Refactor the btree block header checks to have an internal function that
returns the address of the failing check without logging errors. The
scrubber will call the internal function, while the external version
will maintain the current logging behavior.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Refactor the btree pointer checks so that we can call them from the
scrub code without logging errors to dmesg. Preserve the existing error
reporting for regular operations.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Create some helper functions to check that a block pointer points
within the filesystem (or AG) and doesn't point at static metadata.
We will use this for scrub.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Unused after the big bmap refactor.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Unused after the big bmap refactor.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
We only use xfs_bmbt_lookup_ge to look up the first bmap record in an
inode, so replace xfs_bmbt_lookup_ge with a special purpose helper that
is a bit more descriptive.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Now that we've massaged the callers into the right form we can always
pass the actual extent record instead of the individual fields.
As an additional benefit the btree cursor will now be prepoulated with
the correct extent state instead of having to fix it up later.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Now that we've massaged the callers into the right form we can always
pass the actual extent record instead of the individual fields.
With that xfs_bmbt_disk_set_allf can go away, and xfs_bmbt_disk_set_all
can be merged into the former implementation of xfs_bmbt_disk_set_allf.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Use xfs_iext_get_extent to find, and xfs_iext_update_extent to update
entries in the in-core extent list. This isolates the function from
the detailed layout of the extent list, and generally makes the code
a lot more readable.
Also get rid of the oldext and newext variables as using the extent
records is a lot more descriptive.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Account for all changes to the delalloc reservation in da_new, and use a
single call xfs_mod_fdblocks to reserve/free blocks, including always
checking for an error.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Use xfs_iext_get_extent to find, and xfs_iext_update_extent to update
entries in the in-core extent list. This isolates the function from
the detailed layout of the extent list, and generally makes the code
a lot more readable.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Use xfs_iext_update_extent to update entries in the in-core extent list.
This isolates the function from the detailed layout of the extent list,
and generally makes the code a lot more readable.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Use xfs_iext_get_extent to find, and xfs_iext_update_extent to update
entries in the in-core extent list. This isolates the function from
the detailed layout of the extent list, and generally makes the code
a lot more readable.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Use xfs_iext_update_extent to update entries in the in-core extent list.
This isolates the function from the detailed layout of the extent list,
and generally makes the code a lot more readable.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Use the same defines as the other extent add and delete helpers, which
both improves code readability and trace point output.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Use the _FILLING values to match the usage in the xfs_bmap_add_extent_*
helpers. No change in behavior, just better naming in the code and
tracepoint output.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reported-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
And remove the delalloc code from xfs_bmap_del_extent, which gets renamed
to xfs_bmap_del_extent_real to fit the naming scheme used by the other
xfs_bmap_{add,del}_extent_* routines.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Rename the bno variable that's used as the end of the range in
__xfs_bunmapi to end, which better describes it. Additionally change
the start variable which takes the initial value of bno to be the
function parameter itself.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
The XFS_BTCUR_BPRV_WASDEL flag is supposed to indicate that we are
converting a delayed allocation to a real one, which isn't the case
in xfs_bunmapi. Setting it could theoretically lead to misaccounting
here, but it's unlikely that we ever hit it in practice.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
This avoids exposure to details of the extent list implementation.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
There was one spot in xfs_bmap_add_extent_unwritten_real that didn't use the
passed in new extent state but always converted to normal, leading to wrong
behavior when converting from normal to unwritten.
Only found by code inspection, it seems like this code path to move partial
extent from written to unwritten while merging it with the next extent is
rarely exercised.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
The writeback rework in commit fbcc025613 ("xfs: Introduce
writeback context for writepages") introduced a subtle change in
behavior with regard to the block mapping used across the
->writepages() sequence. The previous xfs_cluster_write() code would
only flush pages up to EOF at the time of the writepage, thus
ensuring that any pages due to file-extending writes would be
handled on a separate cycle and with a new, updated block mapping.
The updated code establishes a block mapping in xfs_writepage_map()
that could extend beyond EOF if the file has post-eof preallocation.
Because we now use the generic writeback infrastructure and pass the
cached mapping to each writepage call, there is no implicit EOF
limit in place. If eofblocks trimming occurs during ->writepages(),
any post-eof portion of the cached mapping becomes invalid. The
eofblocks code has no means to serialize against writeback because
there are no pages associated with post-eof blocks. Therefore if an
eofblocks trim occurs and is followed by a file-extending buffered
write, not only has the mapping become invalid, but we could end up
writing a page to disk based on the invalid mapping.
Consider the following sequence of events:
- A buffered write creates a delalloc extent and post-eof
speculative preallocation.
- Writeback starts and on the first writepage cycle, the delalloc
extent is converted to real blocks (including the post-eof blocks)
and the mapping is cached.
- The file is closed and xfs_release() trims post-eof blocks. The
cached writeback mapping is now invalid.
- Another buffered write appends the file with a delalloc extent.
- The concurrent writeback cycle picks up the just written page
because the writeback range end is LLONG_MAX. xfs_writepage_map()
attributes it to the (now invalid) cached mapping and writes the
data to an incorrect location on disk (and where the file offset is
still backed by a delalloc extent).
This problem is reproduced by xfstests test generic/464, which
triggers racing writes, appends, open/closes and writeback requests.
To address this problem, trim the mapping used during writeback to
within EOF when the mapping is validated. This ensures the mapping
is revalidated for any pages encountered beyond EOF as of the time
the current mapping was cached or last validated.
Reported-by: Eryu Guan <eguan@redhat.com>
Diagnosed-by: Eryu Guan <eguan@redhat.com>
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Jason reported that a corrupted filesystem failed to replay
the log with a metadata block out of bounds warning:
XFS (dm-2): _xfs_buf_find: Block out of range: block 0x80270fff8, EOFS 0x9c40000
_xfs_buf_find() and xfs_btree_get_bufs() return NULL if
that happens, and then when xfs_alloc_fix_freelist() calls
xfs_trans_binval() on that NULL bp, we oops with:
BUG: unable to handle kernel NULL pointer dereference at 00000000000000f8
We don't handle _xfs_buf_find errors very well, every
caller higher up the stack gets to guess at why it failed.
But we should at least handle it somehow, so return
EFSCORRUPTED here.
Reported-by: Jason L Tibbitts III <tibbs@math.uh.edu>
Signed-off-by: Eric Sandeen <sandeen@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Bool initializations should use true and false. Bool tests don't need
comparisons.
Signed-off-by: Thomas Meyer <thomas@m3y3r.de>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Prevent kmemcheck from throwing warnings about reading uninitialised
memory when formatting inodes into the incore log buffer. There are
several issues here - we don't always log all the fields in the
inode log format item, and we never log the inode the
di_next_unlinked field.
In the case of the inode log format item, this is exacerbated
by the old xfs_inode_log_format structure padding issue. Hence make
the padded, 64 bit aligned version of the structure the one we always
use for formatting the log and get rid of the 64 bit variant. This
means we'll always log the 64-bit version and so recovery only needs
to convert from the unpadded 32 bit version from older 32 bit
kernels.
Signed-Off-By: Dave Chinner <dchinner@redhat.com>
Tested-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
In commit fd26a88093 we added a worst case estimate for rmapbt blocks
needed to satisfy the block mapping request. Since then, we added the
ability to reserve enough space in each AG such that we should never run
out of blocks to grow the rmapbt, which makes this calculation
unnecessary. Revert the commit because it makes the extra delalloc
indlen accounting unnecessary and incorrect.
Reported-by: Eryu Guan <eguan@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
We call __xfs_ag_resv_init to make a per-AG reservation for each AG.
This makes the reservation per-AG, not per-filesystem. Therefore, it
is incorrect to adjust m_ag_max_usable for each AG. Adjust it only
when we're reserving AG 0's blocks so that we only do it once per fs.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Fix up all the compiler warnings that have crept in.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
In Christoph's patch to refactor xfs_bmse_merge, the updated rmap code
does more work than it needs to (because map-extent auto-merges
records). Remove the unnecessary unmap and save ourselves a deferred
op.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
This abstracts the function away from details of the low-level extent
list implementation.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
This abstracts the function away from details of the low-level extent
list implementation.
Note that it seems like the previous implementation of rmap for
the merge case was completely broken, but it no seems appear to
trigger that.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
For the first right move we need to look up next_fsb. That means
our last fsb that contains next_fsb must also be the current extent,
so take advantage of that by moving the code around a bit.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Use the bmap abstraction instead of open-coding bmbt details here.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Use the helper instead of open coding it, to provide a better abstraction
for the scalable extent list work. This also gets an additional assert
and trace point for free.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
This helper is used to update an extent record based on the extent index,
and can be used to provide a level of abstractions between callers that
want to modify in-core extent records and the details of the extent list
implementation.
Also switch all users of the xfs_bmbt_set_all(xfs_iext_get_ext(...))
pattern to this new helper.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
The owner change bmbt scan that occurs during extent swap operations
does not handle ordered buffer failures. Buffers that cannot be
marked ordered must be physically logged so previously dirty ranges
of the buffer can be relogged in the transaction.
