Emulation of the tlbwr instruction, which writes a TLB entry to a random
index in the TLB, currently uses get_random_bytes() to generate a 4 byte
random number which we then mask to form the index. This is overkill in
a couple of ways:
- We don't need 4 bytes here since we mask the value to form a 6 bit
number anyway, so we waste /dev/random entropy generating 3 random
bytes that are unused.
- We don't need crypto-grade randomness here - the architecture spec
allows implementations to use any algorithm & merely encourages that
some pseudo-randomness be used rather than a simple counter. The
fast prandom_u32() function fits that criteria well.
So rather than using get_random_bytes() & consuming /dev/random entropy,
switch to using the faster prandom_u32_max() which provides what we need
here whilst also performing the masking/modulo for us.
Signed-off-by: Paul Burton <paul.burton@mips.com>
Reported-by: George Spelvin <lkml@sdf.org>
Cc: James Hogan <jhogan@kernel.org>
Cc: linux-mips@vger.kernel.org
When we gain MMID support we'll be storing MMIDs as atomic64_t values
and accessing them via atomic64_* functions. This necessitates that we
don't use cpu_context() as the left hand side of an assignment, ie. as a
modifiable lvalue. In preparation for this introduce a new
set_cpu_context() function & replace all assignments with cpu_context()
on their left hand side with an equivalent call to set_cpu_context().
To enforce that cpu_context() should not be used for assignments, we
rewrite it as a static inline function.
Signed-off-by: Paul Burton <paul.burton@mips.com>
Cc: linux-mips@vger.kernel.org
get_new_mmu_context() accepts a cpu argument, but implicitly assumes
that this is always equal to smp_processor_id() by operating on the
local CPU's TLB & icache.
Remove the cpu argument and have get_new_mmu_context() call
smp_processor_id() instead.
Signed-off-by: Paul Burton <paul.burton@mips.com>
Cc: linux-mips@vger.kernel.org
Move remaining definitions and declarations from include/linux/bootmem.h
into include/linux/memblock.h and remove the redundant header.
The includes were replaced with the semantic patch below and then
semi-automated removal of duplicated '#include <linux/memblock.h>
@@
@@
- #include <linux/bootmem.h>
+ #include <linux/memblock.h>
[sfr@canb.auug.org.au: dma-direct: fix up for the removal of linux/bootmem.h]
Link: http://lkml.kernel.org/r/20181002185342.133d1680@canb.auug.org.au
[sfr@canb.auug.org.au: powerpc: fix up for removal of linux/bootmem.h]
Link: http://lkml.kernel.org/r/20181005161406.73ef8727@canb.auug.org.au
[sfr@canb.auug.org.au: x86/kaslr, ACPI/NUMA: fix for linux/bootmem.h removal]
Link: http://lkml.kernel.org/r/20181008190341.5e396491@canb.auug.org.au
Link: http://lkml.kernel.org/r/1536927045-23536-30-git-send-email-rppt@linux.vnet.ibm.com
Signed-off-by: Mike Rapoport <rppt@linux.vnet.ibm.com>
Signed-off-by: Stephen Rothwell <sfr@canb.auug.org.au>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Chris Zankel <chris@zankel.net>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Greentime Hu <green.hu@gmail.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Guan Xuetao <gxt@pku.edu.cn>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: "James E.J. Bottomley" <jejb@parisc-linux.org>
Cc: Jonas Bonn <jonas@southpole.se>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Ley Foon Tan <lftan@altera.com>
Cc: Mark Salter <msalter@redhat.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Matt Turner <mattst88@gmail.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Michal Simek <monstr@monstr.eu>
Cc: Palmer Dabbelt <palmer@sifive.com>
Cc: Paul Burton <paul.burton@mips.com>
Cc: Richard Kuo <rkuo@codeaurora.org>
Cc: Richard Weinberger <richard@nod.at>
Cc: Rich Felker <dalias@libc.org>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Serge Semin <fancer.lancer@gmail.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Vineet Gupta <vgupta@synopsys.com>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Users were expected to use kvm_check_request() for testing and clearing,
but request have expanded their use since then and some users want to
only test or do a faster clear.
Make sure that requests are not directly accessed with bit operations.
Reviewed-by: Christian Borntraeger <borntraeger@de.ibm.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
Reviewed-by: Andrew Jones <drjones@redhat.com>
Reviewed-by: Cornelia Huck <cornelia.huck@de.ibm.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Properly implement emulation of the TLBR instruction for Trap & Emulate.
This instruction reads the TLB entry pointed at by the CP0_Index
register into the other TLB registers, which may have the side effect of
changing the current ASID. Therefore abstract the CP0_EntryHi and ASID
changing code into a common function in the process.
A comment indicated that Linux doesn't use TLBR, which is true during
normal use, however dumping of the TLB does use it (for example with the
relatively recent 'x' magic sysrq key), as does a wired TLB entries test
case in my KVM tests.
