Commit Graph

11 Commits

Author SHA1 Message Date
David Wagner
01dc9cc314 UBI: clarify the volume notification types' doc
I realized the new descriptions of ADDED and REMOVED could also be
misleading: they can also be triggered after using a userland util
(ubi{mk,rm}vol).

Artem: amend the commentaries

Signed-off-by David Wagner <david.wagner@free-electrons.com>
Signed-off-by: Artem Bityutskiy <dedekind1@gmail.com>
2011-06-23 17:40:07 +03:00
Artem Bityutskiy
feddbb34eb UBI: fix minor stylistic issues
Fix checkpatch.pl errors and warnings:

* space before tab
* line over 80 characters
* include linux/ioctl.h instead of asm/ioctl.h

Signed-off-by: Artem Bityutskiy <Artem.Bityutskiy@nokia.com>
2011-04-14 11:34:41 +03:00
Artem Bityutskiy
f43ec882b8 UBI: provide LEB offset information
Provide the LEB offset information in the UBI device information data
structure. This piece of information is required by UBIFS to find out
what are the LEB offsets which are aligned to the max. write size.

If LEB offset not aligned to max. write size, then UBIFS has to take
this into account to write more optimally.

Signed-off-by: Artem Bityutskiy <Artem.Bityutskiy@nokia.com>
2011-03-08 10:12:48 +02:00
Artem Bityutskiy
30b542ef45 UBI: incorporate maximum write size
Incorporate MTD write buffer size into UBI device information
because UBIFS needs this field. UBI does not use it ATM, just
provides to upper layers in 'struct ubi_device_info'.

Signed-off-by: Artem Bityutskiy <Artem.Bityutskiy@nokia.com>
2011-03-08 10:12:48 +02:00
Corentin Chary
b571028418 UBI: Add ubi_open_volume_path
Add an 'ubi_open_volume_path(path, mode)' function which works like
'open_bdev_exclusive(path, mode, ...)' where path is the special file
representing the UBI volume, typically /dev/ubi0_0.

This is needed to teach UBIFS being able to mount UBI character devices.

[Comments and the patch were amended a bit by Artem]

Signed-off-by: Corentin Chary <corentincj@iksaif.net>
Signed-off-by: Artem Bityutskiy <Artem.Bityutskiy@nokia.com>
2009-11-24 08:18:54 +02:00
Dmitry Pervushin
0e0ee1cc33 UBI: add notification API
UBI volume notifications are intended to create the API to get clients
notified about volume creation/deletion, renaming and re-sizing. A
client can subscribe to these notifications using 'ubi_volume_register()'
and cancel the subscription using 'ubi_volume_unregister()'. When UBI
volumes change, a blocking notifier is called. Clients also can request
"added" events on all volumes that existed before client subscribed
to the notifications.

If we use notifications instead of calling functions like 'ubi_gluebi_xxx()',
we can make the MTD emulation layer to be more flexible: build it as a
separate module and load/unload it on demand.

[Artem: many cleanups, rework locking, add "updated" event, provide
 device/volume info in notifiers]

Signed-off-by: Dmitry Pervushin <dpervushin@embeddedalley.com>
Signed-off-by: Artem Bityutskiy <Artem.Bityutskiy@nokia.com>
2009-06-02 13:53:35 +03:00
Artem Bityutskiy
85c6e6e282 UBI: amend commentaries
Hch asked not to use "unit" for sub-systems, let it be so.
Also some other commentaries modifications.

Signed-off-by: Artem Bityutskiy <Artem.Bityutskiy@nokia.com>
2008-07-24 13:32:56 +03:00
Artem Bityutskiy
a5bf619041 UBI: add ubi_sync() interface
To flush MTD device caches.

Signed-off-by: Artem Bityutskiy <Artem.Bityutskiy@nokia.com>
2008-07-24 13:32:56 +03:00
Artem Bityutskiy
866136827b UBI: introduce atomic LEB change ioctl
We have to be able to change individual LEBs for utilities like
ubifsck, ubifstune. For example, ubifsck has to be able to fix
errors on the media, ubifstune has to be able to change the
the superblock, hence this ioctl.

Signed-off-by: Artem Bityutskiy <Artem.Bityutskiy@nokia.com>
2008-01-25 16:41:25 +02:00
Artem Bityutskiy
393852ecfe UBI: add ubi_leb_map interface
The idea of this interface belongs to Adrian Hunter. The
interface is extremely useful when one has to have a guarantee
that an LEB will contain all 0xFFs even in case of an unclean
reboot. UBI does have an 'ubi_leb_erase()' call which may do
this, but it is stupid and ineffecient, because it flushes whole
queue. I should be re-worked to just be a pair of unmap,
map calls.

