For kvec and bvec: feeds segments to given callback as long as it
returns 0. For iovec and pipe: fails.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Pull iov_iter hardening from Al Viro:
"This is the iov_iter/uaccess/hardening pile.
For one thing, it trims the inline part of copy_to_user/copy_from_user
to the minimum that *does* need to be inlined - object size checks,
basically. For another, it sanitizes the checks for iov_iter
primitives. There are 4 groups of checks: access_ok(), might_fault(),
object size and KASAN.
- access_ok() had been verified by whoever had set the iov_iter up.
However, that has happened in a function far away, so proving that
there's no path to actual copying bypassing those checks is hard
and proving that iov_iter has not been buggered in the meanwhile is
also not pleasant. So we want those redone in actual
copyin/copyout.
- might_fault() is better off consolidated - we know whether it needs
to be checked as soon as we enter iov_iter primitive and observe
the iov_iter flavour. No need to wait until the copyin/copyout. The
call chains are short enough to make sure we won't miss anything -
in fact, it's more robust that way, since there are cases where we
do e.g. forced fault-in before getting to copyin/copyout. It's not
quite what we need to check (in particular, combination of
iovec-backed and set_fs(KERNEL_DS) is almost certainly a bug, not a
cause to skip checks), but that's for later series. For now let's
keep might_fault().
- KASAN checks belong in copyin/copyout - at the same level where
other iov_iter flavours would've hit them in memcpy().
- object size checks should apply to *all* iov_iter flavours, not
just iovec-backed ones.
There are two groups of primitives - one gets the kernel object
described as pointer + size (copy_to_iter(), etc.) while another gets
it as page + offset + size (copy_page_to_iter(), etc.)
For the first group the checks are best done where we actually have a
chance to find the object size. In other words, those belong in inline
wrappers in uio.h, before calling into iov_iter.c. Same kind as we
have for inlined part of copy_to_user().
For the second group there is no object to look at - offset in page is
just a number, it bears no type information. So we do them in the
common helper called by iov_iter.c primitives of that kind. All it
currently does is checking that we are not trying to access outside of
the compound page; eventually we might want to add some sanity checks
on the page involved.
So the things we need in copyin/copyout part of iov_iter.c do not
quite match anything in uaccess.h (we want no zeroing, we *do* want
access_ok() and KASAN and we want no might_fault() or object size
checks done on that level). OTOH, these needs are simple enough to
provide a couple of helpers (static in iov_iter.c) doing just what we
need..."
* 'uaccess-work.iov_iter' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs:
iov_iter: saner checks on copyin/copyout
iov_iter: sanity checks for copy to/from page primitives
iov_iter/hardening: move object size checks to inlined part
copy_{to,from}_user(): consolidate object size checks
copy_{from,to}_user(): move kasan checks and might_fault() out-of-line
There we actually have useful information about object sizes.
Note: this patch has them done for all iov_iter flavours.
Right now we do them twice in iovec case, but that'll change
very shortly.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
The pmem driver has a need to transfer data with a persistent memory
destination and be able to rely on the fact that the destination writes are not
cached. It is sufficient for the writes to be flushed to a cpu-store-buffer
(non-temporal / "movnt" in x86 terms), as we expect userspace to call fsync()
to ensure data-writes have reached a power-fail-safe zone in the platform. The
fsync() triggers a REQ_FUA or REQ_FLUSH to the pmem driver which will turn
around and fence previous writes with an "sfence".
Implement a __copy_from_user_inatomic_flushcache, memcpy_page_flushcache, and
memcpy_flushcache, that guarantee that the destination buffer is not dirty in
the cpu cache on completion. The new copy_from_iter_flushcache and sub-routines
will be used to replace the "pmem api" (include/linux/pmem.h +
arch/x86/include/asm/pmem.h). The availability of copy_from_iter_flushcache()
and memcpy_flushcache() are gated by the CONFIG_ARCH_HAS_UACCESS_FLUSHCACHE
config symbol, and fallback to copy_from_iter_nocache() and plain memcpy()
otherwise.