Signed-off-by: James Hogan <james.hogan@imgtec.com>
Acked-by: Ralf Baechle <ralf@linux-mips.org>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: "Radim Krčmář" <rkrcmar@redhat.com>
Cc: linux-mips@linux-mips.org
Cc: kvm@vger.kernel.org
Cache management is implemented separately for Cavium Octeon CPUs, so
r4k_blast_[id]cache aren't available. Instead for Octeon perform a local
icache flush using local_flush_icache_range(), and for other platforms
which don't use c-r4k.c use __flush_cache_all() / flush_icache_all().
Signed-off-by: James Hogan <james.hogan@imgtec.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: "Radim Krčmář" <rkrcmar@redhat.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: David Daney <david.daney@cavium.com>
Cc: Andreas Herrmann <andreas.herrmann@caviumnetworks.com>
Cc: linux-mips@linux-mips.org
Cc: kvm@vger.kernel.org
Transfer timer state to the VZ guest context (CP0_GTOffset & guest
CP0_Count) when entering guest mode, enabling direct guest access to it,
and transfer back to soft timer when saving guest register state.
This usually allows guest code to directly read CP0_Count (via MFC0 and
RDHWR) and read/write CP0_Compare, without trapping to the hypervisor
for it to emulate the guest timer. Writing to CP0_Count or CP0_Cause.DC
is much less common and still triggers a hypervisor GPSI exception, in
which case the timer state is transferred back to an hrtimer before
emulating the write.
We are careful to prevent small amounts of drift from building up due to
undeterministic time intervals between reading of the ktime and reading
of CP0_Count. Some drift is expected however, since the system
clocksource may use a different timer to the local CP0_Count timer used
by VZ. This is permitted to prevent guest CP0_Count from appearing to go
backwards.
Signed-off-by: James Hogan <james.hogan@imgtec.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: "Radim Krčmář" <rkrcmar@redhat.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: linux-mips@linux-mips.org
Cc: kvm@vger.kernel.org
Ifdef out the trap & emulate CACHE instruction emulation functions for
VZ. We will provide separate CACHE instruction emulation in vz.c, and we
need to avoid linker errors due to the use of T&E specific MMU helpers.
Signed-off-by: James Hogan <james.hogan@imgtec.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: "Radim Krčmář" <rkrcmar@redhat.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: linux-mips@linux-mips.org
Cc: kvm@vger.kernel.org
Update emulation of guest writes to CP0_Compare for VZ. There are two
main differences compared to trap & emulate:
- Writing to CP0_Compare in the VZ hardware guest context acks any
pending timer, clearing CP0_Cause.TI. If we don't want an ack to take
place we must carefully restore the TI bit if it was previously set.
- Even with guest timer access disabled in CP0_GuestCtl0.GT, if the
guest CP0_Count reaches the guest CP0_Compare the timer interrupt
will assert. To prevent this we must set CP0_GTOffset to move the
guest CP0_Count out of the way of the new guest CP0_Compare, either
before or after depending on whether it is a forwards or backwards
change.
Signed-off-by: James Hogan <james.hogan@imgtec.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: "Radim Krčmář" <rkrcmar@redhat.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: linux-mips@linux-mips.org
Cc: kvm@vger.kernel.org
Abstract the MIPS KVM guest CP0 register access macros into inline
functions which are generated by macros. This allows them to be
generated differently for VZ, where they will usually need to access the
hardware guest CP0 context rather than the saved values in RAM.
Accessors for each individual register are generated using these macros:
- __BUILD_KVM_*_SW() for registers which are not present in the VZ
hardware guest context, so kvm_{read,write}_c0_guest_##name() will
access the saved value in RAM regardless of whether VZ is enabled.
- __BUILD_KVM_*_HW() for registers which are present in the VZ hardware
guest context, so kvm_{read,write}_c0_guest_##name() will access the
hardware register when VZ is enabled.
These build the underlying accessors using further macros:
- __BUILD_KVM_*_SAVED() builds e.g. kvm_{read,write}_sw_gc0_##name()
functions for accessing the saved versions of the registers in RAM.
This is used for implementing the common
kvm_{read,write}_c0_guest_##name() accessors with T&E where registers
are always stored in RAM, but are also available with VZ HW registers
to allow them to be accessed while saved.
- __BUILD_KVM_*_VZ() builds e.g. kvm_{read,write}_vz_gc0_##name()
functions for accessing the VZ hardware guest context registers
directly. This is used for implementing the common
kvm_{read,write}_c0_guest_##name() accessors with VZ.
- __BUILD_KVM_*_WRAP() builds wrappers with different names, which
allows the common kvm_{read,write}_c0_guest_##name() functions to be
implemented using the VZ accessors while still having the SAVED
accessors available too.
- __BUILD_KVM_SAVE_VZ() builds functions for saving and restoring VZ
hardware guest context register state to RAM, improving conciseness
of VZ context saving and restoring.
Similar macros exist for generating modifiers (set, clear, change),
either with a normal unlocked read/modify/write, or using atomic LL/SC
sequences.
These changes change the types of 32-bit registers to u32 instead of
unsigned long, which requires some changes to printk() functions in MIPS
KVM.
Signed-off-by: James Hogan <james.hogan@imgtec.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: "Radim Krčmář" <rkrcmar@redhat.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: linux-mips@linux-mips.org
Cc: kvm@vger.kernel.org
Currently the software emulated timer is initialised to a frequency of
100MHz by kvm_mips_init_count(), but this isn't suitable for VZ where
the frequency of the guest timer matches that of the host.