Since the bmbt scan may need to process and potentially log a large
number of blocks, we can't expect to complete this operation in a
single transaction. Update extent swap to use a permanent
transaction with enough log reservation to physically log a buffer.
Update the bmbt scan to physically log any buffers that cannot be
ordered and to terminate the scan with -EAGAIN. On -EAGAIN, the
caller rolls the transaction and restarts the scan. Finally, update
the bmbt scan helper function to skip bmbt blocks that already match
the expected owner so they are not reprocessed after scan restarts.
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
[darrick: fix the xfs_trans_roll call]
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Extent swap uses xfs_btree_visit_blocks() to fix up bmbt block
owners on v5 (!rmapbt) filesystems. The bmbt scan uses
xfs_btree_lookup_get_block() to read bmbt blocks which verifies the
current owner of the block against the parent inode of the bmbt.
This works during extent swap because the bmbt owners are updated to
the opposite inode number before the inode extent forks are swapped.
The modified bmbt blocks are marked as ordered buffers which allows
everything to commit in a single transaction. If the transaction
commits to the log and the system crashes such that recovery of the
extent swap is required, log recovery restarts the bmbt scan to fix
up any bmbt blocks that may have not been written back before the
crash. The log recovery bmbt scan occurs after the inode forks have
been swapped, however. This causes the bmbt block owner verification
to fail, leads to log recovery failure and requires xfs_repair to
zap the log to recover.
Define a new invalid inode owner flag to inform the btree block
lookup mechanism that the current inode may be invalid with respect
to the current owner of the bmbt block. Set this flag on the cursor
used for change owner scans to allow this operation to work at
runtime and during log recovery.
Signed-off-by: Brian Foster <bfoster@redhat.com>
Fixes: bb3be7e7c ("xfs: check for bogus values in btree block headers")
Cc: stable@vger.kernel.org
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Ordered buffers are attached to transactions and pushed through the
logging infrastructure just like normal buffers with the exception
that they are not actually written to the log. Therefore, we don't
need to log dirty ranges of ordered buffers. xfs_trans_log_buf() is
called on ordered buffers to set up all of the dirty state on the
transaction, buffer and log item and prepare the buffer for I/O.
Now that xfs_trans_dirty_buf() is available, call it from
xfs_trans_ordered_buf() so the latter is now mutually exclusive with
xfs_trans_log_buf(). This reflects the implementation of ordered
buffers and helps eliminate confusion over the need to log ranges of
ordered buffers just to set up internal log state.
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Allison Henderson <allison.henderson@oracle.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
And instead require callers to explicitly join the inode using
xfs_defer_ijoin. Also consolidate the defer error handling in
a few places using a goto label.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Split xfs_trans_roll into a low-level helper that just rolls the
actual transaction and a new higher level xfs_trans_roll_inode
that takes care of logging and rejoining the inode. This gets
rid of the NULL inode case, and allows to simplify the special
cases in the deferred operation code.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
In a filesystem without finobt, the Space manager selects an AG to alloc a new
inode, where xfs_dialloc_ag_inobt() will search the AG for the free slot chunk.
When the new inode is in the same AG as its parent, the btree will be searched
starting on the parent's record, and then retried from the top if no slot is
available beyond the parent's record.
To exit this loop though, xfs_dialloc_ag_inobt() relies on the fact that the
btree must have a free slot available, once its callers relied on the
agi->freecount when deciding how/where to allocate this new inode.
In the case when the agi->freecount is corrupted, showing available inodes in an
AG, when in fact there is none, this becomes an infinite loop.
Add a way to stop the loop when a free slot is not found in the btree, making
the function to fall into the whole AG scan which will then, be able to detect
the corruption and shut the filesystem down.
As pointed by Brian, this might impact performance, giving the fact we
don't reset the search distance anymore when we reach the end of the
tree, giving it fewer tries before falling back to the whole AG search, but
it will only affect searches that start within 10 records to the end of the tree.
Signed-off-by: Carlos Maiolino <cmaiolino@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
When we try to allocate a free inode by searching the inobt, we try to
find the inode nearest the parent inode by searching chunks both left
and right of the chunk containing the parent. As an optimization, we
cache the leftmost and rightmost records that we previously searched; if
we do another allocation with the same parent inode, we'll pick up the
search where it last left off.
There's a bug in the case where we found a free inode to the left of the
parent's chunk: we need to update the cached left and right records, but
because we already reassigned the right record to point to the left, we
end up assigning the left record to both the cached left and right
records.
This isn't a correctness problem strictly, but it can result in the next
allocation rechecking chunks unnecessarily or allocating inodes further
away from the parent than it needs to. Fix it by swapping the record
pointer after we update the cached left and right records.
Fixes: bd16956599 ("xfs: speed up free inode search")
Signed-off-by: Omar Sandoval <osandov@fb.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Just like in the allocator we must avoid touching multiple AGs out of
order when freeing blocks, as freeing still locks the AGF and can cause
the same AB-BA deadlocks as in the allocation path.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reported-by: Nikolay Borisov <n.borisov.lkml@gmail.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
When we're checking the entries in a directory buffer, make sure that
the entry length doesn't push us off the end of the buffer. Found via
xfs/388 writing ones to the length fields.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
In some circumstances, _alloc_read_agf can return an error code of zero
but also a null AGF buffer pointer. Check for this and jump out.
Fixes-coverity-id: 1415250
Fixes-coverity-id: 1415320
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
We must initialize the firstfsb parameter to _bmapi_write so that it
doesn't incorrectly treat stack garbage as a restriction on which AGs
it can search for free space.
Fixes-coverity-id: 1402025
Fixes-coverity-id: 1415167
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Check the _btree_check_block return value for the firstrec and lastrec
functions, since we have the ability to signal that the repositioning
did not succeed.
Fixes-coverity-id: 114067
Fixes-coverity-id: 114068
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
This reverts commit 50e0bdbe9f.
The new XFS_QMOPT_NOLOCK isn't used at all, and conditional locking based
on a flag is always the wrong thing to do - we should be having helpers
that can be called without the lock instead.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
The comment mentioned the wrong lock. Also add an ASSERT to assert
this locking precondition.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
In quite a few places we call xfs_da_read_buf with a mappedbno that we
don't control, then assume that the function passes back either an error
code or a buffer pointer. Unfortunately, if mappedbno == -2 and bno
maps to a hole, we get a return code of zero and a NULL buffer, which
means that we crash if we actually try to use that buffer pointer. This
happens immediately when we set the buffer type for transaction context.
Therefore, check that we have no error code and a non-NULL bp before
trying to use bp. This patch is a follow-up to an incomplete fix in
96a3aefb8f ("xfs: don't crash if reading a directory results in an
unexpected hole").
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
XFS has a maximum symlink target length of 1024 bytes; this is a
holdover from the Irix days. Unfortunately, the constant establishing
this is 'MAXPATHLEN' and is /not/ the same as the Linux MAXPATHLEN,
which is 4096.
The kernel enforces its 1024 byte MAXPATHLEN on symlink targets, but
xfsprogs picks up the (Linux) system 4096 byte MAXPATHLEN, which means
that xfs_repair doesn't complain about oversized symlinks.
Since this is an on-disk format constraint, put the define in the XFS
namespace and move everything over to use the new name.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Add a new dqget flag that grabs the dquot without taking the ilock.
This will be used by the scrubber (which will have already grabbed
the ilock) to perform basic sanity checking of the quota data.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Since we moved the injected error frequency controls to the mountpoint,
we can get rid of the last argument to XFS_TEST_ERROR.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Carlos Maiolino <cmaiolino@redhat.com>
Teach the extended attribute reading functions to pass along a
transaction context if one was supplied. The extended attribute scrub
code will use transactions to lock buffers and avoid deadlocking with
itself in the case of loops; since it will already have the inode
locked, also create xattr get/list helpers that don't take locks.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Teach the directory reading functions to pass along a transaction context
if one was supplied. The directory scrub code will use transactions to
lock buffers and avoid deadlocking with itself in the case of loops.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Modify the existing dir leafn lasthash function to enable us to
calculate the highest hash value of a leaf1 block. This will be used by
the directory scrubbing code to check the sanity of hashes in leaf1
directory blocks.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Create a function to extract an in-core inobt record from a generic
btree_rec union so that scrub will be able to check inobt records
and check inode block alignment.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Plumb in the pieces (init_high_key, diff_two_keys) necessary to call
query_range on the inode space and block mapping btrees and to extract
raw btree records. This will eventually be used by the inobt and bmbt
scrubbers.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Export various internal functions so that the online scrubber can use
them to check the state of metadata.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
The btree record and key inorder check functions will be used by the
btree scrubber code, so make sure they're always built.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
This is a purely mechanical patch that removes the private
__{u,}int{8,16,32,64}_t typedefs in favor of using the system
{u,}int{8,16,32,64}_t typedefs. This is the sed script used to perform
the transformation and fix the resulting whitespace and indentation
errors:
s/typedef\t__uint8_t/typedef __uint8_t\t/g
s/typedef\t__uint/typedef __uint/g
s/typedef\t__int\([0-9]*\)_t/typedef int\1_t\t/g
s/__uint8_t\t/__uint8_t\t\t/g
s/__uint/uint/g
s/__int\([0-9]*\)_t\t/__int\1_t\t\t/g
s/__int/int/g
/^typedef.*int[0-9]*_t;$/d
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Don't bother wandering our way through the leaf nodes when the caller
issues a query_all; just zoom down the left side of the tree and walk
rightwards along level zero.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
XFS_HSIZE is an extremly confusing way to calculate the size of handle_t.