This is meant to satisfy the concern from Linus that if a driver wants to do
something beyond the normal nocache semantics it should be something private to
that driver [1], and Al's concern that anything uaccess related belongs with
the rest of the uaccess code [2].
The first consumer of this interface is a new 'copy_from_iter' dax operation so
that pmem can inject cache maintenance operations without imposing this
overhead on other dax-capable drivers.
[1]: https://lists.01.org/pipermail/linux-nvdimm/2017-January/008364.html
[2]: https://lists.01.org/pipermail/linux-nvdimm/2017-April/009942.html
Cc: <x86@kernel.org>
Cc: Jan Kara <jack@suse.cz>
Cc: Jeff Moyer <jmoyer@redhat.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Toshi Kani <toshi.kani@hpe.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Matthew Wilcox <mawilcox@microsoft.com>
Reviewed-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
opposite to iov_iter_advance(); the caller is responsible for never
using it to move back past the initial position.
Cc: stable@vger.kernel.org
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Pull vfs updates from Al Viro:
- more ->d_init() stuff (work.dcache)
- pathname resolution cleanups (work.namei)
- a few missing iov_iter primitives - copy_from_iter_full() and
friends. Either copy the full requested amount, advance the iterator
and return true, or fail, return false and do _not_ advance the
iterator. Quite a few open-coded callers converted (and became more
readable and harder to fuck up that way) (work.iov_iter)
- several assorted patches, the big one being logfs removal
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs:
logfs: remove from tree
vfs: fix put_compat_statfs64() does not handle errors
namei: fold should_follow_link() with the step into not-followed link
namei: pass both WALK_GET and WALK_MORE to should_follow_link()
namei: invert WALK_PUT logics
namei: shift interpretation of LOOKUP_FOLLOW inside should_follow_link()
namei: saner calling conventions for mountpoint_last()
namei.c: get rid of user_path_parent()
switch getfrag callbacks to ..._full() primitives
make skb_add_data,{_nocache}() and skb_copy_to_page_nocache() advance only on success
[iov_iter] new primitives - copy_from_iter_full() and friends
don't open-code file_inode()
ceph: switch to use of ->d_init()
ceph: unify dentry_operations instances
lustre: switch to use of ->d_init()
copy_from_iter_full(), copy_from_iter_full_nocache() and
csum_and_copy_from_iter_full() - counterparts of copy_from_iter()
et.al., advancing iterator only in case of successful full copy
and returning whether it had been successful or not.
Convert some obvious users. *NOTE* - do not blindly assume that
something is a good candidate for those unless you are sure that
not advancing iov_iter in failure case is the right thing in
this case. Anything that does short read/short write kind of
stuff (or is in a loop, etc.) is unlikely to be a good one.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Move READ and WRITE to kernel.h and don't define them in terms of block
layer ops; they are our generic data direction indicators these days
and have no more resemblance with the block layer ops.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jens Axboe <axboe@fb.com>
Pull splice fixups from Al Viro:
"A couple of fixups for interaction of pipe-backed iov_iter with
O_DIRECT reads + constification of a couple of primitives in uio.h
missed by previous rounds.
Kudos to davej - his fuzzing has caught those bugs"
* 'work.splice_read' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs:
[btrfs] fix check_direct_IO() for non-iovec iterators
constify iov_iter_count() and iter_is_iovec()
fix ITER_PIPE interaction with direct_IO
Pull misc vfs updates from Al Viro:
"Assorted misc bits and pieces.
