actually use
the fl_owner for leases for anything. So, it's now safe to set this more
appropriately to the same value as the fl_file.
While we're at it, fix up the comments over the fl_owner_t definition
since they're rather out of date.
Signed-off-by: Jeff Layton <jlayton@primarydata.com>
Christoph suggests:
"Add a return value to lm_break so that the lock manager can tell the
core code "you can delete this lease right now". That gets rid of
the games with the timeout which require all kinds of race avoidance
code in the users."
Do that here and have the nfsd lease break routine use it when it detects
that there was a race between setting up the lease and it being broken.
Signed-off-by: Jeff Layton <jlayton@primarydata.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Eliminate an unneeded "flock" variable. We can use "fl" as a loop cursor
everywhere. Add a any_leases_conflict helper function as well to
consolidate a bit of code.
Signed-off-by: Jeff Layton <jlayton@primarydata.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
I think that the intent of this code was to ensure that a process won't
deadlock if it has one fd open with a lease on it and then breaks that
lease by opening another fd. In that case it'll treat the __break_lease
call as if it were non-blocking.
This seems wrong -- the process could (for instance) be multithreaded
and managing different fds via different threads. I also don't see any
mention of this limitation in the (somewhat sketchy) documentation.
Remove the check and the non-blocking behavior when i_have_this_lease
is true.
Signed-off-by: Jeff Layton <jlayton@primarydata.com>
There was only one place where we still could free a file_lock while
holding the i_lock -- lease_modify. Add a new list_head argument to the
lm_change operation, pass in a private list when calling it, and fix
those callers to dispose of the list once the lock has been dropped.
Signed-off-by: Jeff Layton <jlayton@primarydata.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Now that we have a saner internal API for managing leases, we no longer
need to mandate that the inode->i_lock be held over most of the lease
code. Push it down into generic_add_lease and generic_delete_lease.
Signed-off-by: Jeff Layton <jlayton@primarydata.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
...and move the fasync setup into it for fcntl lease calls. At the same
time, change the semantics of how the file_lock double-pointer is
handled. Up until now, on a successful lease return you got a pointer to
the lock on the list. This is bad, since that pointer can no longer be
relied on as valid once the inode->i_lock has been released.
Change the code to instead just zero out the pointer if the lease we
passed in ended up being used. Then the callers can just check to see
if it's NULL after the call and free it if it isn't.
The priv argument has the same semantics. The lm_setup function can
zero the pointer out to signal to the caller that it should not be
freed after the function returns.
Signed-off-by: Jeff Layton <jlayton@primarydata.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
In later patches, we're going to add a new lock_manager_operation to
finish setting up the lease while still holding the i_lock. To do
this, we'll need to pass a little bit of info in the fcntl setlease
case (primarily an fasync structure). Plumb the extra pointer into
there in advance of that.
We declare this pointer as a void ** to make it clear that this is
private info, and that the caller isn't required to set this unless
the lm_setup specifically requires it.
Signed-off-by: Jeff Layton <jlayton@primarydata.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Now that we don't need to pass in an actual lease pointer to
vfs_setlease on unlock, we can stop tracking a pointer to the lease in
the nfs4_file.
Switch all of the places that check the fi_lease to check fi_deleg_file
instead. We always set that at the same time so it will have the same
semantics.
Cc: J. Bruce Fields <bfields@fieldses.org>
Signed-off-by: Jeff Layton <jlayton@primarydata.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Some of the latter paragraphs seem ambiguous and just plain wrong.
In particular the break_lease comment makes no sense. We call
break_lease (and break_deleg) from all sorts of vfs-layer functions,
so there is clearly such a method.
Also get rid of some of the other comments about what's needed for
a full implementation.
Signed-off-by: Jeff Layton <jlayton@primarydata.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Ensure that it's OK to pass in a NULL file_lock double pointer on
a F_UNLCK request and convert the vfs_setlease F_UNLCK callers to
do just that.
Finally, turn the BUG_ON in generic_setlease into a WARN_ON_ONCE
with an error return. That's a problem we can handle without
crashing the box if it occurs.
Signed-off-by: Jeff Layton <jlayton@primarydata.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
It's unlikely to ever occur, but if there were already a lease set on
the file then we could end up getting back a different pointer on a
successful setlease attempt than the one we allocated. If that happens,
the one we allocated could leak.
In practice, I don't think this will happen due to the fact that we only
try to set up the lease once per nfs4_file, but this error handling is a
bit more correct given the current lease API.
Cc: J. Bruce Fields <bfields@fieldses.org>
Signed-off-by: Jeff Layton <jlayton@primarydata.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
lease_get_mtime is called without the i_lock held, so there's no
guarantee about the stability of the list. Between the time when we
assign "flock" and then dereference it to check whether it's a lease
and for write, the lease could be freed.
Ensure that that doesn't occur by taking the i_lock before trying
to check the lease.
Cc: J. Bruce Fields <bfields@fieldses.org>
Signed-off-by: Jeff Layton <jlayton@primarydata.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
This patch introduces a very limited functionality for atomic write support.
In order to support atomic write, this patch adds two ioctls:
o F2FS_IOC_START_ATOMIC_WRITE
o F2FS_IOC_COMMIT_ATOMIC_WRITE
The database engine should be aware of the following sequence.
1. open
-> ioctl(F2FS_IOC_START_ATOMIC_WRITE);
2. writes
: all the written data will be treated as atomic pages.
3. commit
-> ioctl(F2FS_IOC_COMMIT_ATOMIC_WRITE);
: this flushes all the data blocks to the disk, which will be shown all or
nothing by f2fs recovery procedure.
4. repeat to #2.
The IO pattens should be:
,- START_ATOMIC_WRITE ,- COMMIT_ATOMIC_WRITE
CP | D D D D D D | FSYNC | D D D D | FSYNC ...
`- COMMIT_ATOMIC_WRITE
Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org>
There is a bug in error handling of lock_parent() in ecryptfs_do_create():
lock_parent() acquries mutex even if dget_parent() fails, so mutex should be unlocked anyway.
But dget_parent() does not fail, so the patch just removes unneeded buggy code.
Found by Linux Driver Verification project (linuxtesting.org).
Signed-off-by: Alexey Khoroshilov <khoroshilov@ispras.ru>
Signed-off-by: Tyler Hicks <tyhicks@canonical.com>
[BUG]
Originally when mount btrfs with "-o subvol=" mount option, btrfs will
lose all security lable.
And if the btrfs fs is mounted somewhere else, due to the lost of
security lable, SELinux will refuse to mount since the same super block
is being mounted using different security lable.
[REPRODUCER]
With SELinux enabled:
#mkfs -t btrfs /dev/sda5
#mount -o context=system_u:object_r:nfs_t:s0 /dev/sda5 /mnt/btrfs
#btrfs subvolume create /mnt/btrfs/subvol
#mount -o subvol=subvol,context=system_u:object_r:nfs_t:s0 /dev/sda5
/mnt/test
kernel message:
SELinux: mount invalid. Same superblock, different security settings
for (dev sda5, type btrfs)
[REASON]
This happens because btrfs will call vfs_kern_mount() and then
mount_subtree() to handle subvolume name lookup.
First mount will cut off all the security lables and when it comes to
the second vfs_kern_mount(), it has no security label now.
[FIX]
This patch will makes btrfs behavior much more like nfs,
which has the type flag FS_BINARY_MOUNTDATA,
making btrfs handles the security label internally.
So security label will be set in the real mount time and won't lose
label when use with "subvol=" mount option.
Reported-by: Eryu Guan <guaneryu@gmail.com>
Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
If there is a corrupted file system which has directory entries that
point at reserved, metadata inodes, prohibit them from being used by
treating them the same way we treat Boot Loader inodes --- that is,
mark them to be bad inodes. This prohibits them from being opened,
deleted, or modified via chmod, chown, utimes, etc.
In particular, this prevents a corrupted file system which has a
directory entry which points at the journal inode from being deleted
and its blocks released, after which point Much Hilarity Ensues.
Reported-by: Sami Liedes <sami.liedes@iki.fi>
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
Cc: stable@vger.kernel.org
The boot loader inode (inode #5) should never be visible in the
directory hierarchy, but it's possible if the file system is corrupted
that there will be a directory entry that points at inode #5. In
order to avoid accidentally trashing it, when such a directory inode
is opened, the inode will be marked as a bad inode, so that it's not
possible to modify (or read) the inode from userspace.
Unfortunately, when we unlink this (invalid/illegal) directory entry,
we will put the bad inode on the ophan list, and then when try to
unlink the directory, we don't actually remove the bad inode from the
orphan list before freeing in-memory inode structure. This means the
in-memory orphan list is corrupted, leading to a kernel oops.
In addition, avoid truncating a bad inode in ext4_destroy_inode(),
since truncating the boot loader inode is not a smart thing to do.
Reported-by: Sami Liedes <sami.liedes@iki.fi>
Reviewed-by: Jan Kara <jack@suse.cz>
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
Cc: stable@vger.kernel.org
If between two snapshots we rename an existing directory named X to Y and
make it a child (direct or not) of a new inode named X, we were delaying
the move/rename of the former directory unnecessarily, which would result
in attempting to rename the new directory from its orphan name to name X
prematurely.
Minimal reproducer:
$ mkfs.btrfs -f /dev/vdd
$ mount /dev/vdd /mnt
$ mkdir -p /mnt/merlin/RC/OSD/Source
$ btrfs subvolume snapshot -r /mnt /mnt/mysnap1
$ mkdir /mnt/OSD
$ mv /mnt/merlin/RC/OSD /mnt/OSD/OSD-Plane_788
$ mv /mnt/OSD /mnt/merlin/RC
$ btrfs subvolume snapshot -r /mnt /mnt/mysnap2
$ btrfs send /mnt/mysnap1 -f /tmp/1.snap
$ btrfs send -p /mnt/mysnap1 /mnt/mysnap2 -f /tmp/2.snap
$ mkfs.btrfs -f /dev/vdc
$ mount /dev/vdc /mnt2
$ btrfs receive /mnt2 -f /tmp/1.snap
$ btrfs receive /mnt2 -f /tmp/2.snap
The second receive (from an incremental send) failed with the following
error message: "rename o261-7-0 -> merlin/RC/OSD failed".
This is a regression introduced in the 3.16 kernel.
A test case for xfstests follows.
Reported-by: Marc Merlin <marc@merlins.org>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
Populate btrfs_check_super_valid() with checks that try to verify
consistency of superblock by additional conditions that may arise from
corrupted devices or bitflips. Some of tests are only hints and issue
warnings instead of failing the mount, basically when the checks are
derived from the data found in the superblock.
Tested on a broken image provided by Qu.
Reported-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Signed-off-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Chris Mason <clm@fb.com>
We check whether transid is already committed via last_trans_committed and
then search through trans_list for pending transactions. If
last_trans_committed is updated by btrfs_commit_transaction after we check
it (there is no locking), we will fail to find the committed transaction
and return EINVAL to the caller. This has been observed occasionally by
ceph-osd (which uses this ioctl heavily).
Fix by rechecking whether the provided transid <= last_trans_committed
after the search fails, and if so return 0.
Signed-off-by: Sage Weil <sage@redhat.com>
Signed-off-by: Chris Mason <clm@fb.com>
While we have a transaction ongoing, the VM might decide at any time
to call btree_inode->i_mapping->a_ops->writepages(), which will start
writeback of dirty pages belonging to btree nodes/leafs. This call
might return an error or the writeback might finish with an error
before we attempt to commit the running transaction. If this happens,
we might have no way of knowing that such error happened when we are
committing the transaction - because the pages might no longer be
marked dirty nor tagged for writeback (if a subsequent modification
to the extent buffer didn't happen before the transaction commit) which
makes filemap_fdata[write|wait]_range unable to find such pages (even
if they're marked with SetPageError).
So if this happens we must abort the transaction, otherwise we commit
a super block with btree roots that point to btree nodes/leafs whose
content on disk is invalid - either garbage or the content of some
node/leaf from a past generation that got cowed or deleted and is no
longer valid (for this later case we end up getting error messages like
"parent transid verify failed on 10826481664 wanted 25748 found 29562"
when reading btree nodes/leafs from disk).
Note that setting and checking AS_EIO/AS_ENOSPC in the btree inode's
i_mapping would not be enough because we need to distinguish between
log tree extents (not fatal) vs non-log tree extents (fatal) and
because the next call to filemap_fdatawait_range() will catch and clear
such errors in the mapping - and that call might be from a log sync and
not from a transaction commit, which means we would not know about the
error at transaction commit time. Also, checking for the eb flag
EXTENT_BUFFER_IOERR at transaction commit time isn't done and would
not be completely reliable, as the eb might be removed from memory and
read back when trying to get it, which clears that flag right before
reading the eb's pages from disk, making us not know about the previous
write error.
Using the new 3 flags for the btree inode also makes us achieve the
goal of AS_EIO/AS_ENOSPC when writepages() returns success, started
writeback for all dirty pages and before filemap_fdatawait_range() is
called, the writeback for all dirty pages had already finished with
errors - because we were not using AS_EIO/AS_ENOSPC,
filemap_fdatawait_range() would return success, as it could not know
that writeback errors happened (the pages were no longer tagged for
writeback).
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
Do like disk-io function declared under CONFIG_BTRFS_FS_RUN_SANITY_TESTS
and keep prototype in qgroup.h only
Signed-off-by: Fabian Frederick <fabf@skynet.be>
Signed-off-by: Chris Mason <clm@fb.com>
cmp was declared twice in btrfs_compare_trees resulting in a shadow
warning. This patch renames second internal variable.
Signed-off-by: Fabian Frederick <fabf@skynet.be>
Signed-off-by: Chris Mason <clm@fb.com>
bi_sector and bi_size moved to bi_iter since commit 4f024f3797
("block: Abstract out bvec iterator")
Signed-off-by: Fabian Frederick <fabf@skynet.be>
Signed-off-by: Chris Mason <clm@fb.com>
This is actually inspired by Filipe's patch. When write_one_eb() fails on
submit_extent_page(), it'll give up writing this eb and mark it with
EXTENT_BUFFER_IOERR. So if it's not the last page that encounter the failure,
there are some left pages which remain DIRTY, and if a later COW on this eb
happens, ie. eb is COWed and freed, it'd run into BUG_ON in
btrfs_release_extent_buffer_page() for the DIRTY page, ie. BUG_ON(PageDirty(page));
This adds the missing clear_page_dirty_for_io() for the rest pages of eb.
Signed-off-by: Liu Bo <bo.li.liu@oracle.com>
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
If submit_extent_page() fails in write_one_eb(), we end up with the current
page not marked dirty anymore, unlocked and marked for writeback. But we never
end up calling end_page_writeback() against the page, which will make calls to
filemap_fdatawait_range (e.g. at transaction commit time) hang forever waiting
for the writeback bit to be cleared from the page.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: Chris Mason <clm@fb.com>
Previous commit: btrfs: Fix and enhance merge_extent_mapping() to insert
best fitted extent map
is using wrong condition to judgement whether the range is a subset of a
existing extent map.
This may cause bug in btrfs no-holes mode.
This patch will correct the judgment and fix the bug.
Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
Marc Merlin sent me a broken fs image months ago where it would blow up in the
upper->checked BUG_ON() in build_backref_tree. This is because we had a
scenario like this
block a -- level 4 (not shared)
|
block b -- level 3 (reloc block, shared)
|
block c -- level 2 (not shared)
|
block d -- level 1 (shared)
|
block e -- level 0 (shared)
We go to build a backref tree for block e, we notice block d is shared and add
it to the list of blocks to lookup it's backrefs for. Now when we loop around
we will check edges for the block, so we will see we looked up block c last
time. So we lookup block d and then see that the block that points to it is
block c and we can just skip that edge since we've already been up this path.
The problem is because we clear need_check when we see block d (as it is shared)
we never add block b as needing to be checked. And because block c is in our
path already we bail out before we walk up to block b and add it to the backref
check list.
