commit a04aead144fd938c2d9869eb187e5b9ea0009bae upstream.
In case of npt=0 on host, nSVM needs the same .inject_page_fault tweak
as VMX has, to make sure that shadow mmu faults are injected as vmexits.
It is not clear why this is needed at all, but for now keep the same
code as VMX and we'll fix it for both.
Based on a patch by Maxim Levitsky <mlevitsk@redhat.com>.
Fixes: 7c86663b68 ("KVM: nSVM: inject exceptions via svm_check_nested_events")
Cc: stable@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit c060c72ffeb448fbb5864faa1f672ebfe14dd25f ]
Zap SPTEs that are backed by ZONE_DEVICE pages when zappings SPTEs to
rebuild them as huge pages in the TDP MMU. ZONE_DEVICE huge pages are
managed differently than "regular" pages and are not compound pages.
Likewise, PageTransCompoundMap() will not detect HugeTLB, so switch
to PageCompound().
This matches the similar check in kvm_mmu_zap_collapsible_spte.
Cc: Ben Gardon <bgardon@google.com>
Fixes: 1488199856 ("kvm: x86/mmu: Support disabling dirty logging for the tdp MMU")
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210213005015.1651772-2-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 0a8ed2eaac102c746d8d114f2787f06cb3e55dfb ]
Intercept INVPCID if it's disabled in the guest, even when using NPT,
as KVM needs to inject #UD in this case.
Fixes: 4407a797e9 ("KVM: SVM: Enable INVPCID feature on AMD")
Cc: Babu Moger <babu.moger@amd.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210212003411.1102677-2-seanjc@google.com>
Reviewed-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 2644312052d54e2e7543c7d186899a36ed22f0bf ]
Restore the full 64-bit values of DR6 and DR7 when emulating RSM on
x86-64, as defined by both Intel's SDM and AMD's APM.
Note, bits 63:32 of DR6 and DR7 are reserved, so this is a glorified nop
unless the SMM handler is poking into SMRAM, which it most definitely
shouldn't be doing since both Intel and AMD list the DR6 and DR7 fields
as read-only.
Fixes: 660a5d517a ("KVM: x86: save/load state on SMM switch")
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210205012458.3872687-3-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 2732be90235347a3be4babdc9f88a1ea93970b0b ]
Don't clear the SME C-bit when reading a guest PDPTR, as the GPA (CR3) is
in the guest domain.
Barring a bizarre paravirtual use case, this is likely a benign bug. SME
is not emulated by KVM, loading SEV guest PDPTRs is doomed as KVM can't
use the correct key to read guest memory, and setting guest MAXPHYADDR
higher than the host, i.e. overlapping the C-bit, would cause faults in
the guest.
Note, for SEV guests, stripping the C-bit is technically aligned with CPU
behavior, but for KVM it's the greater of two evils. Because KVM doesn't
have access to the guest's encryption key, ignoring the C-bit would at
best result in KVM reading garbage. By keeping the C-bit, KVM will
fail its read (unless userspace creates a memslot with the C-bit set).
The guest will still undoubtedly die, as KVM will use '0' for the PDPTR
value, but that's preferable to interpreting encrypted data as a PDPTR.
Fixes: d0ec49d4de ("kvm/x86/svm: Support Secure Memory Encryption within KVM")
Cc: Tom Lendacky <thomas.lendacky@amd.com>
Cc: Brijesh Singh <brijesh.singh@amd.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210204000117.3303214-3-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
commit 8fc517267fb28576dfca2380cc2497a2454b8fae upstream.
Walk the list of MMU pages in reverse in kvm_mmu_zap_oldest_mmu_pages().
The list is FIFO, meaning new pages are inserted at the head and thus
the oldest pages are at the tail. Using a "forward" iterator causes KVM
to zap MMU pages that were just added, which obliterates guest
performance once the max number of shadow MMU pages is reached.