There are several single-topic branches left after this (rename2
series from Miklos, current_time series from Deepa Dinamani, xattr
series from Andreas, uaccess stuff from from me) and I'd prefer to
send those separately"
* 'work.misc' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs: (39 commits)
proc: switch auxv to use of __mem_open()
hpfs: support FIEMAP
cifs: get rid of unused arguments of CIFSSMBWrite()
posix_acl: uapi header split
posix_acl: xattr representation cleanups
fs/aio.c: eliminate redundant loads in put_aio_ring_file
fs/internal.h: add const to ns_dentry_operations declaration
compat: remove compat_printk()
fs/buffer.c: make __getblk_slow() static
proc: unsigned file descriptors
fs/file: more unsigned file descriptors
fs: compat: remove redundant check of nr_segs
cachefiles: Fix attempt to read i_blocks after deleting file [ver #2]
cifs: don't use memcpy() to copy struct iov_iter
get rid of separate multipage fault-in primitives
fs: Avoid premature clearing of capabilities
fs: Give dentry to inode_change_ok() instead of inode
fuse: Propagate dentry down to inode_change_ok()
ceph: Propagate dentry down to inode_change_ok()
xfs: Propagate dentry down to inode_change_ok()
...
iov_iter variant for passing data into pipe. copy_to_iter()
copies data into page(s) it has allocated and stuffs them into
the pipe; copy_page_to_iter() stuffs there a reference to the
page given to it. Both will try to coalesce if possible.
iov_iter_zero() is similar to copy_to_iter(); iov_iter_get_pages()
and friends will do as copy_to_iter() would have and return the
pages where the data would've been copied. iov_iter_advance()
will truncate everything past the spot it has advanced to.
New primitive: iov_iter_pipe(), used for initializing those.
pipe should be locked all along.
Running out of space acts as fault would for iovec-backed ones;
in other words, giving it to ->read_iter() may result in short
read if the pipe overflows, or -EFAULT if it happens with nothing
copied there.
In other words, ->read_iter() on those acts pretty much like
->splice_read(). Moreover, all generic_file_splice_read() users,
as well as many other ->splice_read() instances can be switched
to that scheme - that'll happen in the next commit.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
* the only remaining callers of "short" fault-ins are just as happy with generic
variants (both in lib/iov_iter.c); switch them to multipage variants, kill the
"short" ones
* rename the multipage variants to now available plain ones.
* get rid of compat macro defining iov_iter_fault_in_multipage_readable by
expanding it in its only user.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
... by turning it into what used to be multipages counterpart
Cc: stable@vger.kernel.org
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
simillar to iov_iter_fault_in_readable() but differs in that it is
not limited to faulting in the first iovec and instead faults in
"bytes" bytes iterating over the iovecs as necessary.
Also, instead of only faulting in the first and last page of the
range, all pages are faulted in.
This function is needed by NTFS when it does multi page file
writes.
Signed-off-by: Anton Altaparmakov <anton@tuxera.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
iovec-backed iov_iter instances are assumed to satisfy several properties:
* no more than UIO_MAXIOV elements in iovec array
* total size of all ranges is no more than MAX_RW_COUNT
* all ranges pass access_ok().
The problem is, invariants of data structures should be established in the
primitives creating those data structures, not in the code using those
primitives. And iov_iter_init() violates that principle. For a while we
managed to get away with that, but once the use of iov_iter started to
spread, it didn't take long for shit to hit the fan - missed check in
sys_sendto() had introduced a roothole.
We _do_ have primitives for importing and validating iovecs (both native and
compat ones) and those primitives are almost always followed by shoving the
resulting iovec into iov_iter. Life would be considerably simpler (and safer)
if we combined those primitives with initializing iov_iter.
That gives us two new primitives - import_iovec() and compat_import_iovec().
Calling conventions:
iovec = iov_array;
err = import_iovec(direction, uvec, nr_segs,
ARRAY_SIZE(iov_array), &iovec,
&iter);
imports user vector into kernel space (into iov_array if it fits, allocated
if it doesn't fit or if iovec was NULL), validates it and sets iter up to
refer to it. On success 0 is returned and allocated kernel copy (or NULL
if the array had fit into caller-supplied one) is returned via iovec.
On failure all allocations are undone and -E... is returned. If the total
size of ranges exceeds MAX_RW_COUNT, the excess is silently truncated.
compat_import_iovec() expects uvec to be a pointer to user array of compat_iovec;
otherwise it's identical to import_iovec().