Given that handle_t always only had two sizes, and one of them isn't
even covered by XFS_HSIZE to start with just remove the macro and use
a constant sizeof expression.
Note that XFS_HSIZE isn't used in xfsprogs, xfsdump or xfstests either.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Eric Sandeen <sandeen@sandeen.net>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
In a pathological scenario where we are trying to bunmapi a single
extent in which every other block is shared, it's possible that trying
to unmap the entire large extent in a single transaction can generate so
many EFIs that we overflow the transaction reservation.
Therefore, use a heuristic to guess at the number of blocks we can
safely unmap from a reflink file's data fork in an single transaction.
This should prevent problems such as the log head slamming into the tail
and ASSERTs that trigger because we've exceeded the transaction
reservation.
Note that since bunmapi can fail to unmap the entire range, we must also
teach the deferred unmap code to roll into a new transaction whenever we
get low on reservation.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
[hch: random edits, all bugs are my fault]
Signed-off-by: Christoph Hellwig <hch@lst.de>
This structure copy was throwing unaligned access warnings on sparc64:
Kernel unaligned access at TPC[1043c088] xfs_btree_visit_blocks+0x88/0xe0 [xfs]
xfs_btree_copy_ptrs does a memcpy, which avoids it.
Signed-off-by: Eric Sandeen <sandeen@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
If a malicious user corrupts the refcount btree to cause a cycle between
different levels of the tree, the next mount attempt will deadlock in
the CoW recovery routine while grabbing buffer locks. We can use the
ability to re-grab a buffer that was previous locked to a transaction to
avoid deadlocks, so do that here.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reduce stack usage and get rid of compiler warnings by eliminating
unused variables.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Carlos Maiolino <cmaiolino@redhat.com>
The delalloc -> real block conversion path uses an incorrect
calculation in the case where the middle part of a delalloc extent
is being converted. This is documented as a rare situation because
XFS generally attempts to maximize contiguity by converting as much
of a delalloc extent as possible.
If this situation does occur, the indlen reservation for the two new
delalloc extents left behind by the conversion of the middle range
is calculated and compared with the original reservation. If more
blocks are required, the delta is allocated from the global block
pool. This delta value can be characterized as the difference
between the new total requirement (temp + temp2) and the currently
available reservation minus those blocks that have already been
allocated (startblockval(PREV.br_startblock) - allocated).
The problem is that the current code does not account for previously
allocated blocks correctly. It subtracts the current allocation
count from the (new - old) delta rather than the old indlen
reservation. This means that more indlen blocks than have been
allocated end up stashed in the remaining extents and free space
accounting is broken as a result.
Fix up the calculation to subtract the allocated block count from
the original extent indlen and thus correctly allocate the
reservation delta based on the difference between the new total
requirement and the unused blocks from the original reservation.
Also remove a bogus assert that contradicts the fact that the new
indlen reservation can be larger than the original indlen
reservation.
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
- various code cleanups
- introduce GETFSMAP ioctl
- various refactoring
- avoid dio reads past eof
- fix memory corruption and other errors with fragmented directory blocks
- fix accidental userspace memory corruptions
- publish fs uuid in superblock
- make fstrim terminatable
- fix race between quotaoff and in-core inode creation
- Avoid use-after-free when finishing up w/ buffer heads
- Reserve enough space to handle bmap tree resizing during cow remap
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQIcBAABCgAGBQJZDfIzAAoJEPh/dxk0SrTrsEgP/3TjYbaqsad2e6KqtZwqN/Qx
DUljUxReZl4rgnAaFD55XOPYWGZ2bBGNtAQlAR7/JYZuZs6obbBrqUukS19jPVi7
SeQdknnU3yTq17LrwEeeQUOhem28GHxYtQYazdgNoTigZXABeXWzi53HzvPw5+Ci
3a+zB1clu3cycKsD+UAhz/m0Z40ckjDMsDueJMOACiax+vPjlzSu36H9wzlF/h0R
nq7VGSDZy6aS3H75PDjWVxoJGUSdO7jHYxwQflkk6wxrcmTCLZxuiDeSANOZ2KxM
y8qTln6hqxalQSH9r6n84/XrQstYWfdLqwngIL5wMSvN6UbuFyNQKuouEkWs6EEZ
4cuSqfihT7o5VcIpYiq1ZDgNzzpmDDMMeho4J9WBvm5Qt5hgPCo3gzweE/C6Sscs
m+V1NvLd+kBiHoMhYPB8/lm4nXa/wT1Y3TtHc+8A/qkZKAwoOdxWKNIY58jfmdzb
Rvv0LKi+6W5zanzXlNs3NXJBwZAeHuHXKY3UJT4BAWfjdtS6QvIf1Bcpj9ApyqE2
oOnNMRhF+wSS9dSFoPXkRjzIyoR5CoOylB0KYV9OYELYPDLczwbvtX/9+tjDEol9
odCZyyzJtKxYQbwf2TQ/ZqXQV4vw6lWOB7G4Itx7yv0Taa9vQ7cxSX2MnE7TA/pW
IQKsE6C2I24Bfr2oPfms
=oKCc
-----END PGP SIGNATURE-----
Merge tag 'xfs-4.12-merge-7' of git://git.kernel.org/pub/scm/fs/xfs/xfs-linux
Pull xfs updates from Darrick Wong:
"Here are the XFS changes for 4.12. The big new feature for this
release is the new space mapping ioctl that we've been discussing
since LSF2016, but other than that most of the patches are larger bug
fixes, memory corruption prevention, and other cleanups.
Summary:
- various code cleanups
- introduce GETFSMAP ioctl
- various refactoring
- avoid dio reads past eof
- fix memory corruption and other errors with fragmented directory blocks
- fix accidental userspace memory corruptions
- publish fs uuid in superblock
- make fstrim terminatable
- fix race between quotaoff and in-core inode creation
- avoid use-after-free when finishing up w/ buffer heads
- reserve enough space to handle bmap tree resizing during cow remap"
* tag 'xfs-4.12-merge-7' of git://git.kernel.org/pub/scm/fs/xfs/xfs-linux: (53 commits)
xfs: fix use-after-free in xfs_finish_page_writeback
xfs: reserve enough blocks to handle btree splits when remapping
xfs: wait on new inodes during quotaoff dquot release
xfs: update ag iterator to support wait on new inodes
xfs: support ability to wait on new inodes
xfs: publish UUID in struct super_block
xfs: Allow user to kill fstrim process
xfs: better log intent item refcount checking
xfs: fix up quotacheck buffer list error handling
xfs: remove xfs_trans_ail_delete_bulk
xfs: don't use bool values in trace buffers
xfs: fix getfsmap userspace memory corruption while setting OF_LAST
xfs: fix __user annotations for xfs_ioc_getfsmap
xfs: corruption needs to respect endianess too!
xfs: use NULL instead of 0 to initialize a pointer in xfs_ioc_getfsmap
xfs: use NULL instead of 0 to initialize a pointer in xfs_getfsmap
xfs: simplify validation of the unwritten extent bit
xfs: remove unused values from xfs_exntst_t
xfs: remove the unused XFS_MAXLINK_1 define
xfs: more do_div cleanups
...
xfs has defined PF_FSTRANS to declare a scope GFP_NOFS semantic quite
some time ago. We would like to make this concept more generic and use
it for other filesystems as well. Let's start by giving the flag a more
generic name PF_MEMALLOC_NOFS which is in line with an exiting
PF_MEMALLOC_NOIO already used for the same purpose for GFP_NOIO
contexts. Replace all PF_FSTRANS usage from the xfs code in the first
step before we introduce a full API for it as xfs uses the flag directly
anyway.
This patch doesn't introduce any functional change.
Link: http://lkml.kernel.org/r/20170306131408.9828-4-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Theodore Ts'o <tytso@mit.edu>
Cc: Chris Mason <clm@fb.com>
Cc: David Sterba <dsterba@suse.cz>
Cc: Jan Kara <jack@suse.cz>
Cc: Nikolay Borisov <nborisov@suse.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
In xfs_reflink_end_cow, we erroneously reserve only enough blocks to
handle adding 1 extent. This is problematic if we fragment free space,
have to do CoW, and then have to perform multiple bmap btree expansions.
Furthermore, the BUI recovery routine doesn't reserve /any/ blocks to
handle btree splits, so log recovery fails after our first error causes
the filesystem to go down.
Therefore, refactor the transaction block reservation macros until we
have a macro that works for our deferred (re)mapping activities, and fix
both problems by using that macro.
With 1k blocks we can hit this fairly often in g/187 if the scratch fs
is big enough.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
XFS only supports the unwritten extent bit in the data fork, and only if
the file system has a version 5 superblock or the unwritten extent
feature bit.
We currently have two routines that validate the invariant:
xfs_check_nostate_extents which return -EFSCORRUPTED when it's not met,
and xfs_validate_extent that triggers and assert in debug build.