Fixes: 6b82ef2c9c ("KVM: x86/mmu: Batch zap MMU pages when recycling oldest pages")
Reported-by: Zdenek Kaspar <zkaspar82@gmail.com>
Cc: stable@vger.kernel.org
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210113205030.3481307-1-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit c1c35cf78bfab31b8cb455259524395c9e4c7cd6 ]
If not in long mode, the low bits of CR3 are reserved but not enforced to
be zero, so remove those checks. If in long mode, however, the MBZ bits
extend down to the highest physical address bit of the guest, excluding
the encryption bit.
Make the checks consistent with the above, and match them between
nested_vmcb_checks and KVM_SET_SREGS.
Cc: stable@vger.kernel.org
Fixes: 761e416934 ("KVM: nSVM: Check that MBZ bits in CR3 and CR4 are not set on vmrun of nested guests")
Fixes: a780a3ea62 ("KVM: X86: Fix reserved bits check for MOV to CR3")
Reviewed-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
commit 031b91a5fe6f1ce61b7617614ddde9ed61e252be upstream.
Set cr3_lm_rsvd_bits, which is effectively an invalid GPA mask, at vCPU
reset. The reserved bits check needs to be done even if userspace never
configures the guest's CPUID model.
Cc: stable@vger.kernel.org
Fixes: 0107973a80 ("KVM: x86: Introduce cr3_lm_rsvd_bits in kvm_vcpu_arch")
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210204000117.3303214-2-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 943dea8af21bd896e0d6c30ea221203fb3cd3265 upstream.
Set the emulator context to PROT64 if SYSENTER transitions from 32-bit
userspace (compat mode) to a 64-bit kernel, otherwise the RIP update at
the end of x86_emulate_insn() will incorrectly truncate the new RIP.
Note, this bug is mostly limited to running an Intel virtual CPU model on
an AMD physical CPU, as other combinations of virtual and physical CPUs
do not trigger full emulation. On Intel CPUs, SYSENTER in compatibility
mode is legal, and unconditionally transitions to 64-bit mode. On AMD
CPUs, SYSENTER is illegal in compatibility mode and #UDs. If the vCPU is
AMD, KVM injects a #UD on SYSENTER in compat mode. If the pCPU is Intel,
SYSENTER will execute natively and not trigger #UD->VM-Exit (ignoring
guest TLB shenanigans).
Fixes: fede8076aa ("KVM: x86: handle wrap around 32-bit address space")
Cc: stable@vger.kernel.org
Signed-off-by: Jonny Barker <jonny@jonnybarker.com>
[sean: wrote changelog]
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210202165546.2390296-1-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 181f494888d5b178ffda41bed965f187d5e5c432 upstream.
Recent commit 255cbecfe0 modified struct kvm_vcpu_arch to make
'cpuid_entries' a pointer to an array of kvm_cpuid_entry2 entries
rather than embedding the array in the struct. KVM_SET_CPUID and
KVM_SET_CPUID2 were updated accordingly, but KVM_GET_CPUID2 was missed.
As a result, KVM_GET_CPUID2 currently returns random fields from struct
kvm_vcpu_arch to userspace rather than the expected CPUID values. Fix
this by treating 'cpuid_entries' as a pointer when copying its
contents to userspace buffer.
Fixes: 255cbecfe0 ("KVM: x86: allocate vcpu->arch.cpuid_entries dynamically")
Cc: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Michael Roth <michael.roth@amd.com.com>
Message-Id: <20210128024451.1816770-1-michael.roth@amd.com>
Cc: stable@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 7131636e7ea5b50ca910f8953f6365ef2d1f741c upstream.
Userspace that does not know about KVM_GET_MSR_FEATURE_INDEX_LIST
will generally use the default value for MSR_IA32_ARCH_CAPABILITIES.
When this happens and the host has tsx=on, it is possible to end up with
virtual machines that have HLE and RTM disabled, but TSX_CTRL available.