To fix this we need to reset need_check if we trip over a block that doesn't
need to be checked. This will make sure that any subsequent blocks in the path
as we're walking up afterwards are added to the list to be processed. With this
patch I can now mount Marc's fs image and it'll complete the balance without
panicing. Thanks,
Reported-by: Marc MERLIN <marc@merlins.org>
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
When balance panics it tends to panic in the
BUG_ON(!upper->checked);
test, because it means it couldn't build the backref tree properly. This is
annoying to users and frankly a recoverable error, nothing in this function is
actually fatal since it is just an in-memory building of the backrefs for a
given bytenr. So go through and change all the BUG_ON()'s to ASSERT()'s, and
fix the BUG_ON(!upper->checked) thing to just return an error.
This patch also fixes the error handling so it tears down the work we've done
properly. This code was horribly broken since we always just panic'ed instead
of actually erroring out, so it needed to be completely re-worked. With this
patch my broken image no longer panics when I mount it. Thanks,
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
Pull cifs/smb3 fixes from Steve French:
"Fix for CIFS/SMB3 oops on reconnect during readpages (3.17 regression)
and for incorrectly closing file handle in symlink error cases"
* 'for-linus' of git://git.samba.org/sfrench/cifs-2.6:
CIFS: Fix readpages retrying on reconnects
Fix problem recognizing symlinks
This patch speeds up GFS2 unlink operations by using function
gfs2_rbm_incr rather than continuously calculating the rbm.
Signed-off-by: Bob Peterson <rpeterso@redhat.com>
Signed-off-by: Steven Whitehouse <swhiteho@redhat.com>
In dlm_assert_master_handler, the mle is get in dlm_find_mle, should be
put when goto kill, otherwise, this mle will never be released.
Signed-off-by: Alex Chen <alex.chen@huawei.com>
Reviewed-by: Joseph Qi <joseph.qi@huawei.com>
Reviewed-by: joyce.xue <xuejiufei@huawei.com>
Cc: Mark Fasheh <mfasheh@suse.com>
Cc: Joel Becker <jlbec@evilplan.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Commit 3013683 ("xfs: remove all the inodes on a buffer from the AIL
in bulk") made the xfs inode flush callback more efficient by
combining all the inode writes on the buffer and the deletions of
the inode log item from AIL.
The initial loop in this patch should be looping through all
the log items on the buffer to see which items have
xfs_iflush_done as their callback function. But currently,
only the log item passed to the function has its callback
compared to xfs_iflush_done. If the log item pointer passed to
the function does have the xfs_iflush_done callback function,
then all the log items on the buffer are removed from the
li_bio_list on the buffer b_fspriv and could be removed from
the AIL even though they may have not been written yet.
This problem is masked by the fact that currently all inodes on a
buffer will have the same calback function - either xfs_iflush_done
or xfs_istale_done - and hence the bug cannot manifest in any way.
Still, we need to remove the landmine so that if we add new
callbacks in future this doesn't cause us problems.
Signed-off-by: Mark Tinguely <tinguely@sgi.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
If we got a reconnect error from async readv we re-add pages back
to page_list and continue loop. That is wrong because these pages
have been already added to the pagecache but page_list has pages that
have not been added to the pagecache yet. This ends up with a general
protection fault in put_pages after readpages. Fix it by not retrying
the read of these pages and falling back to readpage instead.
Fixes debian bug 762306
Signed-off-by: Pavel Shilovsky <pshilovsky@samba.org>
Signed-off-by: Steve French <smfrench@gmail.com>
Tested-by: Arthur Marsh <arthur.marsh@internode.on.net>
Changeset eb85d94bd introduced a problem where if a cifs open
fails during query info of a file we
will still try to close the file (happens with certain types
of reparse points) even though the file handle is not valid.
In addition for SMB2/SMB3 we were not mapping the return code returned
by Windows when trying to open a file (like a Windows NFS symlink)
which is a reparse point.
Signed-off-by: Steve French <smfrench@gmail.com>
Reviewed-by: Pavel Shilovsky <pshilovsky@samba.org>
CC: stable <stable@vger.kernel.org> #v3.13+
Use a common definition for the inline data start so we don't have to
open-code it and introduce bugs like "Btrfs: fix wrong max inline data
size limit" fixed.
Signed-off-by: David Sterba <dsterba@suse.cz>
8MiB is way too large and likely set by mistake. This is not
a significant issue as in practice the max amount of data
added to an inline extent is also limited by the page cache
and btree leaf sizes.
Signed-off-by: Filipe David Borba Manana <fdmanana@gmail.com>
Reviewed-by: David Sterba <dsterba@suse.cz>
Signed-off-by: David Sterba <dsterba@suse.cz>
Rename to btrfs_alloc_tree_block as it fits to the alloc/find/free +
_tree_block family. The parameter blocksize was set to the metadata
block size, directly or indirectly.
Signed-off-by: David Sterba <dsterba@suse.cz>
The parent_transid parameter has been unused since its introduction in
ca7a79ad8d ("Pass down the expected generation number when reading
tree blocks"). In reada_tree_block, it was even wrongly set to leafsize.
Transid check is done in the proper read and readahead ignores errors.
Signed-off-by: David Sterba <dsterba@suse.cz>
There are the branch hints that obviously depend on the data being
processed, the CPU predictor will do better job according to the actual
load. It also does not make sense to use the hints in slow paths that do
a lot of other operations like locking, waiting or IO.
Signed-off-by: David Sterba <dsterba@suse.cz>
It is reasonable to prepend newly created index to older one.
[ Dropped no longer used function parameter newext. -tytso ]
Signed-off-by: Dmitry Monakhov <dmonakhov@openvz.org>
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
When ext4_do_update_inode() gets error from ext4_inode_blocks_set(),
error number should be returned.
Signed-off-by: Li Xi <lixi@ddn.com>
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
Reviewed-by: Eric Sandeen <sandeen@redhat.com>
Reviewed-by: Jan Kara <jack@suse.cz>
Use truncate_isize_extended() when hole is being created in a file so that
->page_mkwrite() will get called for the partial tail page if it is
mmaped (see the first patch in the series for details).
Signed-off-by: Jan Kara <jack@suse.cz>
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
Cc: stable@vger.kernel.org
->page_mkwrite() is used by filesystems to allocate blocks under a page
which is becoming writeably mmapped in some process' address space. This
allows a filesystem to return a page fault if there is not enough space
available, user exceeds quota or similar problem happens, rather than
silently discarding data later when writepage is called.
However VFS fails to call ->page_mkwrite() in all the cases where
filesystems need it when blocksize < pagesize. For example when
blocksize = 1024, pagesize = 4096 the following is problematic:
ftruncate(fd, 0);
pwrite(fd, buf, 1024, 0);
map = mmap(NULL, 1024, PROT_WRITE, MAP_SHARED, fd, 0);
map[0] = 'a'; ----> page_mkwrite() for index 0 is called
ftruncate(fd, 10000); /* or even pwrite(fd, buf, 1, 10000) */
mremap(map, 1024, 10000, 0);
map[4095] = 'a'; ----> no page_mkwrite() called
At the moment ->page_mkwrite() is called, filesystem can allocate only
one block for the page because i_size == 1024. Otherwise it would create
blocks beyond i_size which is generally undesirable. But later at
->writepage() time, we also need to store data at offset 4095 but we
don't have block allocated for it.
This patch introduces a helper function filesystems can use to have
->page_mkwrite() called at all the necessary moments.
Signed-off-by: Jan Kara <jack@suse.cz>
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
Cc: stable@vger.kernel.org
XFS currently discards delalloc blocks within the target range of a
zero range request. Unaligned start and end offsets are zeroed
through the page cache and the internal, aligned blocks are
converted to unwritten extents.
If EOF is page aligned and covered by a delayed allocation extent.
The inode size is not updated until I/O completion. If a zero range
request discards a delalloc range that covers page aligned EOF as
such, the inode size update never occurs. For example:
$ rm -f /mnt/file
$ xfs_io -fc "pwrite 0 64k" -c "zero 60k 4k" /mnt/file
$ stat -c "%s" /mnt/file
65536
$ umount /mnt
$ mount <dev> /mnt
$ stat -c "%s" /mnt/file
61440
Update xfs_zero_file_space() to flush the range rather than discard
delalloc blocks to ensure that inode size updates occur
appropriately.
[dchinner: Note that this is really a workaround to avoid the
underlying problems. More work is needed (and ongoing) to fix those
issues so this fix is being added as a temporary stop-gap measure. ]
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
xfs_vm_writepage() walks each buffer_head on the page, maps to the block
on disk and attaches to a running ioend structure that represents the
I/O submission. A new ioend is created when the type of I/O (unwritten,
delayed allocation or overwrite) required for a particular buffer_head
differs from the previous. If a buffer_head is a delalloc or unwritten
buffer, the associated bits are cleared by xfs_map_at_offset() once the
buffer_head is added to the ioend.
The process of mapping each buffer_head occurs in xfs_map_blocks() and
acquires the ilock in blocking or non-blocking mode, depending on the
type of writeback in progress. If the lock cannot be acquired for
non-blocking writeback, we cancel the ioend, redirty the page and
return. Writeback will revisit the page at some later point.
Note that we acquire the ilock for each buffer on the page. Therefore
during non-blocking writeback, it is possible to add an unwritten buffer
to the ioend, clear the unwritten state, fail to acquire the ilock when
mapping a subsequent buffer and cancel the ioend. If this occurs, the
unwritten status of the buffer sitting in the ioend has been lost. The
page will eventually hit writeback again, but xfs_vm_writepage() submits
overwrite I/O instead of unwritten I/O and does not perform unwritten
extent conversion at I/O completion. This leads to data corruption
because unwritten extents are treated as holes on reads and zeroes are
returned instead of reading from disk.
Modify xfs_cancel_ioend() to restore the buffer unwritten bit for ioends
of type XFS_IO_UNWRITTEN. This ensures that unwritten extent conversion
occurs once the page is eventually written back.
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Coverity spotted this.
Granted, we *just* checked xfs_inod_dquot() in the caller (by
calling xfs_quota_need_throttle). However, this is the only place we
don't check the return value but the check is cheap and future-proof
so add it.
Signed-off-by: Eric Sandeen <sandeen@redhat.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
I discovered this in userspace, but the same change applies
to the kernel.
If we xfs_mdrestore an image from a non-crc filesystem, lo
and behold the restored image has gained a CRC:
# db/xfs_metadump.sh -o /dev/sdc1 - | xfs_mdrestore - test.img
# xfs_db -c "sb 0" -c "p crc" /dev/sdc1
crc = 0 (correct)
# xfs_db -c "sb 0" -c "p crc" test.img
crc = 0xb6f8d6a0 (correct)
This is because xfs_sb_from_disk doesn't fill in sb_crc,
but xfs_sb_to_disk(XFS_SB_ALL_BITS) does write the in-memory
CRC to disk - so we get uninitialized memory on disk.
Fix this by always initializing sb_crc to 0 when we read
the superblock, and masking out the CRC bit from ALL_BITS
when we write it.
Signed-off-by: Eric Sandeen <sandeen@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dave Chinner <david@fromorbit.com>
In this case, if bp is NULL, error is set, and we send a
NULL bp to xfs_trans_brelse, which will try to dereference it.
Test whether we actually have a buffer before we try to
free it.
Coverity spotted this.
Signed-off-by: Eric Sandeen <sandeen@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dave Chinner <david@fromorbit.com>
If we write to the maximum file offset (2^63-2), XFS fails to log the
inode size update when the page is flushed. For example:
$ xfs_io -fc "pwrite `echo "2^63-1-1" | bc` 1" /mnt/file
wrote 1/1 bytes at offset 9223372036854775806
1.000000 bytes, 1 ops; 0.0000 sec (22.711 KiB/sec and 23255.8140 ops/sec)
$ stat -c %s /mnt/file
9223372036854775807
$ umount /mnt ; mount <dev> /mnt/
$ stat -c %s /mnt/file
0
This occurs because XFS calculates the new file size as io_offset +
io_size, I/O occurs in block sized requests, and the maximum supported
file size is not block aligned. Therefore, a write to the max allowable
offset on a 4k blocksize fs results in a write of size 4k to offset
2^63-4096 (e.g., equivalent to round_down(2^63-1, 4096), or IOW the
offset of the block that contains the max file size). The offset plus
size calculation (2^63 - 4096 + 4096 == 2^63) overflows the signed
64-bit variable which goes negative and causes the > comparison to the
on-disk inode size to fail. This returns 0 from xfs_new_eof() and
results in no change to the inode on-disk.
Update xfs_new_eof() to explicitly detect overflow of the local
calculation and use the VFS inode size in this scenario. The VFS inode
size is capped to the maximum and thus XFS writes the correct inode size
to disk.
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Currently the extent size hint is set unconditionally in
xfs_ioctl_setattr() when the FSX_EXTSIZE flag is set. Hence we can
set hints when the inode flags indicating the hint should be used
are not set. Hence only set the extent size hint from userspace
when the inode has the XFS_DIFLAG_EXTSIZE flag set to indicate that
we should have an extent size hint set on the inode.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
xfs_set_diflags() allows it to be set on non-directory inodes, and
this flags errors in xfs_repair. Further, inode allocation allows
the same directory-only flag to be inherited to non-directories.
Make sure directory inode flags don't appear on other types of
inodes.
This fixes several xfstests scratch fileystem corruption reports
(e.g. xfs/050) now that xfstests checks scratch filesystems after
test completion.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
The typedef for timespecs and nanotime() are completely unnecessary,
and delay() can be moved to fs/xfs/linux.h, which means this file
can go away.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dave Chinner <david@fromorbit.com>
struct compat_xfs_bstat is missing the di_forkoff field and so does
not fully translate the structure correctly. Fix it.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dave Chinner <david@fromorbit.com>
xfs_zero_remaining_bytes() open codes a log of buffer manupulations
to do a read forllowed by a write. It can simply be replaced by an
uncached read followed by a xfs_bwrite() call.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
xfs_buf_read_uncached() has two failure modes. If can either return
NULL or bp->b_error != 0 depending on the type of failure, and not
all callers check for both. Fix it so that xfs_buf_read_uncached()
always returns the error status, and the buffer is returned as a
function parameter. The buffer will only be returned on success.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dave Chinner <david@fromorbit.com>
There is a lot of cookie-cutter code that looks like:
if (shutdown)
handle buffer error
xfs_buf_iorequest(bp)
error = xfs_buf_iowait(bp)
if (error)
handle buffer error
spread through XFS. There's significant complexity now in
xfs_buf_iorequest() to specifically handle this sort of synchronous
IO pattern, but there's all sorts of nasty surprises in different
error handling code dependent on who owns the buffer references and
the locks.
Pull this pattern into a single helper, where we can hide all the
synchronous IO warts and hence make the error handling for all the
callers much saner. This removes the need for a special extra
reference to protect IO completion processing, as we can now hold a
single reference across dispatch and waiting, simplifying the sync
IO smeantics and error handling.
In doing this, also rename xfs_buf_iorequest to xfs_buf_submit and
make it explicitly handle on asynchronous IO. This forces all users
to be switched specifically to one interface or the other and
removes any ambiguity between how the interfaces are to be used. It
also means that xfs_buf_iowait() goes away.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dave Chinner <david@fromorbit.com>
There is only one caller now - xfs_trans_read_buf_map() - and it has
very well defined call semantics - read, synchronous, and b_iodone
is NULL. Hence it's pretty clear what error handling is necessary
for this case. The bigger problem of untangling
xfs_trans_read_buf_map error handling is left to a future patch.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Internal buffer write error handling is a mess due to the unnatural
split between xfs_bioerror and xfs_bioerror_relse().
xfs_bwrite() only does sync IO and determines the handler to
call based on b_iodone, so for this caller the only difference
between xfs_bioerror() and xfs_bioerror_release() is the XBF_DONE
flag. We don't care what the XBF_DONE flag state is because we stale
the buffer in both paths - the next buffer lookup will clear
XBF_DONE because XBF_STALE is set. Hence we can use common
error handling for xfs_bwrite().
__xfs_buf_delwri_submit() is a similar - it's only ever called
on writes - all sync or async - and again there's no reason to
handle them any differently at all.