Add a count_hz argument so the caller can specify the default frequency,
and move the call from kvm_arch_vcpu_create() to the implementation
specific vcpu_setup() callback, so that VZ can specify a different
frequency.
Signed-off-by: James Hogan <james.hogan@imgtec.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: "Radim Krčmář" <rkrcmar@redhat.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: linux-mips@linux-mips.org
Cc: kvm@vger.kernel.org
Implement additional MMIO emulation for MIPS64, including 64-bit
loads/stores, and 32-bit unsigned loads. These are only exposed on
64-bit VZ hosts.
Signed-off-by: James Hogan <james.hogan@imgtec.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: "Radim Krčmář" <rkrcmar@redhat.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: linux-mips@linux-mips.org
Cc: kvm@vger.kernel.org
Refactor MIPS KVM MMIO load/store emulation to reduce code duplication.
Each duplicate differed slightly anyway, and it will simplify adding
64-bit MMIO support for VZ.
kvm_mips_emulate_store() and kvm_mips_emulate_load() can now return
EMULATE_DO_MMIO (as possibly originally intended). We therefore stop
calling either of these from kvm_mips_emulate_inst(), which is now only
used by kvm_trap_emul_handle_cop_unusable() which is picky about return
values.
Signed-off-by: James Hogan <james.hogan@imgtec.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: "Radim Krčmář" <rkrcmar@redhat.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: linux-mips@linux-mips.org
Cc: kvm@vger.kernel.org
Emulate the HYPCALL instruction added in the VZ ASE and used by the MIPS
paravirtualised guest support that is already merged. The new hypcall.c
handles arguments and the return value. No actual hypercalls are yet
supported, but this still allows us to safely step over hypercalls and
set an error code in the return value for forward compatibility.
Non-zero HYPCALL codes are not handled.
We also document the hypercall ABI which asm/kvm_para.h uses.
Signed-off-by: James Hogan <james.hogan@imgtec.com>
Acked-by: Ralf Baechle <ralf@linux-mips.org>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: "Radim Krčmář" <rkrcmar@redhat.com>
Cc: Andreas Herrmann <andreas.herrmann@caviumnetworks.com>
Cc: David Daney <david.daney@cavium.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: linux-mips@linux-mips.org
Cc: kvm@vger.kernel.org
Cc: linux-doc@vger.kernel.org
The CP0_EBase register is a standard feature of MIPS32r2, so we should
always have been implementing it properly. However the register value
was ignored and wasn't exposed to userland.
Fix the emulation of exceptions and interrupts to use the value stored
in guest CP0_EBase, and fix the masks so that the top 3 bits (rather
than the standard 2) are fixed, so that it is always in the guest KSeg0
segment.
Also add CP0_EBASE to the KVM one_reg interface so it can be accessed by
userland, also allowing the CPU number field to be written (which isn't
permitted by the guest).
Signed-off-by: James Hogan <james.hogan@imgtec.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: "Radim Krčmář" <rkrcmar@redhat.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: linux-mips@linux-mips.org
Cc: kvm@vger.kernel.org
Access to various CP0 registers via the KVM register access API needs to
be implementation specific to allow restrictions to be made on changes,
for example when VZ guest registers aren't present, so move them all
into trap_emul.c in preparation for VZ.
Signed-off-by: James Hogan <james.hogan@imgtec.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: "Radim Krčmář" <rkrcmar@redhat.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: linux-mips@linux-mips.org
Cc: kvm@vger.kernel.org
Rewrite TLB modified exception handling to handle read only GPA memory
regions, instead of unconditionally passing the exception to the guest.
If the guest TLB is not the cause of the exception we call into the
normal TLB fault handling depending on the memory segment, which will
soon attempt to remap the physical page to be writable (handling dirty
page tracking or copy on write in the process).
Failing that we fall back to treating it as MMIO, due to a read only
memory region. Once the capability is enabled, this will allow read only
memory regions (such as the Malta boot flash as emulated by QEMU) to
have writes treated as MMIO, while still allowing reads to run
untrapped.
Signed-off-by: James Hogan <james.hogan@imgtec.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: "Radim Krčmář" <rkrcmar@redhat.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: linux-mips@linux-mips.org
Cc: kvm@vger.kernel.org
kvm_mips_map_page() will need to know whether the fault was due to a
read or a write in order to support dirty page tracking,
KVM_CAP_SYNC_MMU, and read only memory regions, so get that information
passed down to it via new bool write_fault arguments to various
functions.
Signed-off-by: James Hogan <james.hogan@imgtec.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: "Radim Krčmář" <rkrcmar@redhat.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: linux-mips@linux-mips.org
Cc: kvm@vger.kernel.org
Use the lockless GVA helpers to implement the reading of guest
instructions for emulation. This will allow it to handle asynchronous
TLB flushes when they are implemented.
This is a little more complicated than the other two cases (get_inst()
and dynamic translation) due to the need to emulate the appropriate
guest TLB exception when the address isn't present or isn't valid in the
guest TLB.