If the fleet is then switched to tsx=off, kvm_get_arch_capabilities()
will clear the ARCH_CAP_TSX_CTRL_MSR bit and it will not be possible to
use the tsx=off hosts as migration destinations, even though the guests
do not have TSX enabled.
To allow this migration, allow guests to write to their TSX_CTRL MSR,
while keeping the host MSR unchanged for the entire life of the guests.
This ensures that TSX remains disabled and also saves MSR reads and
writes, and it's okay to do because with tsx=off we know that guests will
not have the HLE and RTM features in their CPUID. (If userspace sets
bogus CPUID data, we do not expect HLE and RTM to work in guests anyway).
Cc: stable@vger.kernel.org
Fixes: cbbaa2727a ("KVM: x86: fix presentation of TSX feature in ARCH_CAPABILITIES")
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 87aa9ec939ec7277b730786e19c161c9194cc8ca upstream.
There is a bug in the TDP MMU function to zap SPTEs which could be
replaced with a larger mapping which prevents the function from doing
anything. Fix this by correctly zapping the last level SPTEs.
Cc: stable@vger.kernel.org
Fixes: 1488199856 ("kvm: x86/mmu: Support disabling dirty logging for the tdp MMU")
Signed-off-by: Ben Gardon <bgardon@google.com>
Message-Id: <20210202185734.1680553-11-bgardon@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit ccd85d90ce092bdb047a7f6580f3955393833b22 upstream.
Don't let KVM load when running as an SEV guest, regardless of what
CPUID says. Memory is encrypted with a key that is not accessible to
the host (L0), thus it's impossible for L0 to emulate SVM, e.g. it'll
see garbage when reading the VMCB.
Technically, KVM could decrypt all memory that needs to be accessible to
the L0 and use shadow paging so that L0 does not need to shadow NPT, but
exposing such information to L0 largely defeats the purpose of running as
an SEV guest. This can always be revisited if someone comes up with a
use case for running VMs inside SEV guests.
Note, VMLOAD, VMRUN, etc... will also #GP on GPAs with C-bit set, i.e. KVM
is doomed even if the SEV guest is debuggable and the hypervisor is willing
to decrypt the VMCB. This may or may not be fixed on CPUs that have the
SVME_ADDR_CHK fix.
Cc: stable@vger.kernel.org
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210202212017.2486595-1-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 19a23da53932bc8011220bd8c410cb76012de004 upstream.
Grab kvm->lock before pinning memory when registering an encrypted
region; sev_pin_memory() relies on kvm->lock being held to ensure
correctness when checking and updating the number of pinned pages.
Add a lockdep assertion to help prevent future regressions.
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Joerg Roedel <joro@8bytes.org>
Cc: Tom Lendacky <thomas.lendacky@amd.com>
Cc: Brijesh Singh <brijesh.singh@amd.com>
Cc: Sean Christopherson <seanjc@google.com>
Cc: x86@kernel.org
Cc: kvm@vger.kernel.org
Cc: stable@vger.kernel.org
Cc: linux-kernel@vger.kernel.org
Fixes: 1e80fdc09d ("KVM: SVM: Pin guest memory when SEV is active")
Signed-off-by: Peter Gonda <pgonda@google.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
V2
- Fix up patch description
- Correct file paths svm.c -> sev.c
- Add unlock of kvm->lock on sev_pin_memory error
V1
- https://lore.kernel.org/kvm/20210126185431.1824530-1-pgonda@google.com/
Message-Id: <20210127161524.2832400-1-pgonda@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
commit 1f7becf1b7e21794fc9d460765fe09679bc9b9e0 upstream.