Both of them iterate over all extents of an inode fork when called,
which isn't very efficient.
This patch instead adds a new helper that verifies the invariant one
extent at a time, and calls it from the places where we iterate over
all extents to converted them from or two the in-memory format. The
callers then return -EFSCORRUPTED when reading invalid extents from
disk, or trigger an assert when writing them to disk.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
We only ever use the normal and unwritten states. And the actual
ondisk format (this enum isn't despite being in xfs_format.h) only
has space for the unwritten bit anyway.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
On some architectures do_div does the pointer compare
trick to make sure that we've sent it an unsigned 64-bit
number. (Why unsigned? I don't know.)
Fix up the few places that squawk about this; in
xfs_bmap_wants_extents() we just used a bare int64_t so change
that to unsigned.
In xfs_adjust_extent_unmap_boundaries() all we wanted was the
mod, and we have an xfs-specific function to handle that w/o
side effects, which includes proper casting for do_div.
In xfs_daddr_to_ag[b]no, we were using the wrong type anyway;
XFS_BB_TO_FSBT returns a block in the filesystem, so use
xfs_rfsblock_t not xfs_daddr_t, and gain the unsignedness
from that type as a bonus.
Signed-off-by: Eric Sandeen <sandeen@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Now that reflink operations don't set the firstblock value we don't
need the workarounds for non-NULL firstblock values without a prior
allocation.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
The main thing that xfs_bmap_remap_alloc does is fixing the AGFL, similar
to what we do in the space allocator. But the reflink code doesn't touch
the allocation btree unlike the normal space allocator, so we couldn't
care less about the state of the AGFL.
So remove xfs_bmap_remap_alloc and just handle the di_nblocks update in
the caller.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Add a new helper to be used for reflink extent list additions instead of
funneling them through xfs_bmapi_write and overloading the firstblock
member in struct xfs_bmalloca and struct xfs_alloc_args.
With some small changes to xfs_bmap_remap_alloc this also means we do
not need a xfs_bmalloca structure for this case at all.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
For the reflink case we'd much rather pass the required arguments than
faking up a struct xfs_bmalloca.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
We never do COW operations for the attr fork, so don't pretend we handle
them.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
bno should be a xfs_fsblock_t, which is 64-bit wides instead of a
xfs_aglock_t, which truncates the value to 32 bits.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
ndquots is a 32-bit value, and we don't care
about the remainder; there is no reason to use do_div
here, it seems to be the result of a decade+ historical
accident.
Worse, the do_div implementation in userspace breaks
when fed a 32-bit dividend, so we commented it out there
in any case.
Change to simple division, and then we can change
userspace to match, and mandate a 64-bit dividend in
the do_div() in userspace as well.
Signed-off-by: Eric Sandeen <sandeen@redhat.com>
Introduce a new ioctl that uses the reverse mapping btree to return
information about the physical layout of the filesystem.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Add _query_range and _query_all functions to the realtime bitmap
allocator. These two functions are similar in usage to the btree
functions with the same name and will be used for getfsmap and scrub.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Create a helper function that will query all records in a btree.
This will be used by the online repair functions to examine every
record in a btree to rebuild a second btree.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Implement a query_range function for the bnobt and cntbt. This will
be used for getfsmap fallback if there is no rmapbt and by the online
scrub and repair code.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Plumb in the pieces (init_high_key, diff_two_keys) necessary to call
query_range on the free space btrees. Remove the debugging asserts
so that we can make queries starting from block 0.
While we're at it, merge the redundant "if (btnum ==" hunks.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
"xfs_iread: validation failed for inode 96 failed"
One "failed" seems like enough.
Signed-off-by: Eric Sandeen <sandeen@redhat.com>
Reviewed-by: Alex Elder <elder@linaro.org>
Reviewed-by: Bill O'Donnell <billodo@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Opencoding the trivial checks makes it much easier to read (and grep..).
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
This checks for all the non-normal extent types, including handling both
encodings of delayed allocations.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
The inline directory verifiers should be called on the inode fork data,
which means after iformat_local on the read side, and prior to
ifork_flush on the write side. This makes the fork verifier more
consistent with the way buffer verifiers work -- i.e. they will operate
on the memory buffer that the code will be reading and writing directly.
Furthermore, revise the verifier function to return -EFSCORRUPTED so
that we don't flood the logs with corruption messages and assert
notices. This has been a particular problem with xfs/348, which
triggers the XFS_WANT_CORRUPTED_RETURN assertions, which halts the
kernel when CONFIG_XFS_DEBUG=y. Disk corruption isn't supposed to do
that, at least not in a verifier.
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
The inline directory verifiers should be called on the inode fork data,
which means after iformat_local on the read side, and prior to
ifork_flush on the write side. This makes the fork verifier more
consistent with the way buffer verifiers work -- i.e. they will operate
on the memory buffer that the code will be reading and writing directly.
Furthermore, revise the verifier function to return -EFSCORRUPTED so
that we don't flood the logs with corruption messages and assert
notices. This has been a particular problem with xfs/348, which
triggers the XFS_WANT_CORRUPTED_RETURN assertions, which halts the
kernel when CONFIG_XFS_DEBUG=y. Disk corruption isn't supposed to do
that, at least not in a verifier.
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
---
v2: get the inode d_ops the proper way
v3: describe the bug that this patch fixes; no code changes
When we're reading or writing the data fork of an inline directory,
check the contents to make sure we're not overflowing buffers or eating
garbage data. xfs/348 corrupts an inline symlink into an inline
directory, triggering a buffer overflow bug.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
---
v2: add more checks consistent with _dir2_sf_check and make the verifier
usable from anywhere.
When a reflink operation causes the bmap code to allocate a btree block
we're currently doing single-AG allocations due to having ->firstblock
set and then try any higher AG due a little reflink quirk we've put in
when adding the reflink code. But given that we do not have a minleft
reservation of any kind in this AG we can still not have any space in
the same or higher AG even if the file system has enough free space.
To fix this use a XFS_ALLOCTYPE_FIRST_AG allocation in this fall back
path instead.
[And yes, we need to redo this properly instead of piling hacks over
hacks. I'm working on that, but it's not going to be a small series.
In the meantime this fixes the customer reported issue]
Also add a warning for failing allocations to make it easier to debug.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Commit fa7f138 ("xfs: clear delalloc and cache on buffered write
failure") fixed one regression in the iomap error handling code and
exposed another. The fundamental problem is that if a buffered write
is a rewrite of preexisting delalloc blocks and the write fails, the
failure handling code can punch out preexisting blocks with valid
file data.
This was reproduced directly by sub-block writes in the LTP
kernel/syscalls/write/write03 test. A first 100 byte write allocates
a single block in a file. A subsequent 100 byte write fails and
punches out the block, including the data successfully written by
the previous write.
To address this problem, update the ->iomap_begin() handler to
distinguish newly allocated delalloc blocks from preexisting
delalloc blocks via the IOMAP_F_NEW flag. Use this flag in the
->iomap_end() handler to decide when a failed or short write should
punch out delalloc blocks.
This introduces the subtle requirement that ->iomap_begin() should
never combine newly allocated delalloc blocks with existing blocks
in the resulting iomap descriptor. This can occur when a new
delalloc reservation merges with a neighboring extent that is part
of the current write, for example. Therefore, drop the
post-allocation extent lookup from xfs_bmapi_reserve_delalloc() and
just return the record inserted into the fork. This ensures only new
blocks are returned and thus that preexisting delalloc blocks are
always handled as "found" blocks and not punched out on a failed
rewrite.
Reported-by: Xiong Zhou <xzhou@redhat.com>
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
XFS_ALLOCTYPE_ANY_AG was only used for the RT allocator and is unused
now, and XFS_ALLOCTYPE_START_AG has been unused for a while.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
In various places we currently assert that xfs_bmap_btalloc allocates
from the same as the firstblock value passed in, unless it's either
NULLAGNO or the dop_low flag is set. But the reflink code does not
fully follow this convention as it passes in firstblock purely as
a hint for the allocator without actually having previous allocations
in the transaction, and without having a minleft check on the current
AG, leading to the assert firing on a very full and heavily used
file system. As even the reflink code only allocates from equal or
higher AGs for now we can simply the check to always allow for equal
or higher AGs.
Note that we need to eventually split the two meanings of the firstblock
value. At that point we can also allow the reflink code to allocate
from any AG instead of limiting it in any way.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
On a ppc64 system, executing generic/256 test with 32k block size gives the following call trace,
XFS: Assertion failed: args->maxlen > 0, file: /root/repos/linux/fs/xfs/libxfs/xfs_alloc.c, line: 2026
kernel BUG at /root/repos/linux/fs/xfs/xfs_message.c:113!