Clean up the nasty error handling and remove xfs_bioerror().
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Only has two callers, and is just a shutdown check and error handler
around xfs_buf_iorequest. However, the error handling is a mess of
read and write semantics, and both internal callers only call it for
writes. Hence kill the wrapper, and follow up with a patch to
sanitise the error handling.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Currently the report of a bio error from completion
immediately marks the buffer with an error. The issue is that this
is racy w.r.t. synchronous IO - the submitter can see b_error being
set before the IO is complete, and hence we cannot differentiate
between submission failures and completion failures.
Add an internal b_io_error field protected by the b_lock to catch IO
completion errors, and only propagate that to the buffer during
final IO completion handling. Hence we can tell in xfs_buf_iorequest
if we've had a submission failure bey checking bp->b_error before
dropping our b_io_remaining reference - that reference will prevent
b_io_error values from being propagated to b_error in the event that
completion races with submission.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dave Chinner <david@fromorbit.com>
We do some work in xfs_buf_ioend, and some work in
xfs_buf_iodone_work, but much of that functionality is the same.
This work can all be done in a single function, leaving
xfs_buf_iodone just a wrapper to determine if we should execute it
by workqueue or directly. hence rename xfs_buf_iodone_work to
xfs_buf_ioend(), and add a new xfs_buf_ioend_async() for places that
need async processing.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dave Chinner <david@fromorbit.com>
When synchronous IO runs IO completion work, it does so without an
IO reference or a hold reference on the buffer. The IO "hold
reference" is owned by the submitter, and released when the
submission is complete. The IO reference is released when both the
submitter and the bio end_io processing is run, and so if the io
completion work is run from IO completion context, it is run without
an IO reference.
Hence we can get the situation where the submitter can submit the
IO, see an error on the buffer and unlock and free the buffer while
there is still IO in progress. This leads to use-after-free and
memory corruption.
Fix this by taking a "sync IO hold" reference that is owned by the
IO and not released until after the buffer completion calls are run
to wake up synchronous waiters. This means that the buffer will not
be freed in any circumstance until all IO processing is completed.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dave Chinner <david@fromorbit.com>
For the special case of delwri buffer submission and waiting, we
don't need to issue IO synchronously at all. The second pass to call
xfs_buf_iowait() can be replaced with blocking on xfs_buf_lock() -
the buffer will be unlocked when the async IO is complete.
This formalises a sane the method of waiting for async IO - take an
extra reference, submit the IO, call xfs_buf_lock() when you want to
wait for IO completion. i.e.:
bp = xfs_buf_find();
xfs_buf_hold(bp);
bp->b_flags |= XBF_ASYNC;
xfs_buf_iosubmit(bp);
xfs_buf_lock(bp)
error = bp->b_error;
....
xfs_buf_relse(bp);
While this is somewhat racy for gathering IO errors, none of the
code that calls xfs_buf_delwri_submit() will race against other
users of the buffers being submitted. Even if they do, we don't
really care if the error is detected by the delwri code or the user
we raced against. Either way, the error will be detected and
handled.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dave Chinner <david@fromorbit.com>
When we have marked the filesystem for shutdown, we want to prevent
any further buffer IO from being submitted. However, we currently
force the log after marking the filesystem as shut down, hence
allowing IO to the log *after* we have marked both the filesystem
and the log as in an error state.
Clean this up by forcing the log before we mark the filesytem with
an error. This replaces the pure CIL flush that we currently have
which works around this same issue (i.e the CIL can't be flushed
once the shutdown flags are set) and hence enables us to clean up
the logic substantially.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dave Chinner <david@fromorbit.com>
We now have cb_to_delegation and to_delegation, which do the same thing
and are defined separately in different .c files. Move the
cb_to_delegation definition into a header file and eliminate the
redundant to_delegation definition.
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jeff Layton <jlayton@primarydata.com>
This patch fixes a regression in the patch "GFS2: Remember directory
insert point", commit 2b47dad866.
The problem had to do with the rename function: The function found
space for the new dirent, and remembered that location. But then the
old dirent was removed, which often moved the eligible location for
the renamed dirent. Putting the new dirent at the saved location
caused file system corruption.
This patch adds a new "save_loc" variable to struct gfs2_diradd.
If 1, the dirent location is saved. If 0, the dirent location is not
saved and the buffer_head is released as per previous behavior.
Signed-off-by: Bob Peterson <rpeterso@redhat.com>
Signed-off-by: Steven Whitehouse <swhiteho@redhat.com>
My static checker complains that segment is a u64 but only the lower 31
bits can be used before we hit a shift wrapping bug.
Signed-off-by: Dan Carpenter <dan.carpenter@oracle.com>
Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org>
This patch relocates f2fs_unlock_op in every directory operations to be called
after any error was processed.
Otherwise, the checkpoint can be entered with valid node ids without its
dentry when -ENOSPC is occurred.
Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org>
Previously, f2fs tries to reorganize the dirty nat entries into multiple sets
according to its nid ranges. This can improve the flushing nat pages, however,
if there are a lot of cached nat entries, it becomes a bottleneck.
This patch introduces a new set management flow by removing dirty nat list and
adding a series of set operations when the nat entry becomes dirty.
Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org>
This patch introduces FITRIM in f2fs_ioctl.
In this case, f2fs will issue small discards and prefree discards as many as
possible for the given area.
Reviewed-by: Chao Yu <chao2.yu@samsung.com>
Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org>
This patch add a new data structure to control checkpoint parameters.
Currently, it presents the reason of checkpoint such as is_umount and normal
sync.
Reviewed-by: Chao Yu <chao2.yu@samsung.com>
Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org>
Merge NFSv4.2 client SEEK implementation from Anna
* client-4.2: (55 commits)
NFS: Implement SEEK
NFSD: Implement SEEK
NFSD: Add generic v4.2 infrastructure
svcrdma: advertise the correct max payload
nfsd: introduce nfsd4_callback_ops
nfsd: split nfsd4_callback initialization and use
nfsd: introduce a generic nfsd4_cb
nfsd: remove nfsd4_callback.cb_op
nfsd: do not clear rpc_resp in nfsd4_cb_done_sequence
nfsd: fix nfsd4_cb_recall_done error handling
nfsd4: clarify how grace period ends
nfsd4: stop grace_time update at end of grace period
nfsd: skip subsequent UMH "create" operations after the first one for v4.0 clients
nfsd: set and test NFSD4_CLIENT_STABLE bit to reduce nfsdcltrack upcalls
nfsd: serialize nfsdcltrack upcalls for a particular client
nfsd: pass extra info in env vars to upcalls to allow for early grace period end
nfsd: add a v4_end_grace file to /proc/fs/nfsd
lockd: add a /proc/fs/lockd/nlm_end_grace file
nfsd: reject reclaim request when client has already sent RECLAIM_COMPLETE
nfsd: remove redundant boot_time parm from grace_done client tracking op
...
Commit 2f60ea6b8c ("NFSv4: The NFSv4.0 client must send RENEW calls if it holds a delegation") set the NFS4_RENEW_TIMEOUT flag in nfs4_renew_state, and does
not put an nfs41_proc_async_sequence call, the NFSv4.1 lease renewal heartbeat
call, on the wire to renew the NFSv4.1 state if the flag was not set.
The NFS4_RENEW_TIMEOUT flag is set when "now" is after the last renewal
(cl_last_renewal) plus the lease time divided by 3. This is arbitrary and
sometimes does the following:
In normal operation, the only way a future state renewal call is put on the
wire is via a call to nfs4_schedule_state_renewal, which schedules a
nfs4_renew_state workqueue task. nfs4_renew_state determines if the
NFS4_RENEW_TIMEOUT should be set, and the calls nfs41_proc_async_sequence,
which only gets sent if the NFS4_RENEW_TIMEOUT flag is set.
Then the nfs41_proc_async_sequence rpc_release function schedules
another state remewal via nfs4_schedule_state_renewal.
Without this change we can get into a state where an application stops
accessing the NFSv4.1 share, state renewal calls stop due to the
NFS4_RENEW_TIMEOUT flag _not_ being set. The only way to recover
from this situation is with a clientid re-establishment, once the application
resumes and the server has timed out the lease and so returns
NFS4ERR_BAD_SESSION on the subsequent SEQUENCE operation.
An example application:
open, lock, write a file.
sleep for 6 * lease (could be less)
ulock, close.
In the above example with NFSv4.1 delegations enabled, without this change,
there are no OP_SEQUENCE state renewal calls during the sleep, and the
clientid is recovered due to lease expiration on the close.
This issue does not occur with NFSv4.1 delegations disabled, nor with
NFSv4.0, with or without delegations enabled.
Signed-off-by: Andy Adamson <andros@netapp.com>
Link: http://lkml.kernel.org/r/1411486536-23401-1-git-send-email-andros@netapp.com
Fixes: 2f60ea6b8c (NFSv4: The NFSv4.0 client must send RENEW calls...)
Cc: stable@vger.kernel.org # 3.2.x
Signed-off-by: Trond Myklebust <trond.myklebust@primarydata.com>
The SEEK operation is used when an application makes an lseek call with
either the SEEK_HOLE or SEEK_DATA flags set. I fall back on
nfs_file_llseek() if the server does not have SEEK support.
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
Signed-off-by: Trond Myklebust <trond.myklebust@primarydata.com>
The calculation of page_ptr here is wrong in the case the read doesn't
start at an offset that is a multiple of a page.
The result is that nfs4svc_encode_compoundres sets rq_next_page to a
value one too small, and then the loop in svc_free_res_pages may
incorrectly fail to clear a page pointer in rq_respages[].
Pages left in rq_respages[] are available for the next rpc request to
use, so xdr data may be written to that page, which may hold data still
waiting to be transmitted to the client or data in the page cache.
The observed result was silent data corruption seen on an NFSv4 client.
We tag this as "fixing" 05638dc73a because that commit exposed this
bug, though the incorrect calculation predates it.
Particular thanks to Andrea Arcangeli and David Gilbert for analysis and
testing.
Fixes: 05638dc73a "nfsd4: simplify server xdr->next_page use"
Cc: stable@vger.kernel.org
Reported-by: Andrea Arcangeli <aarcange@redhat.com>
Tested-by: "Dr. David Alan Gilbert" <dgilbert@redhat.com>
Signed-off-by: J. Bruce Fields <bfields@redhat.com>
ocfs2_setattr() actually needs to really use MAXQUOTAS and not
OCFS2_MAXQUOTAS since it will pass the array over to VFS. Currently
this isn't a problem since MAXQUOTAS == OCFS2_MAXQUOTAS but it would
be once we introduce project quotas.
CC: Mark Fasheh <mfasheh@suse.com>
CC: Joel Becker <jlbec@evilplan.org>
CC: ocfs2-devel@oss.oracle.com
Signed-off-by: Jan Kara <jack@suse.cz>
If a cache object gets killed whilst in the process of being set up - for
instance if the netfs relinquishes the cookie that the object is associated
with - then the object's state machine will transit to the DROP_OBJECT state
without necessarily going through the LOOKUP_OBJECT or CREATE_OBJECT states.
This is a problem for CacheFiles because cachefiles_drop_object() assumes that
object->dentry will be set upon reaching the DROP_OBJECT state and has an
ASSERT() to that effect (see the oops below) - but object->dentry doesn't get
set until the LOOKUP_OBJECT or CREATE_OBJECT states (and not always then if
they fail).
To fix this, just make the dentry cleanup in cachefiles_drop_object()
conditional on the dentry actually being set and remove the assertion.
CacheFiles: Assertion failed
------------[ cut here ]------------
kernel BUG at .../fs/cachefiles/namei.c:425!
...
Workqueue: fscache_object fscache_object_work_func [fscache]
...
RIP: ... cachefiles_delete_object+0xcd/0x110 [cachefiles]
...
Call Trace:
[<ffffffffa043280f>] ? cachefiles_drop_object+0xff/0x130 [cachefiles]
[<ffffffffa02ac511>] ? fscache_drop_object+0xd1/0x1d0 [fscache]
[<ffffffffa02ac697>] ? fscache_object_work_func+0x87/0x210 [fscache]
[<ffffffff81080635>] ? process_one_work+0x155/0x450
[<ffffffff81081c44>] ? worker_thread+0x114/0x370
[<ffffffff81081b30>] ? manage_workers.isra.21+0x2c0/0x2c0
[<ffffffff81087fcc>] ? kthread+0xbc/0xe0
[<ffffffff81087f10>] ? flush_kthread_worker+0xa0/0xa0
[<ffffffff8150638c>] ? ret_from_fork+0x7c/0xb0
[<ffffffff81087f10>] ? flush_kthread_worker+0xa0/0xa0
Reported-by: Manuel Schölling <manuel.schoelling@gmx.de>
Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: Steve Dickson <steved@redhat.com>
AFAICS, prepend_name() is broken on SMP alpha. Disclaimer: I don't have
SMP alpha boxen to reproduce it on. However, it really looks like the race
is real.
CPU1: d_path() on /mnt/ramfs/<255-character>/foo
CPU2: mv /mnt/ramfs/<255-character> /mnt/ramfs/<63-character>
CPU2 does d_alloc(), which allocates an external name, stores the name there
including terminating NUL, does smp_wmb() and stores its address in
dentry->d_name.name. It proceeds to d_add(dentry, NULL) and d_move()
old dentry over to that. ->d_name.name value ends up in that dentry.
In the meanwhile, CPU1 gets to prepend_name() for that dentry. It fetches
->d_name.name and ->d_name.len; the former ends up pointing to new name
(64-byte kmalloc'ed array), the latter - 255 (length of the old name).
Nothing to force the ordering there, and normally that would be OK, since we'd
run into the terminating NUL and stop. Except that it's alpha, and we'd need
a data dependency barrier to guarantee that we see that store of NUL
__d_alloc() has done. In a similar situation dentry_cmp() would survive; it
does explicit smp_read_barrier_depends() after fetching ->d_name.name.
prepend_name() doesn't and it risks walking past the end of kmalloc'ed object
and possibly oops due to taking a page fault in kernel mode.
Cc: stable@vger.kernel.org # 3.12+
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
This patch adds server support for the NFS v4.2 operation SEEK, which
returns the position of the next hole or data segment in a file.
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
Signed-off-by: J. Bruce Fields <bfields@redhat.com>
It's cleaner to introduce everything at once and have the server reply
with "not supported" than it would be to introduce extra operations when
implementing a specific one in the middle of the list.
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
Signed-off-by: J. Bruce Fields <bfields@redhat.com>
sys_tz is already declared in include/linux/time.h
Cc: Jan Kara <jack@suse.cz>
Signed-off-by: Fabian Frederick <fabf@skynet.be>
Signed-off-by: Jan Kara <jack@suse.cz>
Some argument callbacks can contain user buffers, and sparse warns
about passing them as void pointers. Cast appropriately to remove
the sparse warnings.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dave Chinner <david@fromorbit.com>
As it is accessed through the struct xfs_mount and can be set up
entirely from fs/xfs/xfs_super.c
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dave Chinner <david@fromorbit.com>
To remove noise from the build.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Sparse warns that we are passing the big-endian valueo f agi_newino
to the initial btree lookup function when trying to find a new
inode. This is wrong - we need to pass the host order value, not the
disk order value. This will adversely affect the next inode
allocated, but given that the free inode btree is usually much
smaller than the allocated inode btree it is much less likely to be
a performance issue if we start the search in the wrong place.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Rework the transaction lookup and allocation code in
xlog_recovery_process_ophdr() to fold two related call-once
helper functions into a single helper. Then fold in all the
XLOG_START_TRANS logic to that helper to clean up the remaining
logic in xlog_recovery_process_ophdr().