The injection process of smi has two steps:
Qemu KVM
Step1:
cpu->interrupt_request &= \
~CPU_INTERRUPT_SMI;
kvm_vcpu_ioctl(cpu, KVM_SMI)
call kvm_vcpu_ioctl_smi() and
kvm_make_request(KVM_REQ_SMI, vcpu);
Step2:
kvm_vcpu_ioctl(cpu, KVM_RUN, 0)
call process_smi() if
kvm_check_request(KVM_REQ_SMI, vcpu) is
true, mark vcpu->arch.smi_pending = true;
The vcpu->arch.smi_pending will be set true in step2, unfortunately if
vcpu paused between step1 and step2, the kvm_run->immediate_exit will be
set and vcpu has to exit to Qemu immediately during step2 before mark
vcpu->arch.smi_pending true.
During VM migration, Qemu will get the smi pending status from KVM using
KVM_GET_VCPU_EVENTS ioctl at the downtime, then the smi pending status
will be lost.
Signed-off-by: Jay Zhou <jianjay.zhou@huawei.com>
Signed-off-by: Shengen Zhuang <zhuangshengen@huawei.com>
Message-Id: <20210118084720.1585-1-jianjay.zhou@huawei.com>
Cc: stable@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit d51e1d3f6b4236e0352407d8a63f5c5f71ce193d upstream.
Even when we are outside the nested guest, some vmcs02 fields
may not be in sync vs vmcs12. This is intentional, even across
nested VM-exit, because the sync can be delayed until the nested
hypervisor performs a VMCLEAR or a VMREAD/VMWRITE that affects those
rarely accessed fields.
However, during KVM_GET_NESTED_STATE, the vmcs12 has to be up to date to
be able to restore it. To fix that, call copy_vmcs02_to_vmcs12_rare()
before the vmcs12 contents are copied to userspace.
Fixes: 7952d769c2 ("KVM: nVMX: Sync rarely accessed guest fields only when needed")
Reviewed-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20210114205449.8715-2-mlevitsk@redhat.com>
Cc: stable@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 9a78e15802a87de2b08dfd1bd88e855201d2c8fa upstream.
VMX also uses KVM_REQ_GET_NESTED_STATE_PAGES for the Hyper-V eVMCS,
which may need to be loaded outside guest mode. Therefore we cannot
WARN in that case.
However, that part of nested_get_vmcs12_pages is _not_ needed at
vmentry time. Split it out of KVM_REQ_GET_NESTED_STATE_PAGES handling,
so that both vmentry and migration (and in the latter case, independent
of is_guest_mode) do the parts that are needed.
Cc: <stable@vger.kernel.org> # 5.10.x: f2c7ef3ba: KVM: nSVM: cancel KVM_REQ_GET_NESTED_STATE_PAGES
Cc: <stable@vger.kernel.org> # 5.10.x
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit f2c7ef3ba9556d62a7e2bb23b563c6510007d55c upstream.
It is possible to exit the nested guest mode, entered by
svm_set_nested_state prior to first vm entry to it (e.g due to pending event)
if the nested run was not pending during the migration.
In this case we must not switch to the nested msr permission bitmap.
Also add a warning to catch similar cases in the future.
Fixes: a7d5c7ce41 ("KVM: nSVM: delay MSR permission processing to first nested VM run")
Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20210107093854.882483-2-mlevitsk@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit e61ab2a320c3dfd6209efe18a575979e07470597 upstream.