Oops: Exception in kernel mode, sig: 5 [#1]
SMP NR_CPUS=2048
DEBUG_PAGEALLOC
NUMA
pSeries
Modules linked in:
CPU: 2 PID: 19361 Comm: mkdir Not tainted 4.10.0-rc5 #58
task: c000000102606d80 task.stack: c0000001026b8000
NIP: c0000000004ef798 LR: c0000000004ef798 CTR: c00000000082b290
REGS: c0000001026bb090 TRAP: 0700 Not tainted (4.10.0-rc5)
MSR: 8000000000029032 <SF,EE,ME,IR,DR,RI>
CR: 28004428 XER: 00000000
CFAR: c0000000004ef180 SOFTE: 1
GPR00: c0000000004ef798 c0000001026bb310 c000000001157300 ffffffffffffffea
GPR04: 000000000000000a c0000001026bb130 0000000000000000 ffffffffffffffc0
GPR08: 00000000000000d1 0000000000000021 00000000ffffffd1 c000000000dd4990
GPR12: 0000000022004444 c00000000fe00800 0000000020000000 0000000000000000
GPR16: 0000000000000000 0000000043a606fc 0000000043a76c08 0000000043a1b3d0
GPR20: 000001002a35cd60 c0000001026bbb80 0000000000000000 0000000000000001
GPR24: 0000000000000240 0000000000000004 c00000062dc55000 0000000000000000
GPR28: 0000000000000004 c00000062ecd9200 0000000000000000 c0000001026bb6c0
NIP [c0000000004ef798] .assfail+0x28/0x30
LR [c0000000004ef798] .assfail+0x28/0x30
Call Trace:
[c0000001026bb310] [c0000000004ef798] .assfail+0x28/0x30 (unreliable)
[c0000001026bb380] [c000000000455d74] .xfs_alloc_space_available+0x194/0x1b0
[c0000001026bb410] [c00000000045b914] .xfs_alloc_fix_freelist+0x144/0x480
[c0000001026bb580] [c00000000045c368] .xfs_alloc_vextent+0x698/0xa90
[c0000001026bb650] [c0000000004a6200] .xfs_ialloc_ag_alloc+0x170/0x820
[c0000001026bb7c0] [c0000000004a9098] .xfs_dialloc+0x158/0x320
[c0000001026bb8a0] [c0000000004e628c] .xfs_ialloc+0x7c/0x610
[c0000001026bb990] [c0000000004e8138] .xfs_dir_ialloc+0xa8/0x2f0
[c0000001026bbaa0] [c0000000004e8814] .xfs_create+0x494/0x790
[c0000001026bbbf0] [c0000000004e5ebc] .xfs_generic_create+0x2bc/0x410
[c0000001026bbce0] [c0000000002b4a34] .vfs_mkdir+0x154/0x230
[c0000001026bbd70] [c0000000002bc444] .SyS_mkdirat+0x94/0x120
[c0000001026bbe30] [c00000000000b760] system_call+0x38/0xfc
Instruction dump:
4e800020 60000000 7c0802a6 7c862378 3c82ffca 7ca72b78 38841c18 7c651b78
38600000 f8010010 f821ff91 4bfff94d <0fe00000> 60000000 7c0802a6 7c892378
When block size is larger than inode cluster size, the call to
XFS_B_TO_FSBT(mp, mp->m_inode_cluster_size) returns 0. Also, mkfs.xfs
would have set xfs_sb->sb_inoalignmt to 0. This causes
xfs_ialloc_cluster_alignment() to return 0. Due to this
args.minalignslop (in xfs_ialloc_ag_alloc()) gets the unsigned
equivalent of -1 assigned to it. This later causes alloc_len in
xfs_alloc_space_available() to have a value of 0. In such a scenario
when args.total is also 0, the assert statement "ASSERT(args->maxlen >
0);" fails.
This commit fixes the bug by replacing the call to XFS_B_TO_FSBT() in
xfs_ialloc_cluster_alignment() with a call to xfs_icluster_size_fsb().
Suggested-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Chandan Rajendra <chandan@linux.vnet.ibm.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Certain workoads that punch holes into speculative preallocation can
cause delalloc indirect reservation splits when the delalloc extent is
split in two. If further splits occur, an already short-handed extent
can be split into two in a manner that leaves zero indirect blocks for
one of the two new extents. This occurs because the shortage is large
enough that the xfs_bmap_split_indlen() algorithm completely drains the
requested indlen of one of the extents before it honors the existing
reservation.
This ultimately results in a warning from xfs_bmap_del_extent(). This
has been observed during file copies of large, sparse files using 'cp
--sparse=always.'
To avoid this problem, update xfs_bmap_split_indlen() to explicitly
apply the reservation shortage fairly between both extents. This smooths
out the overall indlen shortage and defers the situation where we end up
with a delalloc extent with zero indlen reservation to extreme
circumstances.
Reported-by: Patrick Dung <mpatdung@gmail.com>
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
When a delalloc extent is created, it can be merged with pre-existing,
contiguous, delalloc extents. When this occurs,
xfs_bmap_add_extent_hole_delay() merges the extents along with the
associated indirect block reservations. The expectation here is that the
combined worst case indlen reservation is always less than or equal to
the indlen reservation for the individual extents.
This is not always the case, however, as existing extents can less than
the expected indlen reservation if the extent was previously split due
to a hole punch. If a new extent merges with such an extent, the total
indlen requirement may be larger than the sum of the indlen reservations
held by both extents.
xfs_bmap_add_extent_hole_delay() assumes that the worst case indlen
reservation is always available and assigns it to the merged extent
without consideration for the indlen held by the pre-existing extent. As
a result, the subsequent xfs_mod_fdblocks() call can attempt an
unintentional allocation rather than a free (indicated by an ASSERT()
failure). Further, if the allocation happens to fail in this context,
the failure goes unhandled and creates a filesystem wide block
accounting inconsistency.
Fix xfs_bmap_add_extent_hole_delay() to function as designed. Cap the
indlen reservation assigned to the merged extent to the sum of the
indlen reservations held by each of the individual extents.
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Currently we force the log and simply try again if we hit a busy extent,
but especially with online discard enabled it might take a while after
the log force for the busy extents to disappear, and we might have
already completed our second pass.
So instead we add a new waitqueue and a generation counter to the pag
structure so that we can do wakeups once we've removed busy extents,
and we replace the single retry with an unconditional one - after
all we hold the AGF buffer lock, so no other allocations or frees
can be racing with us in this AG.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
When we allocate COW fork blocks for direct I/O writes we currently first
create a delayed allocation, and then convert it to a real allocation
once we've got the delayed one.
As there is no good reason for that this patch instead makes use call
xfs_bmapi_write from the COW allocation path. The only interesting bits
are a few tweaks the low-level allocator to allow for this, most notably
the need to remove the call to xfs_bmap_extsize_align for the cowextsize
in xfs_bmap_btalloc - for the existing convert case it's a no-op, but
for the direct allocation case it would blow up our block reservation
way beyond what we reserved for the transaction.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
In the data fork, we only allow extents to perform the following state
transitions:
delay -> real <-> unwritten
There's no way to move directly from a delalloc reservation to an
/unwritten/ allocated extent. However, for the CoW fork we want to be
able to do the following to each extent:
delalloc -> unwritten -> written -> remapped to data fork
This will help us to avoid a race in the speculative CoW preallocation
code between a first thread that is allocating a CoW extent and a second
thread that is remapping part of a file after a write. In order to do
this, however, we need two things: first, we have to be able to
transition from da to unwritten, and second the function that converts
between real and unwritten has to be made aware of the cow fork. Do
both of those things.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Perform basic sanity checking of the directory free block header
fields so that we avoid hanging the system on invalid data.
(Granted that just means that now we shutdown on directory write,
but that seems better than hanging...)
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
We can't handle a bmbt that's taller than BTREE_MAXLEVELS, and there's
no such thing as a zero-level bmbt (for that we have extents format),
so if we see this, send back an error code.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Don't let anybody load an obviously bad btree pointer. Since the values
come from disk, we must return an error, not just ASSERT.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Eric Sandeen <sandeen@redhat.com>
When we open a directory, we try to readahead block 0 of the directory
on the assumption that we're going to need it soon. If the bmbt is
corrupt, the directory will never be usable and the readahead fails
immediately, so we might as well prevent the directory from being opened
at all. This prevents a subsequent read or modify operation from
hitting it and taking the fs offline.
NOTE: We're only checking for early failures in the block mapping, not
the readahead directory block itself.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Eric Sandeen <sandeen@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
We use di_format and if_flags to decide whether we're grabbing the ilock
in btree mode (btree extents not loaded) or shared mode (anything else),
but the state of those fields can be changed by other threads that are
also trying to load the btree extents -- IFEXTENTS gets set before the
_bmap_read_extents call and cleared if it fails.
We don't actually need to have IFEXTENTS set until after the bmbt
records are successfully loaded and validated, which will fix the race
between multiple threads trying to read the same directory. The next
patch strengthens directory bmbt validation by refusing to open the
directory if reading the bmbt to start directory readahead fails.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
After scratching my head looking for "xfs_busy_extent" I realized
it's not used; it's xfs_extent_busy, and the declaration for the
other name is bogus. Remove that and a few others as well.
(struct xfs_log_callback is used, but the 2nd declaration is
unnecessary).
Signed-off-by: Eric Sandeen <sandeen@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Now that xfs_btree_init_block_int is able to determine crc
status from the passed-in mp, we can determine the proper
magic as well if we are given a btree number, rather than
an explicit magic value.