Since there are several protected cache ops that may need to be
performed safely, this is abstracted by kvm_mips_guest_cache_op() which
is passed a protected cache op function pointer and takes care of the
lockless operation and fault handling / retry if the op should fail,
taking advantage of the new errors which the protected cache ops can now
return. This allows the existing advance fault handling which relied on
host TLB lookups to be removed, along with the now unused
kvm_mips_host_tlb_lookup(),
Signed-off-by: James Hogan <james.hogan@imgtec.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: "Radim Krčmář" <rkrcmar@redhat.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: linux-mips@linux-mips.org
Cc: kvm@vger.kernel.org
When exiting from the guest, store the values of the CP0_BadInstr and
CP0_BadInstrP registers if they exist, which contain the encodings of
the instructions which caused the last synchronous exception.
When the instruction is needed for emulation, kvm_get_badinstr() and
kvm_get_badinstrp() are used instead of calling kvm_get_inst() directly,
to decide whether to read the saved CP0_BadInstr/CP0_BadInstrP registers
(if they exist), or read the instruction from memory (if not).
The use of these registers should be more robust than using
kvm_get_inst(), as it actually gives the instruction encoding seen by
the hardware rather than relying on user accessors after the fact, which
can be fooled by incoherent icache or a racing code modification. It
will also work with VZ, where the guest virtual memory isn't directly
accessible by the host with user accessors.
Signed-off-by: James Hogan <james.hogan@imgtec.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: "Radim Krčmář" <rkrcmar@redhat.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: linux-mips@linux-mips.org
Cc: kvm@vger.kernel.org
Currently kvm_get_inst() returns KVM_INVALID_INST in the event of a
fault reading the guest instruction. This has the rather arbitrary magic
value 0xdeadbeef. This API isn't very robust, and in fact 0xdeadbeef is
a valid MIPS64 instruction encoding, namely "ld t1,-16657(s5)".
Therefore change the kvm_get_inst() API to return 0 or -EFAULT, and to
return the instruction via a u32 *out argument. We can then drop the
KVM_INVALID_INST definition entirely.
Signed-off-by: James Hogan <james.hogan@imgtec.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: "Radim Krčmář" <rkrcmar@redhat.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: linux-mips@linux-mips.org
Cc: kvm@vger.kernel.org
MIPS KVM uses its own variation of get_new_mmu_context() which takes an
extra vcpu pointer (unused) and does exactly the same thing.
Switch to just using get_new_mmu_context() directly and drop KVM's
version of it as it doesn't really serve any purpose.
The nearby declarations of kvm_mips_alloc_new_mmu_context(),
kvm_mips_vcpu_load() and kvm_mips_vcpu_put() are also removed from
kvm_host.h, as no definitions or users exist.
Signed-off-by: James Hogan <james.hogan@imgtec.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: "Radim Krčmář" <rkrcmar@redhat.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: linux-mips@linux-mips.org
Cc: kvm@vger.kernel.org
When exceptions are injected into the MIPS KVM guest, the whole host TLB
is flushed (except any entries in the guest KSeg0 range). This is
certainly not mandated by the architecture when exceptions are taken
(userland can't directly change TLB mappings anyway), and is a pretty
heavyweight operation:
- There may be hundreds of TLB entries especially when a 512 entry FTLB
is present. These are walked and read and conditionally invalidated,
so the TLBINV feature can't be used either.
- It'll indiscriminately wipe out entries belonging to other memory
spaces. A simple ASID regeneration would be much faster to perform,
although it'd wipe out the guest KSeg0 mappings too.
My suspicion is that this was simply to plaster over the fact that
kvm_mips_host_tlb_inv() incorrectly only invalidated TLB entries in the
ASID for guest usermode, and not the ASID for guest kernelmode.
Now that the recent commit "KVM: MIPS/TLB: Flush host TLB entry in
kernel ASID" fixes kvm_mips_host_tlb_inv() to flush TLB entries in the
kernelmode ASID when the guest TLB changes, lets drop these calls and
the otherwise unused kvm_mips_flush_host_tlb().
Signed-off-by: James Hogan <james.hogan@imgtec.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: "Radim Krčmář" <rkrcmar@redhat.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: linux-mips@linux-mips.org
Cc: kvm@vger.kernel.org
Use protected_writeback_dcache_line() instead of flush_dcache_line(),
and protected_flush_icache_line() instead of flush_icache_line(), so
that CACHEE (the EVA variant) is used on EVA host kernels.
Without this, guest floating point branch delay slot emulation via a
trampoline on the user stack fails on EVA host kernels due to failure of
the icache sync, resulting in the break instruction getting skipped and
execution from the stack.
Signed-off-by: James Hogan <james.hogan@imgtec.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: "Radim Krčmář" <rkrcmar@redhat.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: linux-mips@linux-mips.org
Cc: kvm@vger.kernel.org
Now that we have GVA page tables and an optimised TLB refill handler in
place, convert the handling of page faults in TLB mapped segment from
the guest to fill a single GVA page table entry and invalidate the TLB
entry, rather than filling a TLB entry pair directly.
Also remove the now unused kvm_mips_get_{kernel,user}_asid() functions
in mmu.c and kvm_mips_host_tlb_write() in tlb.c.