Since we know vPMU will not work properly when (1) the guest bit_width(s)
of the [gp|fixed] counters are greater than the host ones, or (2) guest
requested architectural events exceeds the range supported by the host, so
we can setup a smaller left shift value and refresh the guest cpuid entry,
thus fixing the following UBSAN shift-out-of-bounds warning:
shift exponent 197 is too large for 64-bit type 'long long unsigned int'
Call Trace:
__dump_stack lib/dump_stack.c:79 [inline]
dump_stack+0x107/0x163 lib/dump_stack.c:120
ubsan_epilogue+0xb/0x5a lib/ubsan.c:148
__ubsan_handle_shift_out_of_bounds.cold+0xb1/0x181 lib/ubsan.c:395
intel_pmu_refresh.cold+0x75/0x99 arch/x86/kvm/vmx/pmu_intel.c:348
kvm_vcpu_after_set_cpuid+0x65a/0xf80 arch/x86/kvm/cpuid.c:177
kvm_vcpu_ioctl_set_cpuid2+0x160/0x440 arch/x86/kvm/cpuid.c:308
kvm_arch_vcpu_ioctl+0x11b6/0x2d70 arch/x86/kvm/x86.c:4709
kvm_vcpu_ioctl+0x7b9/0xdb0 arch/x86/kvm/../../../virt/kvm/kvm_main.c:3386
vfs_ioctl fs/ioctl.c:48 [inline]
__do_sys_ioctl fs/ioctl.c:753 [inline]
__se_sys_ioctl fs/ioctl.c:739 [inline]
__x64_sys_ioctl+0x193/0x200 fs/ioctl.c:739
do_syscall_64+0x2d/0x70 arch/x86/entry/common.c:46
entry_SYSCALL_64_after_hwframe+0x44/0xa9
Reported-by: syzbot+ae488dc136a4cc6ba32b@syzkaller.appspotmail.com
Signed-off-by: Like Xu <like.xu@linux.intel.com>
Message-Id: <20210118025800.34620-1-like.xu@linux.intel.com>
Cc: stable@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 98dd2f108e448988d91e296173e773b06fb978b8 upstream.
The HW_REF_CPU_CYCLES event on the fixed counter 2 is pseudo-encoded as
0x0300 in the intel_perfmon_event_map[]. Correct its usage.
Fixes: 62079d8a43 ("KVM: PMU: add proper support for fixed counter 2")
Signed-off-by: Like Xu <like.xu@linux.intel.com>
Message-Id: <20201230081916.63417-1-like.xu@linux.intel.com>
Reviewed-by: Sean Christopherson <seanjc@google.com>
Cc: stable@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 2f80d502d627f30257ba7e3655e71c373b7d1a5a upstream.
Since we know that e >= s, we can reassociate the left shift,
changing the shifted number from 1 to 2 in exchange for
decreasing the right hand side by 1.
Reported-by: syzbot+e87846c48bf72bc85311@syzkaller.appspotmail.com
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit a889ea54b3daa63ee1463dc19ed699407d61458b upstream.
Many TDP MMU functions which need to perform some action on all TDP MMU
roots hold a reference on that root so that they can safely drop the MMU
lock in order to yield to other threads. However, when releasing the
reference on the root, there is a bug: the root will not be freed even
if its reference count (root_count) is reduced to 0.
To simplify acquiring and releasing references on TDP MMU root pages, and
to ensure that these roots are properly freed, move the get/put operations
into another TDP MMU root iterator macro.
Moving the get/put operations into an iterator macro also helps
simplify control flow when a root does need to be freed. Note that using
the list_for_each_entry_safe macro would not have been appropriate in
this situation because it could keep a pointer to the next root across
an MMU lock release + reacquire, during which time that root could be
freed.
Reported-by: Maciej S. Szmigiero <maciej.szmigiero@oracle.com>
Suggested-by: Paolo Bonzini <pbonzini@redhat.com>
Fixes: faaf05b00a ("kvm: x86/mmu: Support zapping SPTEs in the TDP MMU")
Fixes: 063afacd87 ("kvm: x86/mmu: Support invalidate range MMU notifier for TDP MMU")
Fixes: a6a0b05da9 ("kvm: x86/mmu: Support dirty logging for the TDP MMU")
Fixes: 1488199856 ("kvm: x86/mmu: Support disabling dirty logging for the tdp MMU")
Signed-off-by: Ben Gardon <bgardon@google.com>
Message-Id: <20210107001935.3732070-1-bgardon@google.com>
Cc: stable@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 39b4d43e6003cee51cd119596d3c33d0449eb44c upstream.