Change xfs_btree_init_block[_int] callers to pass in the
btree number, and let xfs_btree_init_block_int use the
xfs_magics array via the xfs_btree_magic macro to determine
which magic value is needed. This makes all of the
if (crc) / else stanzas identical, and the if/else can be
removed, leading to a single, common init_block call.
Signed-off-by: Eric Sandeen <sandeen@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Right now the xfs_btree_magic() define takes only a cursor;
change this to take crc and btnum args to make it more generically
useful, and move to a function.
This will allow xfs_btree_init_block_int callers which don't
have a cursor to make use of the xfs_magics array, which will
happen in the next patch.
Signed-off-by: Eric Sandeen <sandeen@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
xfs_btree_init_block_int() can determine whether crcs are
in effect without the passed-in XFS_BTREE_CRC_BLOCKS flag;
the mp argument allows us to determine this from the
superblock. Remove the flag from callers, and use
xfs_sb_version_hascrc(&mp->m_sb) internally instead.
This removes one difference between the if & else cases
in the callers.
Signed-off-by: Eric Sandeen <sandeen@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
With COW files they are the hotpath, just like for files with the
extent size hint attribute. We really shouldn't micro-manage anything
but failure cases with unlikely.
Additionally Arnd Bergmann recently reported that one of these two
unlikely annotations causes link failures together with an upcoming
kernel instrumentation patch, so let's get rid of it ASAP.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reported-by: Arnd Bergmann <arnd@arndb.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
xfs_attr_[get|remove]() have unlocked attribute fork checks to optimize
away a lock cycle in cases where the fork does not exist or is otherwise
empty. This check is not safe, however, because an attribute fork short
form to extent format conversion includes a transient state that causes
the xfs_inode_hasattr() check to fail. Specifically,
xfs_attr_shortform_to_leaf() creates an empty extent format attribute
fork and then adds the existing shortform attributes to it.
This means that lookup of an existing xattr can spuriously return
-ENOATTR when racing against a setxattr that causes the associated
format conversion. This was originally reproduced by an untar on a
particularly configured glusterfs volume, but can also be reproduced on
demand with properly crafted xattr requests.
The format conversion occurs under the exclusive ilock. xfs_attr_get()
and xfs_attr_remove() already have the proper locking and checks further
down in the functions to handle this situation correctly. Drop the
unlocked checks to avoid the spurious failure and rely on the existing
logic.
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Currently we try to rely on the global reserved block pool for block
allocations for the free inode btree, but I have customer reports
(fairly complex workload, need to find an easier reproducer) where that
is not enough as the AG where we free an inode that requires a new
finobt block is entirely full. This causes us to cancel a dirty
transaction and thus a file system shutdown.
I think the right way to guard against this is to treat the finot the same
way as the refcount btree and have a per-AG reservations for the possible
worst case size of it, and the patch below implements that.
Note that this could increase mount times with large finobt trees. In
an ideal world we would have added a field for the number of finobt
fields to the AGI, similar to what we did for the refcount blocks.
We should do add it next time we rev the AGI or AGF format by adding
new fields.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Try to reserve the blocks first and only then update the fields in
or hanging off the mount structure. This way we can call __xfs_ag_resv_init
again after a previous failure.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
sb_dirblklog is added to sb_blocklog to compute the directory block size
in bytes. Therefore, we must compare the sum of both those values
against XFS_MAX_BLOCKSIZE_LOG, not just dirblklog.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Eric Sandeen <sandeen@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Due to the way how xfs_iomap_write_allocate tries to convert the whole
found extents from delalloc to real space we can run into a race
condition with multiple threads doing writes to this same extent.
For the non-COW case that is harmless as the only thing that can happen
is that we call xfs_bmapi_write on an extent that has already been
converted to a real allocation. For COW writes where we move the extent
from the COW to the data fork after I/O completion the race is, however,
not quite as harmless. In the worst case we are now calling
xfs_bmapi_write on a region that contains hole in the COW work, which
will trip up an assert in debug builds or lead to file system corruption
in non-debug builds. This seems to be reproducible with workloads of
small O_DSYNC write, although so far I've not managed to come up with
a with an isolated reproducer.
The fix for the issue is relatively simple: tell xfs_bmapi_write
that we are only asked to convert delayed allocations and skip holes
in that case.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
A harmless warning just got introduced:
fs/xfs/libxfs/xfs_dir2.h:40:8: error: type qualifiers ignored on function return type [-Werror=ignored-qualifiers]
Removing the 'const' modifier avoids the warning and has no
other effect.
Fixes: 1fc4d33fed ("xfs: replace xfs_mode_to_ftype table with switch statement")
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Check for invalid file type in xfs_dinode_verify()
and fail to load the inode structure from disk.
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Amir Goldstein <amir73il@gmail.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
The size of the xfs_mode_to_ftype[] conversion table
was too small to handle an invalid value of mode=S_IFMT.
Instead of fixing the table size, replace the conversion table
with a conversion helper that uses a switch statement.
Suggested-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Amir Goldstein <amir73il@gmail.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
xfs_dir2.h dereferences some data types in inline functions
and fails to include those type definitions, e.g.:
xfs_dir2_data_aoff_t, struct xfs_da_geometry.
Signed-off-by: Amir Goldstein <amir73il@gmail.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
This changes fixes an assertion hit when fuzzing on-disk
i_mode values.
The easy case to fix is when changing an empty file
i_mode to S_IFDIR. In this case, xfs_dinode_verify()
detects an illegal zero size for directory and fails
to load the inode structure from disk.
For the case of non empty file whose i_mode is changed
to S_IFDIR, the ASSERT() statement in xfs_dir2_isblock()
is replaced with return -EFSCORRUPTED, to avoid interacting
with corrupted jusk also when XFS_DEBUG is disabled.
Suggested-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Amir Goldstein <amir73il@gmail.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
->total is a bit of an odd parameter passed down to the low-level
allocator all the way from the high-level callers. It's supposed to
contain the maximum number of blocks to be allocated for the whole
transaction [1].
But in xfs_iomap_write_allocate we only convert existing delayed
allocations and thus only have a minimal block reservation for the
current transaction, so xfs_alloc_space_available can't use it for
the allocation decisions. Use the maximum of args->total and the
calculated block requirement to make a decision. We probably should
get rid of args->total eventually and instead apply ->minleft more
broadly, but that will require some extensive changes all over.
[1] which creates lots of confusion as most callers don't decrement it
once doing a first allocation. But that's for a separate series.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
We must decide in xfs_alloc_fix_freelist if we can perform an
allocation from a given AG is possible or not based on the available
space, and should not fail the allocation past that point on a
healthy file system.
But currently we have two additional places that second-guess
xfs_alloc_fix_freelist: xfs_alloc_ag_vextent tries to adjust the
maxlen parameter to remove the reservation before doing the
allocation (but ignores the various minium freespace requirements),
and xfs_alloc_fix_minleft tries to fix up the allocated length
after we've found an extent, but ignores the reservations and also
doesn't take the AGFL into account (and thus fails allocations
for not matching minlen in some cases).
Remove all these later fixups and just correct the maxlen argument
inside xfs_alloc_fix_freelist once we have the AGF buffer locked.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
We can't just set minleft to 0 when we're low on space - that's exactly
what we need minleft for: to protect space in the AG for btree block
allocations when we are low on free space.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Setting aside 4 blocks globally for bmbt splits isn't all that useful,
as different threads can allocate space in parallel. Bump it to 4
blocks per AG to allow each thread that is currently doing an
allocation to dip into it separately. Without that we may no have
enough reserved blocks if there are enough parallel transactions
in an almost out space file system that all run into bmap btree
splits.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
We need to use the actual AG length when making per-AG reservations,
since we could otherwise end up reserving more blocks out of the last
AG than there are actual blocks.
Complained-about-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Use NOFS for allocating btree cursors, since they can be called
under the ilock.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
When we create a new attribute, we first create a shortform
attribute, and try to fit the new attribute into it.
If that fails, we copy the (empty) attribute into a leaf attribute,
and do the copy again. Thus there can be a transient state where
we have an empty leaf attribute.
If we encounter this during log replay, the verifier will fail.
So add a test to ignore this part of the leaf attr verification
during log replay.
Thanks as usual to dchinner for spotting the problem.
Signed-off-by: Eric Sandeen <sandeen@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Nick Piggin reported that the CRC overhead in an fsync heavy
workload was higher than expected on a Power8 machine. Part of this
was to do with the fact that the power8 CRC implementation is not
efficient for CRC lengths of less than 512 bytes, and so the way we
split the CRCs over the CRC field means a lot of the CRCs are
reduced to being less than than optimal size.
To optimise this, change the CRC update mechanism to zero the CRC
field first, and then compute the CRC in one pass over the buffer
and write the result back into the buffer. We can do this safely
because anything writing a CRC has exclusive access to the buffer
the CRC is being calculated over.
We leave the CRC verify code the same - it still splits the CRC
calculation - because we do not want read-only operations modifying
the underlying buffer. This is because read-only operations may not
have an exclusive access to the buffer guaranteed, and so temporary
modifications could leak out to to other processes accessing the
buffer concurrently.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Embedding a switch statement in every btree stats inc/add adds a lot
of code overhead to the core btree infrastructure paths. Stats are
supposed to be small and lightweight, but the btree stats have
become big and bloated as we've added more btrees. It needs fixing
because the reflink code will just add more overhead again.