The user of the interfaci is UBIFS at the moment.

Signed-off-by: Artem Bityutskiy <Artem.Bityutskiy@nokia.com>
2007-12-26 19:15:14 +02:00
Artem B. Bityutskiy
801c135ce7 UBI: Unsorted Block Images
UBI (Latin: "where?") manages multiple logical volumes on a single
flash device, specifically supporting NAND flash devices. UBI provides
a flexible partitioning concept which still allows for wear-levelling
across the whole flash device.

In a sense, UBI may be compared to the Logical Volume Manager
(LVM). Whereas LVM maps logical sector numbers to physical HDD sector
numbers, UBI maps logical eraseblocks to physical eraseblocks.

More information may be found at
http://www.linux-mtd.infradead.org/doc/ubi.html

Partitioning/Re-partitioning

  An UBI volume occupies a certain number of erase blocks. This is
  limited by a configured maximum volume size, which could also be
  viewed as the partition size. Each individual UBI volume's size can
  be changed independently of the other UBI volumes, provided that the
  sum of all volume sizes doesn't exceed a certain limit.

  UBI supports dynamic volumes and static volumes. Static volumes are
  read-only and their contents are protected by CRC check sums.

Bad eraseblocks handling

  UBI transparently handles bad eraseblocks. When a physical
  eraseblock becomes bad, it is substituted by a good physical
  eraseblock, and the user does not even notice this.

Scrubbing

  On a NAND flash bit flips can occur on any write operation,
  sometimes also on read. If bit flips persist on the device, at first
  they can still be corrected by ECC, but once they accumulate,
  correction will become impossible. Thus it is best to actively scrub
  the affected eraseblock, by first copying it to a free eraseblock
  and then erasing the original. The UBI layer performs this type of
  scrubbing under the covers, transparently to the UBI volume users.

Erase Counts

  UBI maintains an erase count header per eraseblock. This frees
  higher-level layers (like file systems) from doing this and allows
  for centralized erase count management instead. The erase counts are
  used by the wear-levelling algorithm in the UBI layer. The algorithm
  itself is exchangeable.

Booting from NAND

  For booting directly from NAND flash the hardware must at least be
  capable of fetching and executing a small portion of the NAND
  flash. Some NAND flash controllers have this kind of support. They
  usually limit the window to a few kilobytes in erase block 0. This
  "initial program loader" (IPL) must then contain sufficient logic to
  load and execute the next boot phase.

  Due to bad eraseblocks, which may be randomly scattered over the
  flash device, it is problematic to store the "secondary program
  loader" (SPL) statically. Also, due to bit-flips it may become
  corrupted over time. UBI allows to solve this problem gracefully by
  storing the SPL in a small static UBI volume.

UBI volumes vs. static partitions

  UBI volumes are still very similar to static MTD partitions:

    * both consist of eraseblocks (logical eraseblocks in case of UBI
      volumes, and physical eraseblocks in case of static partitions;
    * both support three basic operations - read, write, erase.

  But UBI volumes have the following advantages over traditional
  static MTD partitions:

    * there are no eraseblock wear-leveling constraints in case of UBI
      volumes, so the user should not care about this;
    * there are no bit-flips and bad eraseblocks in case of UBI volumes.

  So, UBI volumes may be considered as flash devices with relaxed
  restrictions.

Where can it be found?

  Documentation, kernel code and applications can be found in the MTD
  gits.

What are the applications for?

  The applications help to create binary flash images for two purposes: pfi
  files (partial flash images) for in-system update of UBI volumes, and plain
  binary images, with or without OOB data in case of NAND, for a manufacturing
  step. Furthermore some tools are/and will be created that allow flash content
  analysis after a system has crashed..

Who did UBI?

  The original ideas, where UBI is based on, were developed by Andreas
  Arnez, Frank Haverkamp and Thomas Gleixner. Josh W. Boyer and some others
  were involved too. The implementation of the kernel layer was done by Artem
  B. Bityutskiy. The user-space applications and tools were written by Oliver
  Lohmann with contributions from Frank Haverkamp, Andreas Arnez, and Artem.
  Joern Engel contributed a patch which modifies JFFS2 so that it can be run on
  a UBI volume. Thomas Gleixner did modifications to the NAND layer. Alexander
  Schmidt made some testing work as well as core functionality improvements.

Signed-off-by: Artem B. Bityutskiy <dedekind@linutronix.de>
Signed-off-by: Frank Haverkamp <haver@vnet.ibm.com>
2007-04-27 14:23:33 +03:00