Get the so called "root" level from the low level shadow page table
walkers instead of manually attempting to calculate it higher up the
stack, e.g. in get_mmio_spte(). When KVM is using PAE shadow paging,
the starting level of the walk, from the callers perspective, is not
the CR3 root but rather the PDPTR "root". Checking for reserved bits
from the CR3 root causes get_mmio_spte() to consume uninitialized stack
data due to indexing into sptes[] for a level that was not filled by
get_walk(). This can result in false positives and/or negatives
depending on what garbage happens to be on the stack.
Opportunistically nuke a few extra newlines.
Fixes: 95fb5b0258 ("kvm: x86/mmu: Support MMIO in the TDP MMU")
Reported-by: Richard Herbert <rherbert@sympatico.ca>
Cc: Ben Gardon <bgardon@google.com>
Cc: stable@vger.kernel.org
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20201218003139.2167891-3-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 2aa078932ff6c66bf10cc5b3144440dbfa7d813d upstream.
Return -1 from the get_walk() helpers if the shadow walk doesn't fill at
least one spte, which can theoretically happen if the walk hits a
not-present PDPTR. Returning the root level in such a case will cause
get_mmio_spte() to return garbage (uninitialized stack data). In
practice, such a scenario should be impossible as KVM shouldn't get a
reserved-bit page fault with a not-present PDPTR.
Note, using mmu->root_level in get_walk() is wrong for other reasons,
too, but that's now a moot point.
Fixes: 95fb5b0258 ("kvm: x86/mmu: Support MMIO in the TDP MMU")
Cc: Ben Gardon <bgardon@google.com>
Cc: stable@vger.kernel.org
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20201218003139.2167891-2-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 9d4747d02376aeb8de38afa25430de79129c5799 upstream.
When both KVM support and the CCP driver are built into the kernel instead
of as modules, KVM initialization can happen before CCP initialization. As
a result, sev_platform_status() will return a failure when it is called
from sev_hardware_setup(), when this isn't really an error condition.
Since sev_platform_status() doesn't need to be called at this time anyway,
remove the invocation from sev_hardware_setup().
Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com>
Message-Id: <618380488358b56af558f2682203786f09a49483.1607620209.git.thomas.lendacky@amd.com>
Cc: stable@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 39485ed95d6b83b62fa75c06c2c4d33992e0d971 upstream.
Until commit e7c587da12 ("x86/speculation: Use synthetic bits for
IBRS/IBPB/STIBP"), KVM was testing both Intel and AMD CPUID bits before
allowing the guest to write MSR_IA32_SPEC_CTRL and MSR_IA32_PRED_CMD.
Testing only Intel bits on VMX processors, or only AMD bits on SVM
processors, fails if the guests are created with the "opposite" vendor
as the host.
While at it, also tweak the host CPU check to use the vendor-agnostic
feature bit X86_FEATURE_IBPB, since we only care about the availability
of the MSR on the host here and not about specific CPUID bits.