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dave Chinner <david@fromorbit.com>
The code for managing transactions anf the items for recovery is
spread across 3 different locations in the file. Move them all
together so that it is easy to read the code without needing to jump
long distances in the file.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dave Chinner <david@fromorbit.com>
When an error occurs during buffer submission in
xlog_recover_commit_trans(), we free the trans structure twice. Fix
it by only freeing the structure in the caller regardless of the
success or failure of the function.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dave Chinner <david@fromorbit.com>
The XLOG_UNMOUNT_TRANS case skips the transaction, despite the fact
an unmount record is always in a standalone transaction. Hence
whenever we come across one of these we need to free the transaction
structure associated with it as there is no commit record that
follows it.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Clean up xlog_recover_process_data() structure in preparation for
fixing the allocation and freeing context of the transaction being
recovered.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dave Chinner <david@fromorbit.com>
The current open/lock state recovery unfortunately does not handle errors
such as NFS4ERR_CONN_NOT_BOUND_TO_SESSION correctly. Instead of looping,
just proceeds as if the state manager is finished recovering.
This patch ensures that we loop back, handle higher priority errors
and complete the open/lock state recovery.
Cc: stable@vger.kernel.org
Signed-off-by: Trond Myklebust <trond.myklebust@primarydata.com>
If a NFSv4.x server returns NFS4ERR_STALE_CLIENTID in response to a
CREATE_SESSION or SETCLIENTID_CONFIRM in order to tell us that it rebooted
a second time, then the client will currently take this to mean that it must
declare all locks to be stale, and hence ineligible for reboot recovery.
RFC3530 and RFC5661 both suggest that the client should instead rely on the
server to respond to inelegible open share, lock and delegation reclaim
requests with NFS4ERR_NO_GRACE in this situation.
Cc: stable@vger.kernel.org
Signed-off-by: Trond Myklebust <trond.myklebust@primarydata.com>
Pull vfs fixes from Al Viro:
"Assorted fixes + unifying __d_move() and __d_materialise_dentry() +
minimal regression fix for d_path() of victims of overwriting rename()
ported on top of that"
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs:
vfs: Don't exchange "short" filenames unconditionally.
fold swapping ->d_name.hash into switch_names()
fold unlocking the children into dentry_unlock_parents_for_move()
kill __d_materialise_dentry()
__d_materialise_dentry(): flip the order of arguments
__d_move(): fold manipulations with ->d_child/->d_subdirs
don't open-code d_rehash() in d_materialise_unique()
pull rehashing and unlocking the target dentry into __d_materialise_dentry()
ufs: deal with nfsd/iget races
fuse: honour max_read and max_write in direct_io mode
shmem: fix nlink for rename overwrite directory
Only exchange source and destination filenames
if flags contain RENAME_EXCHANGE.
In case if executable file was running and replaced by
other file /proc/PID/exe should still show correct file name,
not the old name of the file by which it was replaced.
The scenario when this bug manifests itself was like this:
* ALT Linux uses rpm and start-stop-daemon;
* during a package upgrade rpm creates a temporary file
for an executable to rename it upon successful unpacking;
* start-stop-daemon is run subsequently and it obtains
the (nonexistant) temporary filename via /proc/PID/exe
thus failing to identify the running process.
Note that "long" filenames (> DNAiME_INLINE_LEN) are still
exchanged without RENAME_EXCHANGE and this behaviour exists
long enough (should be fixed too apparently).
So this patch is just an interim workaround that restores
behavior for "short" names as it was before changes
introduced by commit da1ce0670c ("vfs: add cross-rename").
See https://lkml.org/lkml/2014/9/7/6 for details.
AV: the comments about being more careful with ->d_name.hash
than with ->d_name.name are from back in 2.3.40s; they
became obsolete by 2.3.60s, when we started to unhash the
target instead of swapping hash chain positions followed
by d_delete() as we used to do when dcache was first
introduced.
Acked-by: Miklos Szeredi <mszeredi@suse.cz>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: linux-fsdevel@vger.kernel.org
Cc: stable@vger.kernel.org
Fixes: da1ce0670c "vfs: add cross-rename"
Signed-off-by: Mikhail Efremov <sem@altlinux.org>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
... renaming it into dentry_unlock_for_move() and making it more
symmetric with dentry_lock_for_move().
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
... thus making it much closer to (now unreachable, BTW) IS_ROOT(dentry)
case in __d_move(). A bit more and it'll fold in.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
list_del() + list_add() is a slightly pessimised list_move()
list_del() + INIT_LIST_HEAD() is a slightly pessimised list_del_init()
Interleaving those makes the resulting code even worse. And harder to follow...
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
The third argument of fuse_get_user_pages() "nbytesp" refers to the number of
bytes a caller asked to pack into fuse request. This value may be lesser
than capacity of fuse request or iov_iter. So fuse_get_user_pages() must
ensure that *nbytesp won't grow.
Now, when helper iov_iter_get_pages() performs all hard work of extracting
pages from iov_iter, it can be done by passing properly calculated
"maxsize" to the helper.
The other caller of iov_iter_get_pages() (dio_refill_pages()) doesn't need
this capability, so pass LONG_MAX as the maxsize argument here.
Fixes: c9c37e2e63 ("fuse: switch to iov_iter_get_pages()")
Reported-by: Werner Baumann <werner.baumann@onlinehome.de>
Tested-by: Maxim Patlasov <mpatlasov@parallels.com>
Signed-off-by: Miklos Szeredi <mszeredi@suse.cz>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Add a higher level abstraction than the rpc_ops for callback operations.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Jeff Layton <jlayton@primarydata.com>
Signed-off-by: J. Bruce Fields <bfields@redhat.com>
Split out initializing the nfs4_callback structure from using it. For
the NULL callback this gets rid of tons of pointless re-initializations.
Note that I don't quite understand what protects us from running multiple
NULL callbacks at the same time, but at least this chance doesn't make
it worse..
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Jeff Layton <jlayton@primarydata.com>
Signed-off-by: J. Bruce Fields <bfields@redhat.com>
Add a helper to queue up a callback. CB_NULL has a bit of special casing
because it is special in the specification, but all other new callback
operations will be able to share code with this and a few more changes
to refactor the callback code.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Jeff Layton <jlayton@primarydata.com>
Signed-off-by: J. Bruce Fields <bfields@redhat.com>
We can always get at the private data by using container_of, no need for
a void pointer. Also introduce a little to_delegation helper to avoid
opencoding the container_of everywhere.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Jeff Layton <jlayton@primarydata.com>
Signed-off-by: J. Bruce Fields <bfields@redhat.com>
This is incorrect when a callback is has to be restarted, in which case
the XDR decoding of the second iteration will see a NULL cb argument.
[hch: updated description]
Signed-off-by: Benny Halevy <bhalevy@panasas.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: J. Bruce Fields <bfields@redhat.com>
For any error that is not EBADHANDLE or NFS4ERR_BAD_STATEID,
nfsd4_cb_recall_done first marks the connection down, then
retries until dl_retries hits zero, then marks the connection down
again and sets cb_done. This changes the code to only retry
for EBADHANDLE or NFS4ERR_BAD_STATEID, and factors setting
cb_done into a single point in the function.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: J. Bruce Fields <bfields@redhat.com>
Commit 0227d6abb3 ("fs/cachefiles: replace kerror by pr_err") didn't
include newline featuring in original kerror definition
Signed-off-by: Fabian Frederick <fabf@skynet.be>
Reported-by: David Howells <dhowells@redhat.com>
Acked-by: David Howells <dhowells@redhat.com>
Cc: <stable@vger.kernel.org> [3.16.x]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
In PTE holes that contain VM_SOFTDIRTY VMAs, unmapped addresses before
VM_SOFTDIRTY VMAs are reported as softdirty by /proc/pid/pagemap. This
bug was introduced in commit 68b5a65248 ("mm: softdirty: respect
VM_SOFTDIRTY in PTE holes"). That commit made /proc/pid/pagemap look at
VM_SOFTDIRTY in PTE holes but neglected to observe the start of VMAs
returned by find_vma.
Tested:
Wrote a selftest that creates a PMD-sized VMA then unmaps the first
page and asserts that the page is not softdirty. I'm going to send the
pagemap selftest in a later commit.
Signed-off-by: Peter Feiner <pfeiner@google.com>
Cc: Cyrill Gorcunov <gorcunov@openvz.org>
Cc: Pavel Emelyanov <xemul@parallels.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: "Kirill A. Shutemov" <kirill@shutemov.name>
Cc: Jamie Liu <jamieliu@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
There is a deadlock case which reported by Guozhonghua:
https://oss.oracle.com/pipermail/ocfs2-devel/2014-September/010079.html
This case is caused by &res->spinlock and &dlm->master_lock
misordering in different threads.
It was introduced by commit 8d400b81cc ("ocfs2/dlm: Clean up refmap
helpers"). Since lockres is new, it doesn't not require the
&res->spinlock. So remove it.
Fixes: 8d400b81cc ("ocfs2/dlm: Clean up refmap helpers")
Signed-off-by: Joseph Qi <joseph.qi@huawei.com>
Reviewed-by: joyce.xue <xuejiufei@huawei.com>
Reported-by: Guozhonghua <guozhonghua@h3c.com>
Cc: Joel Becker <jlbec@evilplan.org>
Cc: Mark Fasheh <mfasheh@suse.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This bug leads to reproducible silent data loss, despite the use of
msync(), sync() and a clean unmount of the file system. It is easily
reproducible with the following script:
----------------[BEGIN SCRIPT]--------------------
mkfs.nilfs2 -f /dev/sdb
mount /dev/sdb /mnt
dd if=/dev/zero bs=1M count=30 of=/mnt/testfile
umount /mnt
mount /dev/sdb /mnt
CHECKSUM_BEFORE="$(md5sum /mnt/testfile)"
/root/mmaptest/mmaptest /mnt/testfile 30 10 5
sync
CHECKSUM_AFTER="$(md5sum /mnt/testfile)"
umount /mnt
mount /dev/sdb /mnt
CHECKSUM_AFTER_REMOUNT="$(md5sum /mnt/testfile)"
umount /mnt
echo "BEFORE MMAP:\t$CHECKSUM_BEFORE"
echo "AFTER MMAP:\t$CHECKSUM_AFTER"
echo "AFTER REMOUNT:\t$CHECKSUM_AFTER_REMOUNT"
----------------[END SCRIPT]--------------------
The mmaptest tool looks something like this (very simplified, with
error checking removed):
----------------[BEGIN mmaptest]--------------------
data = mmap(NULL, file_size - file_offset, PROT_READ | PROT_WRITE,
MAP_SHARED, fd, file_offset);
for (i = 0; i < write_count; ++i) {
memcpy(data + i * 4096, buf, sizeof(buf));
msync(data, file_size - file_offset, MS_SYNC))
}
----------------[END mmaptest]--------------------
The output of the script looks something like this:
BEFORE MMAP: 281ed1d5ae50e8419f9b978aab16de83 /mnt/testfile
AFTER MMAP: 6604a1c31f10780331a6850371b3a313 /mnt/testfile
AFTER REMOUNT: 281ed1d5ae50e8419f9b978aab16de83 /mnt/testfile
So it is clear, that the changes done using mmap() do not survive a
remount. This can be reproduced a 100% of the time. The problem was
introduced in commit 136e8770cd ("nilfs2: fix issue of
nilfs_set_page_dirty() for page at EOF boundary").
If the page was read with mpage_readpage() or mpage_readpages() for
example, then it has no buffers attached to it. In that case
page_has_buffers(page) in nilfs_set_page_dirty() will be false.
Therefore nilfs_set_file_dirty() is never called and the pages are never
collected and never written to disk.
This patch fixes the problem by also calling nilfs_set_file_dirty() if the
page has no buffers attached to it.
[akpm@linux-foundation.org: s/PAGE_SHIFT/PAGE_CACHE_SHIFT/]
Signed-off-by: Andreas Rohner <andreas.rohner@gmx.net>
Tested-by: Andreas Rohner <andreas.rohner@gmx.net>
Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
osb->vol_label is malloced in ocfs2_initialize_super but not freed if
error occurs or during umount, thus causing a memory leak.
Signed-off-by: Joseph Qi <joseph.qi@huawei.com>
Reviewed-by: joyce.xue <xuejiufei@huawei.com>
Cc: Mark Fasheh <mfasheh@suse.com>
Cc: Joel Becker <jlbec@evilplan.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
I found the dump messages of UBIFS_SB_NODE is not aligned. This
patch remove the extra space from the line which is retracted.
Signed-off-by: hujianyang <hujianyang@huawei.com>
Signed-off-by: Artem Bityutskiy <artem.bityutskiy@linux.intel.com>
When fabricating a server index key for fscache, we should clear the index key
buffer before starting to fill it in, not in the middle.
Reported-by: James Pearson <james-p@moving-picture.com>
Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: Steve Dickson <steved@redhat.com>
Signed-off-by: Trond Myklebust <trond.myklebust@primarydata.com>
Silence a few warnings about missing symbols that are due to missing
includes of nfs3_fs.h.
Fixes: 00a36a1090 (NFS: Move v3 declarations out of internal.h)
Fixes: cb8c20fa53 (NFS: Move NFS v3 acl functions to nfs3_fs.h)
Signed-off-by: Trond Myklebust <trond.myklebust@primarydata.com>
Now that nfs_release_page() doesn't block indefinitely, other deadlock
avoidance mechanisms aren't needed.
- it doesn't hurt for kswapd to block occasionally. If it doesn't
want to block it would clear __GFP_WAIT. The current_is_kswapd()
was only added to avoid deadlocks and we have a new approach for
that.
- memory allocation in the SUNRPC layer can very rarely try to
->releasepage() a page it is trying to handle. The deadlock
is removed as nfs_release_page() doesn't block indefinitely.
So we don't need to set PF_FSTRANS for sunrpc network operations any
more.
Signed-off-by: NeilBrown <neilb@suse.de>
Acked-by: Jeff Layton <jlayton@primarydata.com>
Signed-off-by: Trond Myklebust <trond.myklebust@primarydata.com>
If nfs_release_page() is called on a sequence of pages which are all
in the same file which is blocked on COMMIT, each page could
contribute a 1 second delay which could be come excessive. I have
seen delays of as much as 208 seconds.
To keep the delay to one second, mark the bdi as write-congested
if the commit didn't finished. Once it does finish, the
write-congested flag will be cleared by nfs_commit_release_pages().
With this, the longest total delay in try_to_free_pages that I have
seen is under 3 seconds. With no waiting in nfs_release_page at all
I have seen delays of nearly 1.5 seconds.
Signed-off-by: NeilBrown <neilb@suse.de>
Acked-by: Jeff Layton <jlayton@primarydata.com>
Signed-off-by: Trond Myklebust <trond.myklebust@primarydata.com>
Support for loop-back mounted NFS filesystems is useful when NFS is
used to access shared storage in a high-availability cluster.
If the node running the NFS server fails, some other node can mount the
filesystem and start providing NFS service. If that node already had
the filesystem NFS mounted, it will now have it loop-back mounted.
nfsd can suffer a deadlock when allocating memory and entering direct
reclaim.
While direct reclaim does not write to the NFS filesystem it can send
and wait for a COMMIT through nfs_release_page().
This patch modifies nfs_release_page() to wait a limited time for the
commit to complete - one second. If the commit doesn't complete
in this time, nfs_release_page() will fail. This means it might now
fail in some cases where it wouldn't before. These cases are only
when 'gfp' includes '__GFP_WAIT'.
nfs_release_page() is only called by try_to_release_page(), and that
can only be called on an NFS page with required 'gfp' flags from
- page_cache_pipe_buf_steal() in splice.c
- shrink_page_list() in vmscan.c
- invalidate_inode_pages2_range() in truncate.c
The first two handle failure quite safely. The last is only called
after ->launder_page() has been called, and that will have waited
for the commit to finish already.
So aborting if the commit takes longer than 1 second is perfectly safe.
Signed-off-by: NeilBrown <neilb@suse.de>
Acked-by: Jeff Layton <jlayton@primarydata.com>
Signed-off-by: Trond Myklebust <trond.myklebust@primarydata.com>
commit b31268ac79
FS: Use stable writes when not doing a bulk flush
was a bit heavy handed.
The particular problem that lead to this patch was that
small writes to an O_SYNC file we being written as UNSTABLE writes
followed by a commit.