Finally, import_single_range() sets iov_iter backed by single-element iovec
covering a user-supplied range -
err = import_single_range(direction, address, size, iovec, &iter);
does validation and sets iter up. Again, size in excess of MAX_RW_COUNT gets
silently truncated.
Next commits will be switching the things up to use of those and reducing
the amount of iov_iter_init() instances.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Copy iter and kmemdup the underlying array for the copy. Returns
a pointer to result of kmemdup() to be kfree()'d later.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Pull iov_iter updates from Al Viro:
"More iov_iter work - missing counterpart of iov_iter_init() for
bvec-backed ones and vfs_read_iter()/vfs_write_iter() - wrappers for
sync calls of ->read_iter()/->write_iter()"
* 'iov_iter' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs:
fs: add vfs_iter_{read,write} helpers
new helper: iov_iter_bvec()
it has just verified that it asks no more than the length of the
first segment of iovec.
And with that the last user of stuff in lib/iovec.c is gone.
RIP.
Cc: Michael S. Tsirkin <mst@redhat.com>
Cc: Nicholas A. Bellinger <nab@linux-iscsi.org>
Cc: kvm@vger.kernel.org
Cc: virtualization@lists.linux-foundation.org
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
For DAX, we want to be able to copy between iovecs and kernel addresses
that don't necessarily have a struct page. This is a fairly simple
rearrangement for bvec iters to kmap the pages outside and pass them in,
but for user iovecs it gets more complicated because we might try various
different ways to kmap the memory. Duplicating the existing logic works
out best in this case.
We need to be able to write zeroes to an iovec for reads from unwritten
ranges in a file. This is performed by the new iov_iter_zero() function,
again patterned after the existing code that handles iovec iterators.
[AV: and export the buggers...]
Signed-off-by: Matthew Wilcox <willy@linux.intel.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
The third argument of fuse_get_user_pages() "nbytesp" refers to the number of
bytes a caller asked to pack into fuse request. This value may be lesser
than capacity of fuse request or iov_iter. So fuse_get_user_pages() must
ensure that *nbytesp won't grow.
Now, when helper iov_iter_get_pages() performs all hard work of extracting
pages from iov_iter, it can be done by passing properly calculated
"maxsize" to the helper.
The other caller of iov_iter_get_pages() (dio_refill_pages()) doesn't need
this capability, so pass LONG_MAX as the maxsize argument here.
Fixes: c9c37e2e63 ("fuse: switch to iov_iter_get_pages()")
Reported-by: Werner Baumann <werner.baumann@onlinehome.de>
Tested-by: Maxim Patlasov <mpatlasov@parallels.com>
Signed-off-by: Miklos Szeredi <mszeredi@suse.cz>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Pull SCSI target fixes from Nicholas Bellinger:
"Mostly minor fixes this time around. The highlights include:
- iscsi-target CHAP authentication fixes to enforce explicit key
values (Tejas Vaykole + rahul.rane)
- fix a long-standing OOPs in target-core when a alua configfs
attribute is accessed after port symlink has been removed.
(Sebastian Herbszt)
- fix a v3.10.y iscsi-target regression causing the login reject
status class/detail to be ignored (Christoph Vu-Brugier)
- fix a v3.10.y iscsi-target regression to avoid rejecting an
existing ITT during Data-Out when data-direction is wrong (Santosh
Kulkarni + Arshad Hussain)
- fix a iscsi-target related shutdown deadlock on UP kernels (Mikulas
Patocka)
- fix a v3.16-rc1 build issue with vhost-scsi + !CONFIG_NET (MST)"
* git://git.kernel.org/pub/scm/linux/kernel/git/nab/target-pending:
iscsi-target: fix iscsit_del_np deadlock on unload
iovec: move memcpy_from/toiovecend to lib/iovec.c
iscsi-target: Avoid rejecting incorrect ITT for Data-Out
tcm_loop: Fix memory leak in tcm_loop_submission_work error path
iscsi-target: Explicily clear login response PDU in exception path
target: Fix left-over se_lun->lun_sep pointer OOPs
iscsi-target; Enforce 1024 byte maximum for CHAP_C key value
iscsi-target: Convert chap_server_compute_md5 to use kstrtoul
ERROR: "memcpy_fromiovecend" [drivers/vhost/vhost_scsi.ko] undefined!
commit 9f977ef7b6
vhost-scsi: Include prot_bytes into expected data transfer length
in target-pending makes drivers/vhost/scsi.c call memcpy_fromiovecend().