Convert the v2 btree stats to arrays instead of independent
variables, and instead use the type to index the specific btree
array via an enum. This allows us to use array based indexing
to update the stats, rather than having to derefence variables
specific to the btree type.
If we then wrap the xfsstats structure in a union and place uint32_t
array beside it, and calculate the correct btree stats array base
array index when creating a btree cursor, we can easily access
entries in the stats structure without having to switch names based
on the btree type.
We then replace with the switch statement with a simple set of stats
wrapper macros, resulting in a significant simplification of the
btree stats code, and:
text data bss dec hex filename
48905 144 8 49057 bfa1 fs/xfs/libxfs/xfs_btree.o.old
36793 144 8 36945 9051 fs/xfs/libxfs/xfs_btree.o
it reduces the core btree infrastructure code size by close to 25%!
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dave Chinner <david@fromorbit.com>
The on-disk field di_size is used to set i_size, which is a signed
integer of loff_t. If the high bit of di_size is set, we'll end up with
a negative i_size, which will cause all sorts of problems. Since the
VFS won't let us create a file with such length, we should catch them
here in the verifier too.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
We shouldn't assert if somehow we end up trying to add an attr fork to
an inode that apparently already has attr extents because this is an
indication of on-disk corruption. Instead, return an error code to
userspace.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
In xfs_dir3_data_read, we can encounter the situation where err == 0 and
*bpp == NULL if the given bno offset happens to be a hole; this leads to
a crash if we try to set the buffer type after the _da_read_buf call.
Holes can happen due to corrupt or malicious entries in the bmbt data,
so be a little more careful when we're handling buffers.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
When reading into memory all extents of a btree-format inode fork,
complain if the number of extents we find is not the same as the number
of extents reported in the inode core. This is needed to stop an IO
action from accessing the garbage areas of the in-core fork.
[dchinner: removed redundant assert]
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
When we're reading a btree block, make sure that what we retrieved
matches the owner and level; and has a plausible number of records.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
There is no such thing as a zero-level AG btree since even a single-node
zero-records btree has one level. Btree cursor constructors read
cur_nlevels straight from disk and then access things like
cur_bufs[cur_nlevels - 1] which is /really/ bad if cur_nlevels is zero!
Therefore, strengthen the verifiers to prevent this possibility.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
There are a handful of xattr functions which now return
nothing but zero. They can be made void, chased through calling
functions, and error handling etc can be removed.
Signed-off-by: Eric Sandeen <sandeen@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dave Chinner <david@fromorbit.com>
By inspection, xfs_bmap_trace_exlist isn't handling cow forks,
and will trace the data fork instead.
Fix this by setting state appropriately if whichfork
== XFS_COW_FORK.
()___()
< @ @ >
| |
{o_o}
(|)
Signed-off-by: Eric Sandeen <sandeen@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dave Chinner <david@fromorbit.com>
When xfs_bmap_trace_exlist called trace_xfs_extlist,
it sent in the "whichfork" var instead of the bmap "state"
as expected (even though state was already set up for this
purpose).
As a result, the xfs_bmap_class in tracing code used
"whichfork" not state in xfs_iext_state_to_fork(), and got
the wrong ifork pointer. It all goes downhill from
there, including an ASSERT when ifp_bytes is empty
by the time it reaches xfs_iext_get_ext():
XFS: Assertion failed: idx < ifp->if_bytes / sizeof(xfs_bmbt_rec_t)
Signed-off-by: Eric Sandeen <sandeen@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dave Chinner <david@fromorbit.com>
We've missed properly setting the buffer type for
an AGI transaction in 3 spots now, so just move it
into xfs_read_agi() and set it if we are in a transaction
to avoid the problem in the future.
This is similar to how it is done in i.e. the dir3
and attr3 read functions.
Signed-off-by: Eric Sandeen <sandeen@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Speculative preallocation is currently processed entirely by the callers
of xfs_bmapi_reserve_delalloc(). The caller determines how much
preallocation to include, adjusts the extent length and passes down the
resulting request.
While this works fine for post-eof speculative preallocation, it is not
as reliable for COW fork preallocation. COW fork preallocation is
implemented via the cowextszhint, which aligns the start offset as well
as the length of the extent. Further, it is difficult for the caller to
accurately identify when preallocation occurs because the returned
extent could have been merged with neighboring extents in the fork.
To simplify this situation and facilitate further COW fork preallocation
enhancements, update xfs_bmapi_reserve_delalloc() to take a separate
preallocation parameter to incorporate into the allocation request. The
preallocation blocks value is tacked onto the end of the request and
adjusted to accommodate neighboring extents and extent size limits.
Since xfs_bmapi_reserve_delalloc() now knows precisely how much
preallocation was included in the allocation, it can also tag the inodes
appropriately to support preallocation reclaim.
Note that xfs_bmapi_reserve_delalloc() callers are not yet updated to
use the preallocation mechanism. This patch should not change behavior
outside of correctly tagging reflink inodes when start offset
preallocation occurs (which the caller does not handle correctly).
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Declare the structure xfs_nameops as const as it is only stored in the
m_dirnameops field of a xfs_mount structure. This field is of type
const struct xfs_nameops *, so xfs_nameops structures having this
property can be declared as const.
Done using Coccinelle:
@r1 disable optional_qualifier @
identifier i;
position p;
@@
static struct xfs_nameops i@p = {...};
@ok1@
identifier r1.i;
position p;
struct xfs_mount mp;
@@
mp.m_dirnameops=&i@p
@bad@
position p!={r1.p,ok1.p};
identifier r1.i;
@@
i@p
@depends on !bad disable optional_qualifier@
identifier r1.i;
@@
static
+const
struct xfs_nameops i={...};
@depends on !bad disable optional_qualifier@
identifier r1.i;
@@
+const
struct xfs_nameops i;
File size before:
text data bss dec hex filename
5302 85 0 5387 150b fs/xfs/libxfs/xfs_dir2.o
File size after:
text data bss dec hex filename
5318 69 0 5387 150b fs/xfs/libxfs/xfs_dir2.o
Signed-off-by: Bhumika Goyal <bhumirks@gmail.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
When we're estimating the amount of space it's going to take to satisfy
a delalloc reservation, we need to include the space that we might need
to grow the rmapbt. This helps us to avoid running out of space later
when _iomap_write_allocate needs more space than we reserved. Eryu Guan
observed this happening on generic/224 when sunit/swidth were set.
Reported-by: Eryu Guan <eguan@redhat.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
We only ever set a field to this constant for an impossible to reach
error case in xfs_bmap_search_extents. That functions has been removed,
so we can remove the constant as well.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Now that all users are gone.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
We can easily lookup the previous extent for the cases where we need it,
which saves the callers from looking it up for us later in the series.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Rewrite the function using xfs_iext_lookup_extent and xfs_iext_get_extent,
and massage the flow into something easily understandable.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
xfs_iext_lookup_extent looks up a single extent at the passed in offset,
and returns the extent covering the area, or the one behind it in case
of a hole, as well as the index of the returned extent in arguments,
as well as a simple bool as return value that is set to false if no
extent could be found because the offset is behind EOF. It is a simpler
replacement for xfs_bmap_search_extent that leaves looking up the rarely
needed previous extent to the caller and has a nicer calling convention.
xfs_iext_get_extent is a helper for iterating over the extent list,
it takes an extent index as input, and returns the extent at that index
in it's expanded form in an argument if it exists. The actual return
value is a bool whether the index is valid or not.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Check the minimum block size on v5 filesystems.
[dchinner: cleaned up XFS_MIN_CRC_BLOCKSIZE check]
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
The open-coded pattern:
ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t)
is all over the xfs code; provide a new helper
xfs_iext_count(ifp) to count the number of inline extents
in an inode fork.
[dchinner: pick up several missed conversions]
Signed-off-by: Eric Sandeen <sandeen@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Check the return value of xfs_trans_reserve_quota_nblks for errors.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Move the declaration of _dir_ino_validate out of the private
dir2 header file into the public one, since xfsprogs did that
for the benefit of xfs_repair.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Source xfsprogs commit: ee3754254e8c186c99b6cdd4d59f741759d04acb
Kernel commit 5ef828c4 ("xfs: avoid false quotacheck after unclean
shutdown") made xfs_sb_from_disk() also call xfs_sb_quota_from_disk
by default.
However, when this was merged to libxfs, existing separate
calls to libxfs_sb_quota_from_disk remained, and calling it
twice in a row on a V4 superblock leads to issues, because:
if (sbp->sb_qflags & XFS_PQUOTA_ACCT) {
...
sbp->sb_pquotino = sbp->sb_gquotino;
sbp->sb_gquotino = NULLFSINO;
and after the second call, we have set both pquotino and gquotino
to NULLFSINO.
Fix this by making it safe to call twice, and also remove the extra
calls to libxfs_sb_quota_from_disk.
This is only spotted when running xfstests with "-m crc=0" because
the sb_from_disk change came about after V5 became default, and
the above behavior only exists on a V4 superblock.