This is appropriate for large writes (which require multiple NFS
requests) but for small writes (single NFS request), using
NFS_FILE_SYNC is more efficient.
So that patch causes the code to select between the two methods
depending on how many nfs requests get generated.
Unfortunately this ends up applying to non O_SYNC writes as well.
In particular if you memory-map a file and update random pages, then
when they are eventually written out by writeback they will go as
NFS_FILE_SYNC. This is inefficient and slows down the application.
So: only set FLUSH_COND_STABLE when wbc->sync_mode is WB_SYNC_ALL.
With this patch:
O_SYNC writes are NFS_FILE_SYNC for single requests, and NFS_UNSTABLE
followed by COMMIT for multiple requests
Writing immediately before close of fsync follow the same pattern.
Non-O_SYNC writes without an fsync of close eventually get flushed
out as UNSTABLE and a commit follows eventually as appropriate.
Signed-off-by: NeilBrown <neilb@suse.de>
Signed-off-by: Trond Myklebust <trond.myklebust@primarydata.com>
Currently asynchronous NFSv4 request will be retried with
exponential timeout (from 1/10 to 15 seconds), but async
requests will always use a 15second retry.
Some "async" requests are really synchronous though. The
async mechanism is used to allow the request to continue if
the requesting process is killed.
In those cases, an exponential retry is appropriate.
For example, if two different clients both open a file and
get a READ delegation, and one client then unlinks the file
(while still holding an open file descriptor), that unlink
will used the "silly-rename" handling which is async.
The first rename will result in NFS4ERR_DELAY while the
delegation is reclaimed from the other client. The rename
will not be retried for 15 seconds, causing an unlink to take
15 seconds rather than 100msec.
This patch only added exponential timeout for async unlink and
async rename. Other async calls, such as 'close' are sometimes
waited for so they might benefit from exponential timeout too.
Signed-off-by: NeilBrown <neilb@suse.de>
Signed-off-by: Trond Myklebust <trond.myklebust@primarydata.com>
If rpc.statd is restarted, upcalls to monitor hosts can fail with
ECONNREFUSED. In that case force a lookup of statd's new port and retry the
upcall.
Signed-off-by: Benjamin Coddington <bcodding@redhat.com>
Cc: stable@vger.kernel.org
Signed-off-by: Trond Myklebust <trond.myklebust@primarydata.com>
Commit c9fdeb28 removed a 'continue' after checking if the lease needs
to be renewed. However, if client hasn't moved, the code falls down to
starting reboot recovery erroneously (ie., sends open reclaim and gets
back stale_clientid error) before recovering from getting stale_clientid
on the renew operation.
Signed-off-by: Olga Kornievskaia <kolga@netapp.com>
Fixes: c9fdeb280b (NFS: Add basic migration support to state manager thread)
Cc: stable@vger.kernel.org # 3.13+
Signed-off-by: Trond Myklebust <trond.myklebust@primarydata.com>
Commit 65b38851a1
("NFS: Fix /proc/fs/nfsfs/servers and /proc/fs/nfsfs/volumes")
updated the following function:
static int nfs_volume_list_open(struct inode *inode, struct file *file)
it used &nfs_server_list_ops instead of &nfs_volume_list_ops
which means cat /proc/fs/nfsfs/volumes = /proc/fs/nfsfs/servers
Signed-off-by: Fabian Frederick <fabf@skynet.be>
Fixes: 65b38851a1 (NFS: Fix /proc/fs/nfsfs/servers and...)
Cc: stable@vger.kernel.org # 3.4.x+
Signed-off-by: Trond Myklebust <trond.myklebust@primarydata.com>
With the recent addition of percpu_ref_reinit(), percpu_ref now can be
used as a persistent switch which can be turned on and off repeatedly
where turning off maps to killing the ref and waiting for it to drain;
however, there currently isn't a way to initialize a percpu_ref in its
off (killed and drained) state, which can be inconvenient for certain
persistent switch use cases.
Similarly, percpu_ref_switch_to_atomic/percpu() allow dynamic
selection of operation mode; however, currently a newly initialized
percpu_ref is always in percpu mode making it impossible to avoid the
latency overhead of switching to atomic mode.
This patch adds @flags to percpu_ref_init() and implements the
following flags.
* PERCPU_REF_INIT_ATOMIC : start ref in atomic mode
* PERCPU_REF_INIT_DEAD : start ref killed and drained
These flags should be able to serve the above two use cases.
v2: target_core_tpg.c conversion was missing. Fixed.
Signed-off-by: Tejun Heo <tj@kernel.org>
Reviewed-by: Kent Overstreet <kmo@daterainc.com>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
This is to receive 0a30288da1 ("blk-mq, percpu_ref: implement a
kludge for SCSI blk-mq stall during probe") which implements
__percpu_ref_kill_expedited() to work around SCSI blk-mq stall. The
commit reverted and patches to implement proper fix will be added.
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Kent Overstreet <kmo@daterainc.com>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Christoph Hellwig <hch@lst.de>
Previously, f2fs activates SSR if the # of free segments reaches to the # of
overprovisioned segments.
In this case, SSR starts to use dirty segments only, so that the overprovisoned
space cannot be selected for new data.
This means that we have no chance to utilizae the overprovisioned space at all.
This patch fixes that by allowing LFS allocations until the # of free segments
reaches to the last threshold, reserved space.
Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org>
This patch changes the ipu_policy setting to use any combination of orthogonal policies.
Signed-off-by: Changman Lee <cm224.lee@samsung.com>
Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org>
In ->get_victim we get max_search value from dirty_i->nr_dirty without
protection of seglist_lock, after that, nr_dirty can be increased/decreased
before we hold seglist_lock lock.
Then in main loop we attempt to traverse all dirty section one time to find
victim section, but it's not accurate to use max_search as the total loop count,
because we might lose checking several sections or check sections redundantly
for the case of nr_dirty are increased or decreased previously.
Signed-off-by: Chao Yu <chao2.yu@samsung.com>
Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org>
In manual of mount, we descript remount as below:
"mount -o remount,rw /dev/foo /dir
After this call all old mount options are replaced and arbitrary stuff from
fstab is ignored, except the loop= option which is internally generated and
maintained by the mount command."
Previously f2fs do not clear up old mount options when remount_fs, so we have no
chance of disabling previous option (e.g. flush_merge). Fix it.
Signed-off-by: Chao Yu <chao2.yu@samsung.com>
Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org>
Now punching hole in directory is not supported in f2fs, so let's limit file
type in punch_hole().
In addition, in punch_hole if offset is exceed file size, we should skip
punching hole.
Signed-off-by: Chao Yu <chao2.yu@samsung.com>
Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org>
Block size in f2fs is 4096 bytes, so theoretically, f2fs can support 4096 bytes
sector device at maximum. But now f2fs only support 512 bytes size sector, so
block device such as zRAM which uses page cache as its block storage space will
not be mounted successfully as mismatch between sector size of zRAM and sector
size of f2fs supported.
In this patch we support large sector size in f2fs, so block device with sector
size of 512/1024/2048/4096 bytes can be supported in f2fs.
Signed-off-by: Chao Yu <chao2.yu@samsung.com>
Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org>
By using FALLOC_FL_KEEP_SIZE in ->fallocate of f2fs, we can fallocate block past
EOF without changing i_size of inode. These blocks past EOF will not be
truncated in ->setattr as we truncate them only when change the file size.
We should give a chance to truncate blocks out of filesize in setattr().
Signed-off-by: Chao Yu <chao2.yu@samsung.com>
Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org>
The f2fs_direct_IO uses __allocate_data_block, but inside the allocation path,
we should update i_size at the changed time to update its inode page.
Otherwise, we can get wrong i_size after roll-forward recovery.
Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org>
If same data is updated multiple times, we don't need to redo whole the
operations.
Let's just update the lastest one.
Reviewed-by: Chao Yu <chao2.yu@samsung.com>
Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org>
In f2fs_sync_file, if there is no written appended writes, it skips
to write its node blocks.
But, if there is up-to-date inode page, we should write it to update
its metadata during the roll-forward recovery.
Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org>
We can summarize the roll forward recovery scenarios as follows.
[Term] F: fsync_mark, D: dentry_mark
1. inode(x) | CP | inode(x) | dnode(F)
-> Update the latest inode(x).
2. inode(x) | CP | inode(F) | dnode(F)
-> No problem.
3. inode(x) | CP | dnode(F) | inode(x)
-> Recover to the latest dnode(F), and drop the last inode(x)
4. inode(x) | CP | dnode(F) | inode(F)
-> No problem.
5. CP | inode(x) | dnode(F)
-> The inode(DF) was missing. Should drop this dnode(F).
6. CP | inode(DF) | dnode(F)
-> No problem.
7. CP | dnode(F) | inode(DF)
-> If f2fs_iget fails, then goto next to find inode(DF).
8. CP | dnode(F) | inode(x)
-> If f2fs_iget fails, then goto next to find inode(DF).
But it will fail due to no inode(DF).
So, this patch adds some missing points such as #1, #5, #7, and #8.
Signed-off-by: Huang Ying <ying.huang@intel.com>
Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org>
This patch revisited whole the recovery information during the f2fs_sync_file.
In this patch, there are three information to make a decision.
a) IS_CHECKPOINTED, /* is it checkpointed before? */
b) HAS_FSYNCED_INODE, /* is the inode fsynced before? */
c) HAS_LAST_FSYNC, /* has the latest node fsync mark? */
And, the scenarios for our rule are based on:
[Term] F: fsync_mark, D: dentry_mark
1. inode(x) | CP | inode(x) | dnode(F)
2. inode(x) | CP | inode(F) | dnode(F)
3. inode(x) | CP | dnode(F) | inode(x) | inode(F)
4. inode(x) | CP | dnode(F) | inode(F)
5. CP | inode(x) | dnode(F) | inode(DF)
6. CP | inode(DF) | dnode(F)
7. CP | dnode(F) | inode(DF)
8. CP | dnode(F) | inode(x) | inode(DF)
For example, #3, the three conditions should be changed as follows.
inode(x) | CP | dnode(F) | inode(x) | inode(F)
a) x o o o o
b) x x x x o
c) x o o x o
If f2fs_sync_file stops ------^,
it should write inode(F) --------------^
So, the need_inode_block_update should return true, since
c) get_nat_flag(e, HAS_LAST_FSYNC), is false.
For example, #8,
CP | alloc | dnode(F) | inode(x) | inode(DF)
a) o x x x x
b) x x x o
c) o o x o
If f2fs_sync_file stops -------^,
it should write inode(DF) --------------^
Note that, the roll-forward policy should follow this rule, which means,
if there are any missing blocks, we doesn't need to recover that inode.
Signed-off-by: Huang Ying <ying.huang@intel.com>
Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org>
This patch introduces a flag in the nat entry structure to merge various
information such as checkpointed and fsync_done marks.
Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org>
Previously, all the dnode pages should be read during the roll-forward recovery.
Even worsely, whole the chain was traversed twice.
This patch removes that redundant and costly read operations by using page cache
of meta_inode and readahead function as well.
Reviewed-by: Chao Yu <chao2.yu@samsung.com>
Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org>
On a sub-page sized filesystem, truncating a mapped region down
leaves us in a world of hurt. We truncate the pagecache, zeroing the
newly unused tail, then punch blocks out from under the page. If we
then truncate the file back up immediately, we expose that unmapped
hole to a dirty page mapped into the user application, and that's
where it all goes wrong.
In truncating the page cache, we avoid unmapping the tail page of
the cache because it still contains valid data. The problem is that
it also contains a hole after the truncate, but nobody told the mm
subsystem that. Therefore, if the page is dirty before the truncate,
we'll never get a .page_mkwrite callout after we extend the file and
the application writes data into the hole on the page. Hence when
we come to writing that region of the page, it has no blocks and no
delayed allocation reservation and hence we toss the data away.
This patch adds code to the truncate up case to solve it, by
ensuring the partial page at the old EOF is always cleaned after we
do any zeroing and move the EOF upwards. We can't actually serialise
the page writeback and truncate against page faults (yes, that
problem AGAIN) so this is really just a best effort and assumes it
is extremely unlikely that someone is concurrently writing to the
page at the EOF while extending the file.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Fix sparse warning introduced by commit 4ef897a ("xfs: flush both
inodes in xfs_swap_extents").
Signed-off-by: Fengguang Wu <fengguang.wu@intel.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
xfs_quota.h was included twice.
Signed-off-by: Fabian Frederick <fabf@skynet.be>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
xfs_dir3_data_get_ftype() gets the file type off disk, but ASSERTs
if it's invalid:
ASSERT(type < XFS_DIR3_FT_MAX);
We shouldn't ASSERT on bad values read from disk. V3 dirs are
CRC-protected, but V2 dirs + ftype are not.
Signed-off-by: Eric Sandeen <sandeen@redhat.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
When running a tight mount/unmount loop on an older kernel, RedHat
QE found that unmount would occasionally hang in
xfs_buf_unpin_wait() on the superblock buffer. Tracing and other
debug work by Eric Sandeen indicated that it was hanging on the
writing of the superblock during unmount immediately after logging
the superblock counters in a synchronous transaction. Further debug
indicated that the synchronous transaction was not waiting for
completion correctly, and we narrowed it down to
xlog_cil_force_lsn() returning NULLCOMMITLSN and hence not pushing
the transaction in the iclog buffer to disk correctly.
While this unmount superblock write code is now very different in
mainline kernels, the xlog_cil_force_lsn() code is identical, and it
was bisected to the backport of commit f876e44 ("xfs: always do log
forces via the workqueue"). This commit made the CIL push
asynchronous for log forces and hence exposed a race condition that
couldn't occur on a synchronous push.
Essentially, the xlog_cil_force_lsn() relied implicitly on the fact
that the sequence push would be complete by the time
xlog_cil_push_now() returned, resulting in the context being pushed
being in the committing list. When it was made asynchronous, it was
recognised that there was a race condition in detecting whether an
asynchronous push has started or not and code was added to handle
it.
Unfortunately, the fix was not quite right and left a race condition
where it it would detect an empty CIL while a push was in progress
before the context had been added to the committing list. This was
incorrectly seen as a "nothing to do" condition and so would tell
xfs_log_force_lsn() that there is nothing to wait for, and hence it
would push the iclogbufs in memory.
The fix is simple, but explaining the logic and the race condition
is a lot more complex. The fix is to add the context to the
committing list before we start emptying the CIL. This allows us to
detect the difference between an empty "do nothing" push and a push
that has not started by adding a discrete "emptying the CIL" state
to avoid the transient, incorrect "empty" condition that the
(unchanged) waiting code was seeing.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
xfs_free_file_space() only affects the range of the file for which space
is being freed. It currently writes and truncates the page cache from
the start offset of the free to EOF.
Modify xfs_free_file_space() to write back and truncate page cache of
just the range being freed.
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
The collapse range operation currently writes the entire file before
starting the collapse to avoid changes in the in-core extent list due to
writeback causing the extent count to change. Now that collapse range is
fsb based rather than extent index based it can sustain changes in the
extent list during the shift sequence without disruption.
Modify xfs_collapse_file_space() to writeback and invalidate pages
associated with the range of the file to be shifted.
xfs_free_file_space() currently has similar behavior, but the space free
need only affect the region of the file that is freed and this could
change in the future.
Also update the comments to reflect the current implementation. We
retain the eofblocks trim permanently as a best option for dealing with
delalloc extents. We don't shift delalloc extents because this scenario
only occurs with post-eof preallocation (since data must be flushed such
that the cache can be invalidated and data can be shifted). That means
said space must also be initialized before being shifted into the
accessible region of the file only to be immediately truncated off as
the last part of the collapse. In other words, the eofblocks trim will
happen anyways, we just run it first to ensure the file remains in a
consistent state throughout the collapse.
Finally, detect and fail explicitly in the event of a delalloc extent
during the extent shift. The implementation does not support delalloc
extents and the caller is expected to prevent this scenario in advance
as is done by collapse.