Signed-off-by: James Hogan <james.hogan@imgtec.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: "Radim Krčmář" <rkrcmar@redhat.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: linux-mips@linux-mips.org
Cc: kvm@vger.kernel.org
Implement invalidation of specific pairs of GVA page table entries in
one or both of the GVA page tables. This is used when existing mappings
are replaced in the guest TLB by emulated TLBWI/TLBWR instructions. Due
to the sharing of page tables in the host kernel range, we should be
careful not to allow host pages to be invalidated.
Add a helper kvm_mips_walk_pgd() which can be used when walking of
either GPA (future patches) or GVA page tables is needed, optionally
with allocation of page tables along the way when they don't exist.
GPA page table walking will need to be protected by the kvm->mmu_lock,
so we also add a small MMU page cache in each KVM VCPU, like that found
for other architectures but smaller. This allows enough pages to be
pre-allocated to handle a single fault without holding the lock,
allowing the helper to run with the lock held without having to handle
allocation failures.
Using the same mechanism for GVA allows the same code to be used, and
allows it to use the same cache of allocated pages if the GPA walk
didn't need to allocate any new tables.
Signed-off-by: James Hogan <james.hogan@imgtec.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: "Radim Krčmář" <rkrcmar@redhat.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: linux-mips@linux-mips.org
Cc: kvm@vger.kernel.org
Implement invalidation of large ranges of virtual addresses from GVA
page tables in response to a guest ASID change (immediately for guest
kernel page table, lazily for guest user page table).
We iterate through a range of page tables invalidating entries and
freeing fully invalidated tables. To minimise overhead the exact ranges
invalidated depends on the flags argument to kvm_mips_flush_gva_pt(),
which also allows it to be used in future KVM_CAP_SYNC_MMU patches in
response to GPA changes, which unlike guest TLB mapping changes affects
guest KSeg0 mappings.
Signed-off-by: James Hogan <james.hogan@imgtec.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: "Radim Krčmář" <rkrcmar@redhat.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: linux-mips@linux-mips.org
Cc: kvm@vger.kernel.org
Refactor kvm_mips_host_tlb_inv() to also be able to invalidate any
matching TLB entry in the kernel ASID rather than assuming only the TLB
entries in the user ASID can change. Two new bool user/kernel arguments
allow the caller to indicate whether the mapping should affect each of
the ASIDs for guest user/kernel mode.
- kvm_mips_invalidate_guest_tlb() (used by TLBWI/TLBWR emulation) can
now invalidate any corresponding TLB entry in both the kernel ASID
(guest kernel may have accessed any guest mapping), and the user ASID
if the entry being replaced is in guest USeg (where guest user may
also have accessed it).
- The tlbmod fault handler (and the KSeg0 / TLB mapped / commpage fault
handlers in later patches) can now invalidate the corresponding TLB
entry in whichever ASID is currently active, since only a single page
table will have been updated anyway.
Signed-off-by: James Hogan <james.hogan@imgtec.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: "Radim Krčmář" <rkrcmar@redhat.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: linux-mips@linux-mips.org
Cc: kvm@vger.kernel.org
The kvm_vcpu_arch structure contains both mm_structs for allocating MMU
contexts (primarily the ASID) but it also copies the resulting ASIDs
into guest_{user,kernel}_asid[] arrays which are referenced from uasm
generated code.
This duplication doesn't seem to serve any purpose, and it gets in the
way of generalising the ASID handling across guest kernel/user modes, so
lets just extract the ASID straight out of the mm_struct on demand, and
in fact there are convenient cpu_context() and cpu_asid() macros for
doing so.
To reduce the verbosity of this code we do also add kern_mm and user_mm
local variables where the kernel and user mm_structs are used.
Signed-off-by: James Hogan <james.hogan@imgtec.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: "Radim Krčmář" <rkrcmar@redhat.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: linux-mips@linux-mips.org
Cc: kvm@vger.kernel.org
The advancing of the PC when completing an MMIO load is done before
re-entering the guest, i.e. before restoring the guest ASID. However if
the load is in a branch delay slot it may need to access guest code to
read the prior branch instruction. This isn't safe in TLB mapped code at
the moment, nor in the future when we'll access unmapped guest segments
using direct user accessors too, as it could read the branch from host
user memory instead.
Therefore calculate the resume PC in advance while we're still in the
right context and save it in the new vcpu->arch.io_pc (replacing the no
longer needed vcpu->arch.pending_load_cause), and restore it on MMIO
completion.
Fixes: e685c689f3 ("KVM/MIPS32: Privileged instruction/target branch emulation.")
Signed-off-by: James Hogan <james.hogan@imgtec.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: "Radim Krčmář <rkrcmar@redhat.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: linux-mips@linux-mips.org
Cc: kvm@vger.kernel.org
Cc: <stable@vger.kernel.org> # 3.10.x-
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The ERET instruction to return from exception is used for returning from
exception level (Status.EXL) and error level (Status.ERL). If both bits
are set however we should be returning from ERL first, as ERL can
interrupt EXL, for example when an NMI is taken. KVM however checks EXL
first.
Fix the order of the checks to match the pseudocode in the instruction
set manual.
Fixes: e685c689f3 ("KVM/MIPS32: Privileged instruction/target branch emulation.")