This function is not available when CONFIG_NET is not enabled.
socket.h already includes uio.h, so no callers need updating.
Reported-by: Randy Dunlap <rdunlap@infradead.org>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Cc: "David S. Miller" <davem@davemloft.net>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Nicholas Bellinger <nab@linux-iscsi.org>
blkdev_read_iter() wants to cap the iov_iter by the amount of data
remaining to the end of device. That's what iov_iter_truncate() is for
(trim iter->count if it's above the given limit). So far, so good, but
the argument of iov_iter_truncate() is size_t, so on 32bit boxen (in
case of a large device) we end up with that upper limit truncated down
to 32 bits *before* comparing it with iter->count.
Easily fixed by making iov_iter_truncate() take 64bit argument - it does
the right thing after such change (we only reach the assignment in there
when the current value of iter->count is greater than the limit, i.e.
for anything that would get truncated we don't reach the assignment at
all) and that argument is not the new value of iter->count - it's an
upper limit for such.
The overhead of passing u64 is not an issue - the thing is inlined, so
callers passing size_t won't pay any penalty.
Reported-and-tested-by: Theodore Tso <tytso@mit.edu>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Tested-by: Alan Cox <gnomes@lxorguk.ukuu.org.uk>
Tested-by: Bruno Wolff III <bruno@wolff.to>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
New variant of iov_iter - ITER_BVEC in iter->type, backed with
bio_vec array instead of iovec one. Primitives taught to deal
with such beasts, __swap_write() switched to using that kind
of iov_iter.
Note that bio_vec is just a <page, offset, length> triple - there's
nothing block-specific about it. I've left the definition where it
was, but took it from under ifdef CONFIG_BLOCK.
Next target: ->splice_write()...
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
* switch to ->read_iter/->write_iter
* keep a pointer to iov_iter instead of iov/nr_segs
* do not modify iovecs; use iov_iter_truncate()/iov_iter_advance() and
a new primitive - iov_iter_reexpand() (expand previously truncated
iterator) istead.
* (racy) check for lustre VMAs intersecting with iovecs kept for now as
for_each_iov() loop.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Now It Can Be Done(tm) - we don't need to do iov_shorten() in
generic_file_direct_write() anymore, now that all ->direct_IO()
instances are converted to proper iov_iter methods and honour
iter->count and iter->iov_offset properly.
Get rid of count/ocount arguments of generic_file_direct_write(),
while we are at it.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
same as iov_iter_get_pages(), except that pages array is allocated
(kmalloc if possible, vmalloc if that fails) and left for caller to
free. Lustre and NFS ->direct_IO() switched to it.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
counts the pages covered by iov_iter, up to given limit.
do_block_direct_io() and fuse_iter_npages() switched to
it.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
iov_iter_get_pages(iter, pages, maxsize, &start) grabs references pinning
the pages of up to maxsize of (contiguous) data from iter. Returns the
amount of memory grabbed or -error. In case of success, the requested
area begins at offset start in pages[0] and runs through pages[1], etc.
Less than requested amount might be returned - either because the contiguous
area in the beginning of iterator is smaller than requested, or because
the kernel failed to pin that many pages.
direct-io.c switched to using iov_iter_get_pages()
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
For now, just use the same thing we pass to ->direct_IO() - it's all
iovec-based at the moment. Pass it explicitly to iov_iter_init() and
account for kvec vs. iovec in there, by the same kludge NFS ->direct_IO()
uses.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
returns the value aligned as badly as the worst remaining segment
in iov_iter is. Use instead of open-coded equivalents.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>