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
xfs_bmap_shift_extents() has a variety of conditions and error checks
that make the logic difficult to follow and indent heavy. Refactor the
loop body of this function into a new xfs_bmse_shift_one() helper. This
simplifies the error checks, eliminates index decrement on merge hack by
pushing the index increment down into the helper, and makes the code
more readable by reducing multiple levels of indentation.
This is a code refactor only. The behavior of extent shift and collapse
range is not modified.
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
The extent shift mechanism in xfs_bmap_shift_extents() is complicated
and handles several different, non-deterministic scenarios. These
include extent shifts, extent merges and potential btree updates in
either of the former scenarios.
Refactor the code to be more linear and readable. The loop logic in
xfs_bmap_shift_extents() and some initial error checking is adjusted
slightly. The associated btree lookup and update/delete operations are
condensed into single blocks of code. This reduces the number of
btree-specific blocks and facilitates the separation of the merge
operation into a new xfs_bmse_merge() and xfs_bmse_can_merge() helpers.
This is a code refactor only. The behavior of extent shift and collapse
range is not modified.
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
The collapse range implementation uses a transaction per extent shift.
The progress of the overall operation is tracked via the current extent
index of the in-core extent list. This is racy because the ilock must be
dropped and reacquired for each transaction according to locking and log
reservation rules. Therefore, writeback to prior regions of the file is
possible and can change the extent count. This changes the extent to
which the current index refers and causes the collapse to fail mid
operation. To avoid this problem, the entire file is currently written
back before the collapse operation starts.
To eliminate the need to flush the entire file, use the file offset
(fsb) to track the progress of the overall extent shift operation rather
than the extent index. Modify xfs_bmap_shift_extents() to
unconditionally convert the start_fsb parameter to an extent index and
return the file offset of the extent where the shift left off, if
further extents exist. The bulk of ths function can remain based on
extent index as ilock is held by the caller. xfs_collapse_file_space()
now uses the fsb output as the starting point for the subsequent shift.
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
XFS has been having trouble with stray delayed allocation extents
beyond EOF for a long time. Recent changes to the collapse range
code has triggered erroneous EBUSY errors on page invalidtion for
block size smaller than page size filesystems. These
have been caused by dirty buffers beyond EOF on a partial page which
do not get written to disk during a sync.
The issue is that write-ahead in xfs_cluster_write() finds such a
partial page and handles it by leaving the page dirty but pushing it
into a writeback state. This used to work just fine, as the
write_cache_pages() code would then find the dirty partial page in
the next mapping tree lookup as the dirty tag is still set.
Unfortunately, when we moved to a mark and sweep approach to
writeback to fix other writeback sync issues, we broken this. THe
act of marking the page as under writeback now clears the TOWRITE
tag in the radix tree, even though the page is still dirty. This
causes the TOWRITE tag to be cleared, and hence the next lookup on
the mapping tree does not find the dirty partial page and so doesn't
try to write it again.
This same writeback bug was found recently in ext4 and fixed in
commit 1c8349a ("ext4: fix data integrity sync in ordered mode")
without communication to the wider filesystem community. We can use
exactly the same fix here so the TOWRITE flag is not cleared on
partial page writes.
cc: stable@vger.kernel.org # dependent on 1c8349a171
Root-cause-found-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQIVAwUAVB/u8ROxKuMESys7AQJGxA/9Ep4IwIAclMYcVQtk4zzvz+A9jVw0pu+X
aItU70GcGoxehGlOxyqKXp/dg3CZ7ZPcxmQqzl7nzCZY28or5z/Nu6Y/YII+V0NB
f6vgHPhfGO7CSSdwlSzFY/6DdU/EXhjA3X4suowRPIO3B/2ydLxDe3sahIWY/AhM
4h3ioDR+A4ZZvU8fmw62l9Iae46mkk7KT8Am/2bUJQpENu4caVEtNtyJ2IsiPtZ8
pddgvPL/f+piz4Ufdmc/XH4KB8kiLwU+7t3xfoZnSzYz9Vzcq4sQVvSxqNSaYzSC
REEnELuLEweIh57PP67giZGPE6MA50kISH/soc43yl/oWj9i3cqkNb2JW+nxpvfS
pIHfgRmzqUPe9MrmVUtle9c1HhjAyts3y27JB4onpLghN96JgIcTWJ1vZxnxbXzp
ADVCgc3z8nhttLQMU+NsfD4fHUvj+bxULW1bSPdB5DfSrkpqmQJZBRexeFZWGyA9
p1p9Yaty2Sdq/RPmtIfMPA3cu1D9LG4wkvGPmmEAjnIlKebRBjriKDmCdwf9okWA
m+fAbuBnTjc+R0ERE6Lh5OI72hbwcgyAyDx5RdWkXVIPMBuBK67nR6nJK7vPW4x0
qK0B5Pk2iwobKQMicVSxI+GImeeiQLi798KHJwN4uFBy74rIISWilIsylBrxlxK8
s2hdI83XJJI=
=ojl4
-----END PGP SIGNATURE-----
Merge tag 'fscache-fixes-20140917' of git://git.kernel.org/pub/scm/linux/kernel/git/dhowells/linux-fs
Pull fs-cache fixes from David Howells:
- Put a timeout in releasepage() to deal with a recursive hang between
the memory allocator, writeback, ext4 and fscache under memory
pressure.
- Fix a pair of refcount bugs in the fscache error handling.
- Remove a couple of unused pagevecs.
- The cachefiles requirement that the base directory support rename
should permit rename2 as an alternative - otherwise certain
filesystems cannot now be used as backing stores (such as ext4).
* tag 'fscache-fixes-20140917' of git://git.kernel.org/pub/scm/linux/kernel/git/dhowells/linux-fs:
CacheFiles: Handle rename2
cachefiles: remove two unused pagevecs.
FS-Cache: refcount becomes corrupt under vma pressure.
FS-Cache: Reduce cookie ref count if submit fails.
FS-Cache: Timeout for releasepage()
When doing log replay we may have to update inodes, which traditionally goes
through our delayed inode stuff. This will try to move space over from the
trans handle, but we don't reserve space in our trans handle on replay since we
don't know how much we will need, so instead we try to flush. But because we
have a trans handle open we won't flush anything, so if we are out of reserve
space we will simply return ENOSPC. Since we know that if an operation made it
into the log then we definitely had space before the box bought the farm then we
don't need to worry about doing this space reservation. Use the
fs_info->log_root_recovering flag to skip the delayed inode stuff and update the
item directly. Thanks,
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
Trying to reproduce a log enospc bug I hit a panic in the async reclaim code
during log replay. This is because we use fs_info->fs_root as our root for
shrinking and such. Technically we can use whatever root we want, but let's
just not allow async reclaim while we're doing log replay. Thanks,
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
One problem that has plagued us is that a user will use up all of his space with
data, remove a bunch of that data, and then try to create a bunch of small files
and run out of space. This happens because all the chunks were allocated for
data since the metadata requirements were so low. But now there's a bunch of
empty data block groups and not enough metadata space to do anything. This
patch solves this problem by automatically deleting empty block groups. If we
notice the used count go down to 0 when deleting or on mount notice that a block
group has a used count of 0 then we will queue it to be deleted.
When the cleaner thread runs we will double check to make sure the block group
is still empty and then we will delete it. This patch has the side effect of no
longer having a bunch of BUG_ON()'s in the chunk delete code, which will be
helpful for both this and relocate. Thanks,
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
On 32-bit architectures, the legacy buffer_head functions are not always
handling the sector number with the proper 64-bit types, and will thus
fail on 4TB+ disks.
Any code that uses __getblk() (and thus bread(), breadahead(),
sb_bread(), sb_breadahead(), sb_getblk()), and calls it using a 64-bit
block on a 32-bit arch (where "long" is 32-bit) causes an inifinite loop
in __getblk_slow() with an infinite stream of errors logged to dmesg
like this:
__find_get_block_slow() failed. block=6740375944, b_blocknr=2445408648
b_state=0x00000020, b_size=512
device sda1 blocksize: 512
Note how in hex block is 0x191C1F988 and b_blocknr is 0x91C1F988 i.e. the
top 32-bits are missing (in this case the 0x1 at the top).
This is because grow_dev_page() is broken and has a 32-bit overflow due
to shifting the page index value (a pgoff_t - which is just 32 bits on
32-bit architectures) left-shifted as the block number. But the top
bits to get lost as the pgoff_t is not type cast to sector_t / 64-bit
before the shift.
This patch fixes this issue by type casting "index" to sector_t before
doing the left shift.
Note this is not a theoretical bug but has been seen in the field on a
4TiB hard drive with logical sector size 512 bytes.
This patch has been verified to fix the infinite loop problem on 3.17-rc5
kernel using a 4TB disk image mounted using "-o loop". Without this patch
doing a "find /nt" where /nt is an NTFS volume causes the inifinite loop
100% reproducibly whilst with the patch it works fine as expected.
Signed-off-by: Anton Altaparmakov <aia21@cantab.net>
Cc: stable@vger.kernel.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pull btrfs fixes from Chris Mason:
"I've got a revert to fix a regression with btrfs device registration,
and Filipe has part two of his fsync fix from last week"
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs:
Revert "Btrfs: device_list_add() should not update list when mounted"
Btrfs: set inode's logged_trans/last_log_commit after ranged fsync
Highligts:
- Fix an Oops in nfs4_open_and_get_state
- Fix an Oops in the nfs4_state_manager
- Fix another bug in the close/open_downgrade code
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQIcBAABAgAGBQJUHIRLAAoJEGcL54qWCgDykZkP/jHDs/0HcK3x8jW+zbxKP6tf
xfyhJGySwnTo2v0UPD1pETtQke9bWnm38RVl04wf2H4Gb7jR/BoDZ5J1C7956vuN
FFXt9lcnTj2Cijn/8wz2S9GneY/mjsWf9OP7NUM3O6DgxORhdoviOnYOAzqzEXjG
ylqTP/3FVglDbawKaLy3ubI0dteNxOu9U4gLveP617Ysd8h4s5XsYHPYKOOltybS
HhVNf/3EdoD3lms67Zj7yPl7PtdDhNKFrS32nhnfdLLgsMiwTyb9ZYaFpK2XcD9v
KDKblibH/wpQCsnReB66dKBR8P4ktTvXM1ovkb7LFUZD5tsOcb1Bp5ROzHXUSmiI
sXh5Ueue0FPKExU5WFKROE43+G5KOJG5pB2RwgugsqVlZjFhGotZrIle17Zuqxz0
kVR+vGZ50O/nLQ+EoRhDRRbDBrUMT7/xxHDSPQ6d4HK2hNTbrXuSXcoe8/BvbSTt
JXQCdbWDPZ5oR6z8RoBN1xHhJvXC3Y2w/d7ZzOpl3yLzsKpJ7K4tys4Z29iv3ut6
ziRS1AvJvedwSK73fWTs+zEHKm+pFMqq2U+DncvWWOWOVpIv6eKRlY9O8enP7IeW
qNHj4UVYnr9w4oAhvk2WJt1TZrhzBX9NhMjHSxUCSOs5v/YeiBjPTTy40N4O0Y6Z
DwKwDNxZq49ILEznntsd
=EOW6
-----END PGP SIGNATURE-----
Merge tag 'nfs-for-3.17-5' of git://git.linux-nfs.org/projects/trondmy/linux-nfs
Pull NFS client fixes from Trond Myklebust:
"Highligts:
- fix an Oops in nfs4_open_and_get_state
- fix an Oops in the nfs4_state_manager
- fix another bug in the close/open_downgrade code"
* tag 'nfs-for-3.17-5' of git://git.linux-nfs.org/projects/trondmy/linux-nfs:
NFSv4: Fix another bug in the close/open_downgrade code
NFSv4: nfs4_state_manager() vs. nfs_server_remove_lists()
NFS: remove BUG possibility in nfs4_open_and_get_state
This assertion was only correct before UBIFS had xattr support.
Now with xattr support also a directory node can carry data
and can act as host node.
Suggested-by: Artem Bityutskiy <dedekind1@gmail.com>
Signed-off-by: Richard Weinberger <richard@nod.at>
Signed-off-by: Artem Bityutskiy <artem.bityutskiy@linux.intel.com>
When we do a fast fsync, we start all ordered operations and then while
they're running in parallel we visit the list of modified extent maps
and construct their matching file extent items and write them to the
log btree. After that, in btrfs_sync_log() we wait for all the ordered
operations to finish (via btrfs_wait_logged_extents).
The problem with this is that we were completely ignoring errors that
can happen in the extent write path, such as -ENOSPC, a temporary -ENOMEM
or -EIO errors for example. When such error happens, it means we have parts
of the on disk extent that weren't written to, and so we end up logging
file extent items that point to these extents that contain garbage/random
data - so after a crash/reboot plus log replay, we get our inode's metadata
pointing to those extents.
This worked in contrast with the full (non-fast) fsync path, where we
start all ordered operations, wait for them to finish and then write
to the log btree. In this path, after each ordered operation completes
we check if it's flagged with an error (BTRFS_ORDERED_IOERR) and return
-EIO if so (via btrfs_wait_ordered_range).
So if an error happens with any ordered operation, just return a -EIO
error to userspace, so that it knows that not all of its previous writes
were durably persisted and the application can take proper action (like
redo the writes for e.g.) - and definitely not leave any file extent items
in the log refer to non fully written extents.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
When the fsync callback (btrfs_sync_file) starts, it first waits for
the writeback of any dirty pages to start and finish without holding
the inode's mutex (to reduce contention). After this it acquires the
inode's mutex and repeats that process via btrfs_wait_ordered_range
only if we're doing a full sync (BTRFS_INODE_NEEDS_FULL_SYNC flag
is set on the inode).
This is not safe for a non full sync - we need to start and wait for
writeback to finish for any pages that might have been made dirty
before acquiring the inode's mutex and after that first step mentioned
before. Why this is needed is explained by the following comment added
to btrfs_sync_file:
"Right before acquiring the inode's mutex, we might have new
writes dirtying pages, which won't immediately start the
respective ordered operations - that is done through the
fill_delalloc callbacks invoked from the writepage and
writepages address space operations. So make sure we start
all ordered operations before starting to log our inode. Not
doing this means that while logging the inode, writeback
could start and invoke writepage/writepages, which would call
the fill_delalloc callbacks (cow_file_range,
submit_compressed_extents). These callbacks add first an
extent map to the modified list of extents and then create
the respective ordered operation, which means in
tree-log.c:btrfs_log_inode() we might capture all existing
ordered operations (with btrfs_get_logged_extents()) before
the fill_delalloc callback adds its ordered operation, and by
the time we visit the modified list of extent maps (with
btrfs_log_changed_extents()), we see and process the extent
map they created. We then use the extent map to construct a
file extent item for logging without waiting for the
respective ordered operation to finish - this file extent
item points to a disk location that might not have yet been
written to, containing random data - so after a crash a log
replay will make our inode have file extent items that point
to disk locations containing invalid data, as we returned
success to userspace without waiting for the respective
ordered operation to finish, because it wasn't captured by
btrfs_get_logged_extents()."
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
This patch checks if i_goal is either zero or if doesn't exist
within any rgrp (i.e gfs2_blk2rgrpd() returns NULL). If so, it
assigns the ip->i_no_addr block as the i_goal.
There are two scenarios where a bad i_goal can result in a
-EBADSLT error.
1. Attempting to allocate to an existing inode:
Control reaches gfs2_inplace_reserve() and ip->i_goal is bad.
We need to fix i_goal here.
2. A new inode is created in a directory whose i_goal is hosed:
In this case, the parent dir's i_goal is copied onto the new
inode. Since the new inode is not yet created, the ip->i_no_addr
field is invalid and so, the fix in gfs2_inplace_reserve() as per
1) won't work in this scenario. We need to catch and fix it sooner
in the parent dir itself (gfs2_create_inode()), before it is
copied to the new inode.
Signed-off-by: Abhi Das <adas@redhat.com>
Signed-off-by: Steven Whitehouse <swhiteho@redhat.com>
Through an oversight, when we added nojournal support to ext4, we
didn't add support to allow file system freezing. This is relatively
easy to add, so let's do it.