Signed-off-by: James Hogan <james.hogan@imgtec.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: "Radim Krčmář <rkrcmar@redhat.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: linux-mips@linux-mips.org
Cc: kvm@vger.kernel.org
Cc: <stable@vger.kernel.org> # 3.10.x-
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Pull MIPS updates from Ralf Baechle:
"This is the main MIPS pull request for 4.9:
MIPS core arch code:
- traps: 64bit kernels should read CP0_EBase 64bit
- traps: Convert ebase to KSEG0
- c-r4k: Drop bc_wback_inv() from icache flush
- c-r4k: Split user/kernel flush_icache_range()
- cacheflush: Use __flush_icache_user_range()
- uprobes: Flush icache via kernel address
- KVM: Use __local_flush_icache_user_range()
- c-r4k: Fix flush_icache_range() for EVA
- Fix -mabi=64 build of vdso.lds
- VDSO: Drop duplicated -I*/-E* aflags
- tracing: move insn_has_delay_slot to a shared header
- tracing: disable uprobe/kprobe on compact branch instructions
- ptrace: Fix regs_return_value for kernel context
- Squash lines for simple wrapper functions
- Move identification of VP(E) into proc.c from smp-mt.c
- Add definitions of SYNC barrierstype values
- traps: Ensure full EBase is written
- tlb-r4k: If there are wired entries, don't use TLBINVF
- Sanitise coherentio semantics
- dma-default: Don't check hw_coherentio if device is non-coherent
- Support per-device DMA coherence
- Adjust MIPS64 CAC_BASE to reflect Config.K0
- Support generating Flattened Image Trees (.itb)
- generic: Introduce generic DT-based board support
- generic: Convert SEAD-3 to a generic board
- Enable hardened usercopy
- Don't specify STACKPROTECTOR in defconfigs
Octeon:
- Delete dead code and files across the platform.
- Change to use all memory into use by default.
- Rename upper case variables in setup code to lowercase.
- Delete legacy hack for broken bootloaders.
- Leave maintaining the link state to the actual ethernet/PHY drivers.
- Add DTS for D-Link DSR-500N.
- Fix PCI interrupt routing on D-Link DSR-500N.
Pistachio:
- Remove ANDROID_TIMED_OUTPUT from defconfig
TX39xx:
- Move GPIO setup from .mem_setup() to .arch_init()
- Convert to Common Clock Framework
TX49xx:
- Move GPIO setup from .mem_setup() to .arch_init()
- Convert to Common Clock Framework
txx9wdt:
- Add missing clock (un)prepare calls for CCF
BMIPS:
- Add PW, GPIO SDHCI and NAND device node names
- Support APPENDED_DTB
- Add missing bcm97435svmb to DT_NONE
- Rename bcm96358nb4ser to bcm6358-neufbox4-sercom
- Add DT examples for BCM63268, BCM3368 and BCM6362
- Add support for BCM3368 and BCM6362
PCI
- Reduce stack frame usage
- Use struct list_head lists
- Support for CONFIG_PCI_DOMAINS_GENERIC
- Make pcibios_set_cache_line_size an initcall
- Inline pcibios_assign_all_busses
- Split pci.c into pci.c & pci-legacy.c
- Introduce CONFIG_PCI_DRIVERS_LEGACY
- Support generic drivers
CPC
- Convert bare 'unsigned' to 'unsigned int'
- Avoid lock when MIPS CM >= 3 is present
GIC:
- Delete unused file smp-gic.c
mt7620:
- Delete unnecessary assignment for the field "owner" from PCI
BCM63xx:
- Let clk_disable() return immediately if clk is NULL
pm-cps:
- Change FSB workaround to CPU blacklist
- Update comments on barrier instructions
- Use MIPS standard lightweight ordering barrier
- Use MIPS standard completion barrier
- Remove selection of sync types
- Add MIPSr6 CPU support
- Support CM3 changes to Coherence Enable Register
SMP:
- Wrap call to mips_cpc_lock_other in mips_cm_lock_other
- Introduce mechanism for freeing and allocating IPIs
cpuidle:
- cpuidle-cps: Enable use with MIPSr6 CPUs.
SEAD3:
- Rewrite to use DT and generic kernel feature.
USB:
- host: ehci-sead3: Remove SEAD-3 EHCI code
FBDEV:
- cobalt_lcdfb: Drop SEAD3 support
dt-bindings:
- Document a binding for simple ASCII LCDs
auxdisplay:
- img-ascii-lcd: driver for simple ASCII LCD displays
irqchip i8259:
- i8259: Add domain before mapping parent irq
- i8259: Allow platforms to override poll function
- i8259: Remove unused i8259A_irq_pending
Malta:
- Rewrite to use DT
of/platform:
- Probe "isa" busses by default
CM:
- Print CM error reports upon bus errors
Module:
- Migrate exception table users off module.h and onto extable.h
- Make various drivers explicitly non-modular:
- Audit and remove any unnecessary uses of module.h
mailmap:
- Canonicalize to Qais' current email address.