Reported-by: Eryu Guan <eguan@redhat.com>
Signed-off-by: Eric Sandeen <sandeen@redhat.com>
Reviewed-by: Carlos Maiolino <cmaiolino@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Refactor the implementations of xfs_dir2_data_freescan into a
routine that takes the raw directory block parameters and
a second function that figures out the raw parameters from the
directory inode. This enables us to use the exact same code
for both userspace and the kernel, since repair knows exactly
which directory block geometry parameters it needs.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Change the xfs_attr_shortform_bytesfit declaration to have
struct xfs_inode to avoid tripping up the libxfs-diff scanner.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Eric Sandeen <sandeen@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Fix some whitespace problems that trip up my libxfs-diff script.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Eric Sandeen <sandeen@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
The userspace version of _dinode_verify takes a raw inode number
instead of an inode itself. Since neither version actually needs
the inode, port the changes to the kernel. This will also reduce
the libxfs diff noise.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Since xfsprogs dropped ushort in favor of unsigned short, do that
here too.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
If the deferred ops transaction roll fails, we need to abort the intent
items if we haven't already logged a done item for it, regardless of
whether or not the deferred ops has had a transaction committed. Dave
found this while running generic/388.
Move the tracepoint to make it easier to track object lifetimes.
Reported-by: Dave Chinner <david@fromorbit.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Since no one uses it anymore.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Split out two helpers for deleting delayed or real extents from the COW fork.
This allows to call them directly from xfs_reflink_cow_end_io once that
function is refactored to iterate the extent tree. It will also allow
to reuse the delalloc deletion from xfs_bunmapi in the future.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
This helpers allows to trim an extent to a subset of it's original range
while making sure the block numbers in it remain valid,
In the future xfs_trim_extent and xfs_bmapi_trim_map should probably be
merged in some form.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
[hch: split from a previous patch from Darrick, moved around and added
support for "raw" delayed extents"]
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
xfs_repair was not detecting that version 3 inodes are invalid for
for non-CRC filesystems. The result is specific inode corruptions go
undetected and hence aren't repaired if only the version number is
out of range.
The core of the problem is that the XFS_DINODE_GOOD_VERSION() macro
doesn't know that valid inode versions are dependent on a superblock
version number. Fix this in libxfs, and propagate the new function
out into the rest of xfsprogs to fix the issue.
[Darrick: port to kernel from xfsprogs]
Reported-by: Leslie Rhorer <lrhorer@mygrande.net>
Signed-off-by: Roger Willcocks <roger@filmlight.ltd.uk>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
The function xfs_calc_dquots_per_chunk takes a parameter in units
of basic blocks. The kernel seems to get the units wrong, but
userspace got 'fixed' by commenting out the unnecessary conversion.
Fix both.
cc: <stable@vger.kernel.org>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Eric Sandeen <sandeen@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
The commit:
f65306ea xfs: map an inode's offset to an exact physical block
added a pointless error0: target; remove it.
Addresses-Coverity-Id: 1373865
Signed-off-by: Eric Sandeen <sandeen@redhat.com>
Reviewed-by: Bill O'Donnell <billodo@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
sparse reported that several variables and a function were not
forward-declared anywhere and therefore should be 'static'.
Found with sparse by running 'make C=2 CF=-D__CHECK_ENDIAN__ fs/xfs/'
Signed-off-by: Eric Biggers <ebiggers@google.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Remove redundant ifp = ifp statement, it does nothing. Found with
static analysis by CoverityScan.
Signed-off-by: Colin Ian King <colin.king@canonical.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
The error handling in xfs_refcount_recover_cow_leftovers is confused
and can potentially leak memory, so rework it to release resources
correctly on error.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reported-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Implement swapext for filesystems that have reverse mapping. Back in
the reflink patches, we augmented the bmap code with a 'REMAP' flag
that updates only the bmbt and doesn't touch the allocator and
implemented log redo items for those two operations. Now we can
rewrite extent swapping as a (looong) series of remap operations.
This is far less efficient than the fork swapping method implemented
in the past, so we only switch this on for rmap.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Add the reflink feature flag to the set of recognized feature flags.
This enables users to write to reflink filesystems.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Create an error injection point that enables us to simulate being
critically low on per-AG block reservations. This should enable us to
simulate this specific ENOSPC condition so that we can test falling back
to a regular file copy.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Since we don't have a strategy for handling both DAX and reflink,
for now we'll just prohibit both being set at the same time.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
We don't support sharing blocks on the realtime device. Flag inodes
with the reflink or cowextsize flags set when the reflink feature is
disabled.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Provide a function to convert an unwritten extent to a real one and
vice versa when shared extents are possible.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
When it's possible for reverse mappings to overlap (data fork extents
of files on reflink filesystems), use the interval query function to
find the left neighbor of an extent we're trying to add; and be
careful to use the lookup functions to update the neighbors and/or
add new extents.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Wire up some rmap log redo item type codes to map, unmap, or convert
shared data block extents. The actual log item recovery comes in a
later patch.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Increase the log reservations to handle the increased rolling that
happens at the end of copy-on-write operations.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Prior to the introduction of reflink, allocating a block and mapping
it into a file was performed in a single transaction with a single
block reservation, and the allocator was supposed to find enough
blocks to allocate the extent and any BMBT blocks that might be
necessary (unless we're low on space).
However, due to the way copy on write works, allocation and mapping
have been split into two transactions, which means that we must be
able to handle the case where we allocate an extent for CoW but that
AG runs out of free space before the blocks can be mapped into a file,
and the mapping requires a new BMBT block. When this happens, look in
one of the other AGs for a BMBT block instead of taking the FS down.
The same applies to the functions that convert a data fork to extents
and later btree format.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
To gracefully handle the situation where a CoW operation turns a
single refcount extent into a lot of tiny ones and then run out of
space when a tree split has to happen, use the per-AG reserved block
pool to pre-allocate all the space we'll ever need for a maximal
btree. For a 4K block size, this only costs an overhead of 0.3% of
available disk space.
When reflink is enabled, we have an unfortunate problem with rmap --
since we can share a block billions of times, this means that the
reverse mapping btree can expand basically infinitely. When an AG is
so full that there are no free blocks with which to expand the rmapbt,
the filesystem will shut down hard.
This is rather annoying to the user, so use the AG reservation code to
reserve a "reasonable" amount of space for rmap. We'll prevent
reflinks and CoW operations if we think we're getting close to
exhausting an AG's free space rather than shutting down, but this
permanent reservation should be enough for "most" users. Hopefully.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
[hch@lst.de: ensure that we invalidate the freed btree buffer]
Signed-off-by: Christoph Hellwig <hch@lst.de>
Create a per-inode extent size allocator hint for copy-on-write. This
hint is separate from the existing extent size hint so that CoW can
take advantage of the fragmentation-reducing properties of extent size
hints without disabling delalloc for regular writes.
The extent size hint that's fed to the allocator during a copy on
write operation is the greater of the cowextsize and regular extsize
hint.
During reflink, if we're sharing the entire source file to the entire
destination file and the destination file doesn't already have a
cowextsize hint, propagate the source file's cowextsize hint to the
destination file.
Furthermore, zero the bulkstat buffer prior to setting the fields
so that we don't copy kernel memory contents into userspace.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Teach xfs_getbmapx how to report shared extents and CoW fork contents
accurately in the bmap output by querying the refcount btree
appropriately.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Due to the way the CoW algorithm in XFS works, there's an interval
during which blocks allocated to handle a CoW can be lost -- if the FS
goes down after the blocks are allocated but before the block
remapping takes place. This is exacerbated by the cowextsz hint --
allocated reservations can sit around for a while, waiting to get
used.
Since the refcount btree doesn't normally store records with refcount
of 1, we can use it to record these in-progress extents. In-progress
blocks cannot be shared because they're not user-visible, so there
shouldn't be any conflicts with other programs. This is a better
solution than holding EFIs during writeback because (a) EFIs can't be
relogged currently, (b) even if they could, EFIs are bound by
available log space, which puts an unnecessary upper bound on how much
CoW we can have in flight, and (c) we already have a mechanism to
track blocks.
At mount time, read the refcount records and free anything we find
with a refcount of 1 because those were in-progress when the FS went
down.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Create a helper method to remove extents from the CoW fork without
any of the side effects (rmapbt/bmbt updates) of the regular extent
deletion routine. We'll eventually use this to clear out the CoW fork
during ioend processing.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Modify xfs_bmap_add_extent_delay_real() so that we can convert delayed
allocation extents in the CoW fork to real allocations, and wire this
up all the way back to xfs_iomap_write_allocate(). In a subsequent
patch, we'll modify the writepage handler to call this.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Allow the creation of delayed allocation extents in the CoW fork. In
a subsequent patch we'll wire up iomap_begin to actually do this via
reflink helper functions.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Introduce a new in-core fork for storing copy-on-write delalloc
reservations and allocated extents that are in the process of being
written out.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Only non-rt files can be reflinked, so check that when we load an
inode. Also, don't leak the attr fork if there's a failure.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Report the reflink feature in the XFS geometry so that xfs_info and
friends know the filesystem has this feature.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>