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
Reported-by: Dexuan Cui <decui@microsoft.com>
This allows us to eliminate duplicate code, and eventually allow us to
also fold ext4_sops and ext4_nojournal_sops together.
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
Pull cifs/smb3 fixes from Steve French:
"Fixes for problems found during testing and debugging at the SMB3
storage test event (plugfest) this week"
* 'for-linus' of git://git.samba.org/sfrench/cifs-2.6:
Fix mfsymlinks file size check
Update version number displayed by modinfo for cifs.ko
cifs: remove dead code
Revert "cifs: No need to send SIGKILL to demux_thread during umount"
[SMB3] Fix oops when creating symlinks on smb3
[CIFS] Fix setting time before epoch (negative time values)
Use the ONE macro instead of REG, and we can simplify proc_cpuset_show().
Signed-off-by: Zefan Li <lizefan@huawei.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
Use the ONE macro instead of REG, and we can simplify proc_cgroup_show().
Signed-off-by: Zefan Li <lizefan@huawei.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
James Drew reports another bug whereby the NFS client is now sending
an OPEN_DOWNGRADE in a situation where it should really have sent a
CLOSE: the client is opening the file for O_RDWR, but then trying to
do a downgrade to O_RDONLY, which is not allowed by the NFSv4 spec.
Reported-by: James Drews <drews@engr.wisc.edu>
Link: http://lkml.kernel.org/r/541AD7E5.8020409@engr.wisc.edu
Fixes: aee7af356e (NFSv4: Fix problems with close in the presence...)
Cc: stable@vger.kernel.org # 2.6.33+
Signed-off-by: Trond Myklebust <trond.myklebust@primarydata.com>
There is a race between nfs4_state_manager() and
nfs_server_remove_lists() that happens during a nfsv3 mount.
The v3 mount notices there is already a supper block so
nfs_server_remove_lists() called which uses the nfs_client_lock
spin lock to synchronize access to the client list.
At the same time nfs4_state_manager() is running through
the client list looking for work to do, using the same
lock. When nfs4_state_manager() wins the race to the
list, a v3 client pointer is found and not ignored
properly which causes the panic.
Moving some protocol checks before the state checking
avoids the panic.
CC: Stable Tree <stable@vger.kernel.org>
Signed-off-by: Steve Dickson <steved@redhat.com>
Signed-off-by: Trond Myklebust <trond.myklebust@primarydata.com>
This reverts commit b96de000bc.
This commit is triggering failures to mount by subvolume id in some
configurations. The main problem is how many different ways this
scanning function is used, both for scanning while mounted and
unmounted. A proper cleanup is too big for late rcs.
For now, just revert the commit and we'll put a better fix into a later
merge window.
Signed-off-by: Chris Mason <clm@fb.com>
The following commit enhanced the merge_extent_mapping() to reduce
fragment in extent map tree, but it can't handle case which existing
lies before map_start:
51f39 btrfs: Use right extent length when inserting overlap extent map.
[BUG]
When existing extent map's start is before map_start,
the em->len will be minus, which will corrupt the extent map and fail to
insert the new extent map.
This will happen when someone get a large extent map, but when it is
going to insert it into extent map tree, some one has already commit
some write and split the huge extent into small parts.
[REPRODUCER]
It is very easy to tiger using filebench with randomrw personality.
It is about 100% to reproduce when using 8G preallocated file in 60s
randonrw test.
[FIX]
This patch can now handle any existing extent position.
Since it does not directly use existing->start, now it will find the
previous and next extent around map_start.
So the old existing->start < map_start bug will never happen again.
[ENHANCE]
This patch will insert the best fitted extent map into extent map tree,
other than the oldest [map_start, map_start + sectorsize) or the
relatively newer but not perfect [map_start, existing->start).
The patch will first search existing extent that does not intersects with
the desired map range [map_start, map_start + len).
The existing extent will be either before or behind map_start, and based
on the existing extent, we can find out the previous and next extent
around map_start.
So the best fitted extent would be [prev->end, next->start).
For prev or next is not found, em->start would be prev->end and em->end
wold be next->start.
With this patch, the fragment in extent map tree should be reduced much
more than the 51f39 commit and reduce an unneeded extent map tree search.
Reported-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
The check whether quota format is set even though there are no
quota files with journalled quota is pointless and it actually
makes it impossible to turn off journalled quotas (as there's
no way to unset journalled quota format). Just remove the check.
CC: stable@vger.kernel.org
Signed-off-by: Jan Kara <jack@suse.cz>
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
__jbd2_journal_clean_checkpoint_list() returns number of buffers it
freed but noone was using the value so just stop doing that. This
also allows for simplifying the calling convention for
journal_clean_once_cp_list().
Signed-off-by: Jan Kara <jack@suse.cz>
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
Yuanhan has reported that when he is running fsync(2) heavy workload
creating new files over ramdisk, significant amount of time is spent in
__jbd2_journal_clean_checkpoint_list() trying to clean old transactions
(but they cannot be cleaned up because flusher hasn't yet checkpointed
those buffers). The workload can be generated by:
fs_mark -d /fs/ram0/1 -D 2 -N 2560 -n 1000000 -L 1 -S 1 -s 4096
Reduce the amount of scanning by stopping to scan the transaction list
once we find a transaction that cannot be checkpointed. Note that this
way of cleaning is still enough to keep freeing space in the journal
after fully checkpointed transactions.
Reported-and-tested-by: Yuanhan Liu <yuanhan.liu@linux.intel.com>
Signed-off-by: Jan Kara <jack@suse.cz>
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
Not all filesystems now provide the rename i_op - ext4 for one - but rather
provide the rename2 i_op. CacheFiles checks that the filesystem has rename
and so will reject ext4 now with EPERM:
CacheFiles: Failed to register: -1
Fix this by checking for rename2 as an alternative. The call to vfs_rename()
actually handles selection of the appropriate function, so we needn't worry
about that.
Turning on debugging shows:
[cachef] ==> cachefiles_get_directory(,,cache)
[cachef] subdir -> ffff88000b22b778 positive
[cachef] <== cachefiles_get_directory() = -1 [check]
where -1 is EPERM.
Signed-off-by: David Howells <dhowells@redhat.com>
These two have been unused since
commit c4d6d8dbf3
CacheFiles: Fix the marking of cached pages
in 3.8.
Signed-off-by: NeilBrown <neilb@suse.de>
Signed-off-by: David Howells <dhowells@redhat.com>
An user reported this, it is because that lseek's SEEK_SET/SEEK_CUR/SEEK_END
allow a negative value for @offset, but btrfs's SEEK_DATA/SEEK_HOLE don't
prepare for that and convert the negative @offset into unsigned type,
so we get (end < start) warning.
[ 1269.835374] ------------[ cut here ]------------
[ 1269.836809] WARNING: CPU: 0 PID: 1241 at fs/btrfs/extent_io.c:430 insert_state+0x11d/0x140()
[ 1269.838816] BTRFS: end < start 4094 18446744073709551615
[ 1269.840334] CPU: 0 PID: 1241 Comm: a.out Tainted: G W 3.16.0+ #306
[ 1269.858229] Call Trace:
[ 1269.858612] [<ffffffff81801a69>] dump_stack+0x4e/0x68
[ 1269.858952] [<ffffffff8107894c>] warn_slowpath_common+0x8c/0xc0
[ 1269.859416] [<ffffffff81078a36>] warn_slowpath_fmt+0x46/0x50
[ 1269.859929] [<ffffffff813b0fbd>] insert_state+0x11d/0x140
[ 1269.860409] [<ffffffff813b1396>] __set_extent_bit+0x3b6/0x4e0
[ 1269.860805] [<ffffffff813b21c7>] lock_extent_bits+0x87/0x200
[ 1269.861697] [<ffffffff813a5b28>] btrfs_file_llseek+0x148/0x2a0
[ 1269.862168] [<ffffffff811f201e>] SyS_lseek+0xae/0xc0
[ 1269.862620] [<ffffffff8180b212>] system_call_fastpath+0x16/0x1b
[ 1269.862970] ---[ end trace 4d33ea885832054b ]---
This assumes that btrfs starts finding DATA/HOLE from the beginning of file
if the assigned @offset is negative.
Also we add alignment for lock_extent_bits 's range.
Reported-by: Toralf Förster <toralf.foerster@gmx.de>
Signed-off-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: Chris Mason <clm@fb.com>
After the data is written successfully, we should cleanup the read failure record
in that range because
- If we set data COW for the file, the range that the failure record pointed to is
mapped to a new place, so it is invalid.
- If we set no data COW for the file, and if there is no error during writting,
the corrupted data is corrected, so the failure record can be removed. And if
some errors happen on the mirrors, we also needn't worry about it because the
failure record will be recreated if we read the same place again.
Sometimes, we may fail to correct the data, so the failure records will be left
in the tree, we need free them when we free the inode or the memory leak happens.
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
This patch implement data repair function when direct read fails.
The detail of the implementation is:
- When we find the data is not right, we try to read the data from the other
mirror.
- When the io on the mirror ends, we will insert the endio work into the
dedicated btrfs workqueue, not common read endio workqueue, because the
original endio work is still blocked in the btrfs endio workqueue, if we
insert the endio work of the io on the mirror into that workqueue, deadlock
would happen.
- After we get right data, we write it back to the corrupted mirror.
- And if the data on the new mirror is still corrupted, we will try next
mirror until we read right data or all the mirrors are traversed.
- After the above work, we set the uptodate flag according to the result.
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
We need real mirror number for RAID0/5/6 when reading data, or if read error
happens, we would pass 0 as the number of the mirror on which the io error
happens. It is wrong and would cause the filesystem read the data from the
corrupted mirror again.
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
We could not use clean_io_failure in the direct IO path because it got the
filesystem information from the page structure, but the page in the direct
IO bio didn't have the filesystem information in its structure. So we need
modify it and pass all the information it need by parameters.
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
The original code of repair_io_failure was just used for buffered read,
because it got some filesystem data from page structure, it is safe for
the page in the page cache. But when we do a direct read, the pages in bio
are not in the page cache, that is there is no filesystem data in the page
structure. In order to implement direct read data repair, we need modify
repair_io_failure and pass all filesystem data it need by function
parameters.
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
The data repair function of direct read will be implemented later, and some code
in bio_readpage_error will be reused, so split bio_readpage_error into
several functions which will be used in direct read repair later.
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
We forgot to free failure record and bio after submitting re-read bio failed,
fix it.
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
Direct IO splits the original bio to several sub-bios because of the limit of
raid stripe, and the filesystem will wait for all sub-bios and then run final
end io process.
But it was very hard to implement the data repair when dio read failure happens,
because at the final end io function, we didn't know which mirror the data was
read from. So in order to implement the data repair, we have to move the file data
check in the final end io function to the sub-bio end io function, in which we can
get the mirror number of the device we access. This patch did this work as the
first step of the direct io data repair implementation.
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
The current code would load checksum data for several times when we split
a whole direct read io because of the limit of the raid stripe, it would
make us search the csum tree for several times. In fact, it just wasted time,
and made the contention of the csum tree root be more serious. This patch
improves this problem by loading the data at once.
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
rw_devices counter is often used to tune the profile when doing chunk allocation,
so we should modify it under the chunk_mutex context to avoid getting wrong
chunk profile.
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
For a missing device, we don't know it belong to which fs before we read its
fsid from the chunk tree. So we add them into the current fs device list at first.
When we get its fsid, we should move them to their own fs device list.
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
When we open a seed filesystem, if the degraded mount option is set, we continue to
mount the fs if we don't find some devices in the seed filesystem. But we should stop
mounting if other errors happen. Fix it
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
The problem is:
Task0(device scan task) Task1(device replace task)
scan_one_device()
mutex_lock(&uuid_mutex)
device = find_device()
mutex_lock(&device_list_mutex)
lock_chunk()
rm_and_free_source_device
unlock_chunk()
mutex_unlock(&device_list_mutex)
check device
Destroying the target device if device replace fails also has the same problem.
We fix this problem by locking uuid_mutex during destroying source device or
target device, just like the device remove operation.
It is a temporary solution, we can fix this problem and make the code more
clear by atomic counter in the future.
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
We can build a new filesystem based a seed filesystem, and we need clone
the fs devices when we open the new filesystem. But someone might clear
the seed flag of the seed filesystem, then mount that filesystem and
remove some device. If we mount the new filesystem, we might access
a device list which was being changed when we clone the fs devices.
Fix it.
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
There were several problems about chunk mutex usage:
- Lock chunk mutex when updating metadata. It would cause the nested
deadlock because updating metadata might need allocate new chunks
that need acquire chunk mutex. We remove chunk mutex at this case,
because b-tree lock and other lock mechanism can help us.
- ABBA deadlock occured between device_list_mutex and chunk_mutex.
When we update device status, we must acquire device_list_mutex at the
beginning, and then we might get chunk_mutex during the device status
update because we need allocate new chunks for metadata COW. But at
most place, we acquire chunk_mutex at first and then acquire device list
mutex. We need change the lock order.
- Some place we needn't acquire chunk_mutex. For example we needn't get
chunk_mutex when we free a empty seed fs_devices structure.
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
When we get the fs information, we forgot to acquire the mutex of device list,
it might cause the problem we might access a device that was removed. Fix
it by acquiring the device list mutex.
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
We didn't protect the system chunk array when we added a new
system chunk into it, it would cause the array be corrupted
if someone remove/add some system chunk into array at the same
time. Fix it by chunk lock.
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
->total_bytes,->disk_total_bytes,->bytes_used is protected by chunk
lock when we change them, but sometimes we read them without any lock,
and we might get unexpected value. We fix this problem like inode's
i_size.
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
We should update free_chunk_space in time when we allocate a new chunk,
not when we deal with the pending device update and block group insertion,
because we need the real free_chunk_space data to calculate the reserved
space, if we don't update it in time, we would consider the disk space which
has be allocated as free space, and would use it to do overcommit reservation.
Fix it.
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
We should update device->bytes_used in the lock context of
chunk_mutex, or we would get wrong data.
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
During removing a device, we have modified free_chunk_space when we
shrink the device, so we needn't assign a new value to it after
the device shrink. Fix it.
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
device->bytes_used will be changed when allocating a new chunk, and
disk_total_size will be changed if resizing is successful.
Meanwhile, the on-disk super blocks of the previous transaction
might not be updated. Considering the consistency of the metadata
in the previous transaction, We should use the size in the previous
transaction to check if the super block is beyond the boundary
of the device.
Though it is not big problem because we don't use it now, but anyway
it is better that we make it be consistent with the common metadata,
maybe we will use it in the future.
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
total_size will be changed when resizing a device, and disk_total_size
will be changed if resizing is successful. Meanwhile, the on-disk super
blocks of the previous transaction might not be updated. Considering
the consistency of the metadata in the previous transaction, We should
use the size in the previous transaction to check if the super block is
beyond the boundary of the device. Fix it.
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
We didn't protect the assignment of the target device, it might cause the
problem that the super block update was skipped because we might find wrong
size of the target device during the assignment. Fix it by moving the
assignment sentences into the initialization function of the target device.
And there is another merit that we can check if the target device is suitable
more early.
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
The member variants - num_can_discard - of fs_devices structure
are set, but no one use them to do anything. so remove them.
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
This comments became wrong after c3c532[bdi: add helper function for
doing init and register of a bdi for a file system], so remove them.
Signed-off-by: Li RongQing <roy.qing.li@gmail.com>
Signed-off-by: Chris Mason <clm@fb.com>
When replaying a directory from the fsync log, if a directory entry
exists both in the fs/subvol tree and in the log, the directory's inode
got its i_size updated incorrectly, accounting for the dentry's name
twice.