Documentation:
- MIPS supports HAVE_REGS_AND_STACK_ACCESS_API
Loongson1C:
- Add CPU support for Loongson1C
- Add board support
- Add defconfig
- Add RTC support for Loongson1C board
All this except one Documentation fix has sat in linux-next and has
survived Imagination's automated build test system"
* 'upstream' of git://git.linux-mips.org/pub/scm/ralf/upstream-linus: (127 commits)
Documentation: MIPS supports HAVE_REGS_AND_STACK_ACCESS_API
MIPS: ptrace: Fix regs_return_value for kernel context
MIPS: VDSO: Drop duplicated -I*/-E* aflags
MIPS: Fix -mabi=64 build of vdso.lds
MIPS: Enable hardened usercopy
MIPS: generic: Convert SEAD-3 to a generic board
MIPS: generic: Introduce generic DT-based board support
MIPS: Support generating Flattened Image Trees (.itb)
MIPS: Adjust MIPS64 CAC_BASE to reflect Config.K0
MIPS: Print CM error reports upon bus errors
MIPS: Support per-device DMA coherence
MIPS: dma-default: Don't check hw_coherentio if device is non-coherent
MIPS: Sanitise coherentio semantics
MIPS: PCI: Support generic drivers
MIPS: PCI: Introduce CONFIG_PCI_DRIVERS_LEGACY
MIPS: PCI: Split pci.c into pci.c & pci-legacy.c
MIPS: PCI: Inline pcibios_assign_all_busses
MIPS: PCI: Make pcibios_set_cache_line_size an initcall
MIPS: PCI: Support for CONFIG_PCI_DOMAINS_GENERIC
MIPS: PCI: Use struct list_head lists
...
Historically a lot of these existed because we did not have
a distinction between what was modular code and what was providing
support to modules via EXPORT_SYMBOL and friends. That changed
when we forked out support for the latter into the export.h file.
This means we should be able to reduce the usage of module.h
in code that is obj-y Makefile or bool Kconfig. In the case of
kvm where it is modular, we can extend that to also include files
that are building basic support functionality but not related
to loading or registering the final module; such files also have
no need whatsoever for module.h
The advantage in removing such instances is that module.h itself
sources about 15 other headers; adding significantly to what we feed
cpp, and it can obscure what headers we are effectively using.
Since module.h was the source for init.h (for __init) and for
export.h (for EXPORT_SYMBOL) we consider each instance for the
presence of either and replace as needed. In this case, we did
not need to add either to any files.
Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
Acked-by: James Hogan <james.hogan@imgtec.com>
Acked-by: Paolo Bonzini <pbonzini@redhat.com>
Cc: "Radim Krčmář" <rkrcmar@redhat.com>
Cc: kvm@vger.kernel.org
Cc: linux-mips@linux-mips.org
Patchwork: https://patchwork.linux-mips.org/patch/14036/
Signed-off-by: Ralf Baechle <ralf@linux-mips.org>
There exists a slightly dubious optimisation in the implementation of
the MIPS KVM EntryHi emulation which skips TLB invalidation if the
EntryHi points to an address in the guest KSeg0 region, intended to
catch guest TLB invalidations where the ASID is almost immediately
restored to the previous value.
Now that we perform lazy host ASID regeneration for guest user mode when
the guest ASID changes we should be able to drop the optimisation
without a significant impact (only the extra TLB refills for the small
amount of code while the TLB is being invalidated).
Signed-off-by: James Hogan <james.hogan@imgtec.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: "Radim Krčmář" <rkrcmar@redhat.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: linux-mips@linux-mips.org
Cc: kvm@vger.kernel.org
Invalidate host TLB mappings when the guest ASID is changed by
regenerating ASIDs, rather than flushing the entire host TLB except
entries in the guest KSeg0 range.
For the guest kernel mode ASID we regenerate on the spot when the guest
ASID is changed, as that will always take place while the guest is in
kernel mode.
However when the guest invalidates TLB entries the ASID will often by
changed temporarily as part of writing EntryHi without the guest
returning to user mode in between. We therefore regenerate the user mode
ASID lazily before entering the guest in user mode, if and only if the
guest ASID has actually changed since the last guest user mode entry.
Signed-off-by: James Hogan <james.hogan@imgtec.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: "Radim Krčmář" <rkrcmar@redhat.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: linux-mips@linux-mips.org
Cc: kvm@vger.kernel.org
When a guest TLB entry is replaced by TLBWI or TLBWR, we only invalidate
TLB entries on the local CPU. This doesn't work correctly on an SMP host
when the guest is migrated to a different physical CPU, as it could pick
up stale TLB mappings from the last time the vCPU ran on that physical
CPU.
Therefore invalidate both user and kernel host ASIDs on other CPUs,
which will cause new ASIDs to be generated when it next runs on those
CPUs.
We're careful only to do this if the TLB entry was already valid, and
only for the kernel ASID where the virtual address it mapped is outside
of the guest user address range.
Signed-off-by: James Hogan <james.hogan@imgtec.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: "Radim Krčmář" <rkrcmar@redhat.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: linux-mips@linux-mips.org
Cc: kvm@vger.kernel.org
Cc: <stable@vger.kernel.org> # 3.10.x-
Propagate errors from kvm_mips_handle_kseg0_tlb_fault() and
kvm_mips_handle_mapped_seg_tlb_fault(), usually triggering an internal
error since they normally indicate the guest accessed bad physical
memory or the commpage in an unexpected way.
Fixes: 858dd5d457 ("KVM/MIPS32: MMU/TLB operations for the Guest.")
Fixes: e685c689f3 ("KVM/MIPS32: Privileged instruction/target branch emulation.")
Signed-off-by: James Hogan <james.hogan@imgtec.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: "Radim Krčmář" <rkrcmar@redhat.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: linux-mips@linux-mips.org
Cc: kvm@vger.kernel.org
Cc: <stable@vger.kernel.org> # 3.10.x-
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
When emulating MFC0 instructions to load 32-bit values from guest COP0
registers and the RDHWR instruction to read the CC (Count) register,
sign extend the result to comply with the MIPS64 architecture. The
result must be in canonical 32-bit form or the guest may malfunction.
Signed-off-by: James Hogan <james.hogan@imgtec.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: "Radim Krčmář" <rkrcmar@redhat.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: linux-mips@linux-mips.org
Cc: kvm@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
When KVM emulates the RDHWR instruction, decode the instruction more
strictly. The rs field (bits 25:21) should be zero, as should bits 10:9.
Bits 8:6 is the register select field in MIPSr6, so we aren't strict
about those bits (no other operations should use that encoding space).
Signed-off-by: James Hogan <james.hogan@imgtec.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim KrÄmář <rkrcmar@redhat.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: linux-mips@linux-mips.org
Cc: kvm@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Recognise the new MIPSr6 CACHE instruction encoding rather than the
pre-r6 one when an r6 kernel is being built. A SPECIAL3 opcode is used
and the immediate field is reduced to 9 bits wide since MIPSr6.
Signed-off-by: James Hogan <james.hogan@imgtec.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim KrÄmář <rkrcmar@redhat.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: linux-mips@linux-mips.org
Cc: kvm@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Add support in KVM for emulation of instructions in the forbidden slot
of MIPSr6 compact branches. If we hit an exception on the forbidden
slot, then the branch must not have been taken, which makes calculation
of the resume PC trivial.
Signed-off-by: James Hogan <james.hogan@imgtec.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim KrÄmář <rkrcmar@redhat.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: linux-mips@linux-mips.org
Cc: kvm@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Allow up to 6 KVM guest KScratch registers to be enabled and accessed
via the KVM guest register API and from the guest itself (the fallback
reading and writing of commpage registers is sufficient for KScratch
registers to work as expected).
User mode can expose the registers by setting the appropriate bits of
the guest Config4.KScrExist field. KScratch registers that aren't usable
won't be writeable via the KVM Ioctl API.
Signed-off-by: James Hogan <james.hogan@imgtec.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: linux-mips@linux-mips.org
Cc: kvm@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Actually provide the VCPU number when emulating the RDHWR CPUNum
register, so that it will match the CPUNum field of CP0_EBase register,
rather than always returning 0.
Signed-off-by: James Hogan <james.hogan@imgtec.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: linux-mips@linux-mips.org
Cc: kvm@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The ULRI bit in Config3 specifies whether the UserLocal register is
implemented, but it is assumed to always be set. Now that the Config
registers can be modified by userland, allow Config3.ULRI to be cleared
and check ULRI before allowing the corresponding bit to be set in
HWREna.
In fact any HWREna bits corresponding to unimplemented RDHWR registers
should read as zero and be ignored on write, so we actually prevent
other unimplemented bits being set too.
Signed-off-by: James Hogan <james.hogan@imgtec.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: linux-mips@linux-mips.org
Cc: kvm@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
No preprocessor definitions are used in the handling of the registers
accessible with the RDHWR instruction, nor the corresponding bits in the
CP0 HWREna register.
Add definitions for both the register numbers (MIPS_HWR_*) and HWREna
bits (MIPS_HWRENA_*) in asm/mipsregs.h and make use of them in the
initialisation of HWREna and emulation of the RDHWR instruction.
Signed-off-by: James Hogan <james.hogan@imgtec.com>
Acked-by: Ralf Baechle <ralf@linux-mips.org>
Cc: David Daney <david.daney@cavium.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: linux-mips@linux-mips.org
Cc: kvm@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Convert various MIPS KVM guest instruction emulation functions to decode
instructions (and encode translations) using the union mips_instruction
and related enumerations in asm/inst.h rather than #defines and
hardcoded values.
Signed-off-by: James Hogan <james.hogan@imgtec.com>
Acked-by: Ralf Baechle <ralf@linux-mips.org>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: linux-mips@linux-mips.org
Cc: kvm@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
When trying to emulate an unrecognised load or store instruction, print
the encoding to aid debug.
Signed-off-by: James Hogan <james.hogan@imgtec.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: linux-mips@linux-mips.org
Cc: kvm@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Trace emulation of guest access to various registers via
MFC0/MTC0/DMFC0/DMTC0 instructions (coprocessor 0) and the RDHWR
instruction (hardware registers exposed to userland), replacing some
existing kvm_debug calls. Trace events are much more practical for this
kind of debug output.
Signed-off-by: James Hogan <james.hogan@imgtec.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: linux-mips@linux-mips.org
Cc: kvm@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>