Reproducer, from a test for xfstests:
_scratch_mkfs >> $seqres.full 2>&1
_init_flakey
_mount_flakey
touch $SCRATCH_MNT/foo
sync
touch $SCRATCH_MNT/bar
xfs_io -c "fsync" $SCRATCH_MNT
xfs_io -c "fsync" $SCRATCH_MNT/bar
_load_flakey_table $FLAKEY_DROP_WRITES
_unmount_flakey
_load_flakey_table $FLAKEY_ALLOW_WRITES
_mount_flakey
[ -f $SCRATCH_MNT/foo ] || echo "file foo is missing"
[ -f $SCRATCH_MNT/bar ] || echo "file bar is missing"
_unmount_flakey
_check_scratch_fs $FLAKEY_DEV
The filesystem check at the end failed with the message:
"root 5 root dir 256 error".
A test case for xfstests follows.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
One of my tests shows that when we really don't have space to reclaim via
flush_space and also run out of space, this async reclaim work loops on adding
itself into the workqueue and keeps writing something to disk according to
iostat's results, and these writes mainly comes from commit_transaction which
writes super_block. This's unacceptable as it can be bad to disks, especially
memeory storages.
This adds a check to avoid the above situation.
Signed-off-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: Chris Mason <clm@fb.com>
We have been iterating all references for each extent we have in a file when we
do fiemap to see if it is shared. This is fine when you have a few clones or a
few snapshots, but when you have 5k snapshots suddenly fiemap just sits there
and stares at you. So add btrfs_check_shared which will use the backref walking
code but will short circuit as soon as it finds a root or inode that doesn't
match the one we currently have. This makes fiemap on my testbox go from
looking at me blankly for a day to spitting out actual output in a reasonable
amount of time. Thanks,
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
The behaviour of a 'chattr -c' consists of getting the current flags,
clearing the FS_COMPR_FL bit and then sending the result to the set
flags ioctl - this means the bit FS_NOCOMP_FL isn't set in the flags
passed to the ioctl. This results in the compression property not being
cleared from the inode - it was cleared only if the bit FS_NOCOMP_FL
was set in the received flags.
Reproducer:
$ mkfs.btrfs -f /dev/sdd
$ mount /dev/sdd /mnt && cd /mnt
$ mkdir a
$ chattr +c a
$ touch a/file
$ lsattr a/file
--------c------- a/file
$ chattr -c a
$ touch a/file2
$ lsattr a/file2
--------c------- a/file2
$ lsattr -d a
---------------- a
Reported-by: Andreas Schneider <asn@cryptomilk.org>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
btrfs-transacion:5657
[stack snip]
btrfs_bio_map()
btrfs_bio_counter_inc_blocked()
percpu_counter_inc(&fs_info->bio_counter) ###bio_counter > 0(A)
__btrfs_bio_map()
btrfs_dev_replace_lock()
mutex_lock(dev_replace->lock) ###wait mutex(B)
btrfs:32612
[stack snip]
btrfs_dev_replace_start()
btrfs_dev_replace_lock()
mutex_lock(dev_replace->lock) ###hold mutex(B)
btrfs_dev_replace_finishing()
btrfs_rm_dev_replace_blocked()
wait until percpu_counter_sum == 0 ###wait on bio_counter(A)
This bug can be triggered quite easily by the following test script:
http://pastebin.com/MQmb37Cy
This patch will fix the ABBA problem by calling
btrfs_dev_replace_unlock() before btrfs_rm_dev_replace_blocked().
The consistency of btrfs devices list and their superblocks is protected
by device_list_mutex, not btrfs_dev_replace_lock/unlock().
So it is safe the move btrfs_dev_replace_unlock() before
btrfs_rm_dev_replace_blocked().
Reported-by: Zhao Lei <zhaolei@cn.fujitsu.com>
Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Cc: Stefan Behrens <sbehrens@giantdisaster.de>
Signed-off-by: Chris Mason <clm@fb.com>
We've defined a 'offset' out of bio_for_each_segment_all.
This is just a clean rename, no function changes.
Signed-off-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: Chris Mason <clm@fb.com>
btrfs_drop_snapshot() leaves subvolume qgroup items on disk after
completion. This can cause problems with snapshot creation. If a new
snapshot tries to claim the deleted subvolumes id, btrfs will get -EEXIST
from add_qgroup_item() and go read-only. The following commands will
reproduce this problem (assume btrfs is on /dev/sda and is mounted at
/btrfs)
mkfs.btrfs -f /dev/sda
mount -t btrfs /dev/sda /btrfs/
btrfs quota enable /btrfs/
btrfs su sna /btrfs/ /btrfs/snap
btrfs su de /btrfs/snap
sleep 45
umount /btrfs/
mount -t btrfs /dev/sda /btrfs/
We can fix this by catching -EEXIST in add_qgroup_item() and
initializing the existing items. We have the problem of orphaned
relation items being on disk from an old snapshot but that is outside
the scope of this patch.
Signed-off-by: Mark Fasheh <mfasheh@suse.de>
Signed-off-by: Chris Mason <clm@fb.com>
The map_start and map_len fields aren't used anywhere, so just remove
them. On a x86_64 system, this reduced sizeof(struct extent_buffer)
from 296 bytes to 280 bytes, and therefore 14 extent_buffer structs can
now fit into a page instead of 13.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Chris Mason <clm@fb.com>
Maximum xattr size can be up to nearly the leaf size. For an fs with a
leaf size larger than the page size, using kmalloc requires allocating
multiple pages that are contiguous, which might not be possible if
there's heavy memory fragmentation. Therefore fallback to vmalloc if
we fail to allocate with kmalloc. Also start with a smaller buffer size,
since xattr values typically are smaller than a page.
Reported-by: Chris Murphy <lists@colorremedies.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
Last user removed in commit "btrfs: disable strict file flushes for
renames and truncates" (8d875f95da).
Signed-off-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Chris Mason <clm@fb.com>
While under random IO, a block group's free space cache eventually reaches
a state where it has a mix of extent entries and bitmap entries representing
free space regions.
As later free space regions are returned to the cache, some of them are merged
with existing extent entries if they are contiguous with them. But others are
not merged, because despite the existence of adjacent free space regions in
the cache, the merging doesn't happen because the existing free space regions
are represented in bitmap extents. Even when new free space regions are merged
with existing extent entries (enlarging the free space range they represent),
we create chances of having after an enlarged region that is contiguous with
some other region represented in a bitmap entry.
Both clustered and non-clustered space allocation work by iterating over our
extent and bitmap entries and skipping any that represents a region smaller
then the allocation request (and giving preference to extent entries before
bitmap entries). By having a contiguous free space region that is represented
by 2 (or more) entries (mix of extent and bitmap entries), we end up not
satisfying an allocation request with a size larger than the size of any of
the entries but no larger than the sum of their sizes. Making the caller assume
we're under a ENOSPC condition or force it to allocate multiple smaller space
regions (as we do for file data writes), which adds extra overhead and more
chances of causing fragmentation due to the smaller regions being all spread
apart from each other (more likely when under concurrency).
For example, if we have the following in the cache:
* extent entry representing free space range: [128Mb - 256Kb, 128Mb[
* bitmap entry covering the range [128Mb, 256Mb[, but only with the bits
representing the range [128Mb, 128Mb + 768Kb[ set - that is, only that
space in this 128Mb area is marked as free
An allocation request for 1Mb, starting at offset not greater than 128Mb - 256Kb,
would fail before, despite the existence of such contiguous free space area in the
cache. The caller could only allocate up to 768Kb of space at once and later another
256Kb (or vice-versa). In between each smaller allocation request, another task
working on a different file/inode might come in and take that space, preventing the
former task of getting a contiguous 1Mb region of free space.
Therefore this change implements the ability to move free space from bitmap
entries into existing and new free space regions represented with extent
entries. This is done when a space region is added to the cache.
A test was added to the sanity tests that explains in detail the issue too.
Some performance test results with compilebench on a 4 cores machine, with
32Gb of ram and using an HDD follow.
Test: compilebench -D /mnt -i 30 -r 1000 --makej
Before this change:
intial create total runs 30 avg 69.02 MB/s (user 0.28s sys 0.57s)
compile total runs 30 avg 314.96 MB/s (user 0.12s sys 0.25s)
read compiled tree total runs 3 avg 27.14 MB/s (user 1.52s sys 0.90s)
delete compiled tree total runs 30 avg 3.14 seconds (user 0.15s sys 0.66s)
After this change:
intial create total runs 30 avg 68.37 MB/s (user 0.29s sys 0.55s)
compile total runs 30 avg 382.83 MB/s (user 0.12s sys 0.24s)
read compiled tree total runs 3 avg 27.82 MB/s (user 1.45s sys 0.97s)
delete compiled tree total runs 30 avg 3.18 seconds (user 0.17s sys 0.65s)
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
we are assigning number_devices to the total_bytes,
that's very confusing for a moment
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Chris Mason <clm@fb.com>
there is no matching open parenthesis for the closing parenthesis
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: Chris Mason <clm@fb.com>
seed fs devices don't participate as rw_device, so don't increment
rw_devices when the device being handled belongs to a seed fs.
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: Chris Mason <clm@fb.com>
When we replace all the seed device in the system there is
no point in just keeping the btrfs_fs_devices with out
any device
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: Chris Mason <clm@fb.com>
We are not updating sprout fs seed pointer when all seed device
is replaced. This patch will check if all seed device has been
replaced and then update the sprout pointer accordingly.
Same reproducer as in the previous patch would apply here.
And notice that btrfs_close_device will check if seed fs is
present and spits out the error with out this patch.
int btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
{
::
seed_devices = fs_devices->seed;
::
while (seed_devices) {
fs_devices = seed_devices;
seed_devices = fs_devices->seed;
__btrfs_close_devices(fs_devices);
free_fs_devices(fs_devices);
}
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: Chris Mason <clm@fb.com>
reproducer:
reproducer:
mount /dev/sdb /btrfs
btrfs dev add /dev/sdc /btrfs
btrfs rep start -B /dev/sdb /dev/sdd /btrfs
umount /btrfs
WARNING: CPU: 0 PID: 3882 at fs/btrfs/volumes.c:892 __btrfs_close_devices+0x1c8/0x200 [btrfs]()
which is
WARN_ON(fs_devices->rw_devices);
The problem here is that we did not add one to the rw_devices when
we replace the seed device with a writable device.
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: Chris Mason <clm@fb.com>
reproducer:
mount /dev/sdb /btrfs
btrfs dev add /dev/sdc /btrfs
btrfs rep start -B /dev/sdb /dev/sdd /btrfs
umount /btrfs
WARNING: CPU: 0 PID: 12661 at fs/btrfs/volumes.c:891 __btrfs_close_devices+0x1b0/0x200 [btrfs]()
::
__btrfs_close_devices()
::
WARN_ON(fs_devices->open_devices);
After the seed device has been replaced the new target device
is no more a seed device. So we need to update the device
numbers in the fs_devices as pointed by the fs_info.
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
There is no logical change in this patch, just a preparatory patch,
so that changes can be easily reasoned.
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: Chris Mason <clm@fb.com>
The issue was introduced in a79b7d4b3e,
adding allocation of extent_workers, so this stray check is surely not
meant to be a check of something else.
Bugzilla: https://bugzilla.kernel.org/show_bug.cgi?id=82021
Reported-by: Maks Naumov <maksqwe1@ukr.net>
Signed-off-by: Andrey Utkin <andrey.krieger.utkin@gmail.com>
Reviewed-by: Eric Sandeen <sandeen@redhat.com>
Signed-off-by: Chris Mason <clm@fb.com>
None of the uses of btrfs_search_forward() need to have the path
nodes (level >= 1) read locked, only the leaf needs to be locked
while the caller processes it. Therefore make it return a path
with all nodes unlocked, except for the leaf.
This change is motivated by the observation that during a file
fsync we repeatdly call btrfs_search_forward() and process the
returned leaf while upper nodes of the returned path (level >= 1)
are read locked, which unnecessarily blocks other tasks that want
to write to the same fs/subvol btree.
Therefore instead of modifying the fsync code to unlock all nodes
with level >= 1 immediately after calling btrfs_search_forward(),
change btrfs_search_forward() to do it, so that it benefits all
callers.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
BTRFS_ATTR_RW could set the mode and be inline with BTRFS_ATTR
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: Chris Mason <clm@fb.com>
All that uses BTRFS_ATTR want mode to be set at 0444 so just do
it at the define. And few spacing alignments.
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: Chris Mason <clm@fb.com>
If we need to cow a node, increase the write lock level and retry the
tree search, there's no point of changing the node locks in our path
to blocking mode, as we only waste time and unnecessarily wake up other
tasks waiting on the spinning locks (just to block them again shortly
after) because we release our path before repeating the tree search.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
In ctree.c:setup_items_for_insert(), we can unlock all nodes in our
path before we process the leaf (shift items and data, adjust data
offsets, etc). This allows for better btree concurrency, as we're
often holding a write lock on at least the node at level 1.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
btrfs_lookup_csums_range() uses ALIGN() to check if "start"
and "end + 1" are aligned to "root->sectorsize". It's better to
replace these with IS_ALIGNED() for simplicity.
Signed-off-by: Satoru Takeuchi <takeuchi_satoru@jp.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
We want this to debug qgroup changes on live systems.
Signed-off-by: Mark Fasheh <mfasheh@suse.de>
Reviewed-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
The member variants - latest_devid and latest_trans - of fs_devices structure
are set, but no one use them to do anything. so remove them.
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
The io error might happen during writing out the device stats, and the
device stats information and dirty flag would be update at that time,
but the current code didn't consider this case, just clear the dirty
flag, it would cause that we forgot to write out the new device stats
information. Fix it.
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
The lock in btrfs_device structure was far away from its protected data, it would
make CPU load the cache line twice when we accessed them, move them together.
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
The super block generation of the seed devices is not the same as the
filesystem which sprouted from them because we don't update the super
block on the seed devices when we change that new filesystem. So we
should not use the generation of that new filesystem to check the super
block generation on the seed devices, Fix it.
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Reviewed-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Chris Mason <clm@fb.com>
All the metadata in the seed devices has the same fsid as the fsid
of the seed filesystem which is on the seed device, so we should check
them by the current filesystem. Fix it.
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Reviewed-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Chris Mason <clm@fb.com>
The transaction thread may want to do more work, namely it pokes the
cleaner ktread that will start processing uncleaned subvols.
This can be triggered by user via the 'btrfs fi sync' command, otherwise
there was a delay up to 30 seconds before the cleaner started to clean
old snapshots.
Signed-off-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Chris Mason <clm@fb.com>
inline data is stored from offset of @disk_bytenr in
struct btrfs_file_extent_item. So substracting total
size of struct btrfs_file_extent_item is wrong, fix it.
Signed-off-by: Wang Shilong <wangsl.fnst@cn.fujitsu.com>
Reviewed-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Chris Mason <clm@fb.com>
Btrfs could still inline file data if its size is same as
page size, so don't skip max value here.
Signed-off-by: Wang Shilong <wangsl.fnst@cn.fujitsu.com>
Reviewed-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Chris Mason <clm@fb.com>
If flag NOCOMPRESS is set which means bad compression ratio,
we could avoid call cow_file_range_async() for this case earlier.
Signed-off-by: Wang Shilong <wangsl.fnst@cn.fujitsu.com>
Reviewed-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Chris Mason <clm@fb.com>
If a file's compression ratios is bad, we will set NOCOMPRESS
flag for it, and it will skip compression for that inode next time.
However, if we remount fs to COMPRESS_FORCE, it still should try
if we could compress pages for that inode, this patch fix wrong
check for this problem.
Signed-off-by: Wang Shilong <wangsl.fnst@cn.fujitsu.com>
Reviewed-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Chris Mason <clm@fb.com>
Fix the following sparse warning:
fs/btrfs/send.c:518:51: warning: incorrect type in argument 2 (different address spaces)
fs/btrfs/send.c:518:51: expected char const [noderef] <asn:1>*<noident>
fs/btrfs/send.c:518:51: got char *
We can safely use (const char __user *) with set_fs(KERNEL_DS)
__force added to avoid sparse-all warning:
fs/btrfs/send.c:518:40: warning: cast adds address space to expression (<asn:1>)
Signed-off-by: Fabian Frederick <fabf@skynet.be>
Reviewed-by: Zach Brown <zab@zabbo.net>
Signed-off-by: Chris Mason <clm@fb.com>