Fixes: e7c587da12 ("x86/speculation: Use synthetic bits for IBRS/IBPB/STIBP")
Cc: stable@vger.kernel.org
Reported-by: Denis V. Lunev <den@openvz.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-----BEGIN PGP SIGNATURE-----
iQFIBAABCAAyFiEE8TM4V0tmI4mGbHaCv/vSX3jHroMFAl/UDHQUHHBib256aW5p
QHJlZGhhdC5jb20ACgkQv/vSX3jHroMGeQf9EtGft5U5EihqAbNr2O61Bh4ptCIT
+qNWWfuGQkKLsP6PCHMUJnNI3WJy2/Gb5+nUHjFXSEZBP2l3KGRuDniAdm4+DyEi
2khVmJiXYn2q2yfodmpHA/dqav3OHSrsq2IfH+J+WAFlIHnjkdz3Wk1zNFk7Y/xv
PVv2czvXhsnrvHvNp5e1+YsVGkMZc9fwXLRbac7ptmaKUKCBAgpZO8Gkc2GGgOdE
zUDp3qA8/7Ys+vzzYfPrRMUhev9dgE4x2TBmtOuzqOcfj2FOKRbKbwjur37fJ61j
Px4F2ZI0GEL0RrHvZK1vZ5KO41BcD+gQPumKAg1Lgz312loKj85RG8nBEQ==
=BJ9g
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull kvm fixes from Paolo Bonzini:
"Bugfixes for ARM, x86 and tools"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm:
tools/kvm_stat: Exempt time-based counters
KVM: mmu: Fix SPTE encoding of MMIO generation upper half
kvm: x86/mmu: Use cpuid to determine max gfn
kvm: svm: de-allocate svm_cpu_data for all cpus in svm_cpu_uninit()
selftests: kvm/set_memory_region_test: Fix race in move region test
KVM: arm64: Add usage of stage 2 fault lookup level in user_mem_abort()
KVM: arm64: Fix handling of merging tables into a block entry
KVM: arm64: Fix memory leak on stage2 update of a valid PTE
Commit cae7ed3c2c ("KVM: x86: Refactor the MMIO SPTE generation handling")
cleaned up the computation of MMIO generation SPTE masks, however it
introduced a bug how the upper part was encoded:
SPTE bits 52-61 were supposed to contain bits 10-19 of the current
generation number, however a missing shift encoded bits 1-10 there instead
(mostly duplicating the lower part of the encoded generation number that
then consisted of bits 1-9).
In the meantime, the upper part was shrunk by one bit and moved by
subsequent commits to become an upper half of the encoded generation number
(bits 9-17 of bits 0-17 encoded in a SPTE).
In addition to the above, commit 56871d444b ("KVM: x86: fix overlap between SPTE_MMIO_MASK and generation")
has changed the SPTE bit range assigned to encode the generation number and
the total number of bits encoded but did not update them in the comment
attached to their defines, nor in the KVM MMU doc.
Let's do it here, too, since it is too trivial thing to warrant a separate
commit.
Fixes: cae7ed3c2c ("KVM: x86: Refactor the MMIO SPTE generation handling")
Signed-off-by: Maciej S. Szmigiero <maciej.szmigiero@oracle.com>
Message-Id: <156700708db2a5296c5ed7a8b9ac71f1e9765c85.1607129096.git.maciej.szmigiero@oracle.com>
Cc: stable@vger.kernel.org
[Reorganize macros so that everything is computed from the bit ranges. - Paolo]
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
In the TDP MMU, use shadow_phys_bits to dermine the maximum possible GFN
mapped in the guest for zapping operations. boot_cpu_data.x86_phys_bits
may be reduced in the case of HW features that steal HPA bits for other
purposes. However, this doesn't necessarily reduce GPA space that can be
accessed via TDP. So zap based on a maximum gfn calculated with MAXPHYADDR
retrieved from CPUID. This is already stored in shadow_phys_bits, so use
it instead of x86_phys_bits.
Fixes: faaf05b00a ("kvm: x86/mmu: Support zapping SPTEs in the TDP MMU")
Signed-off-by: Rick Edgecombe <rick.p.edgecombe@intel.com>
Message-Id: <20201203231120.27307-1-rick.p.edgecombe@intel.com>
Reviewed-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The cpu arg for svm_cpu_uninit() was previously ignored resulting in the
per cpu structure svm_cpu_data not being de-allocated for all cpus.
Signed-off-by: Jacob Xu <jacobhxu@google.com>
Message-Id: <20201203205939.1783969-1-jacobhxu@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
- Fix alignment of the new HYP sections
- Fix GICR_TYPER access from userspace
S390:
- do not reset the global diag318 data for per-cpu reset
- do not mark memory as protected too early
- fix for destroy page ultravisor call
x86:
- fix for SEV debugging
- fix incorrect return code
- fix for "noapic" with PIC in userspace and LAPIC in kernel
- fix for 5-level paging
-----BEGIN PGP SIGNATURE-----
iQFIBAABCAAyFiEE8TM4V0tmI4mGbHaCv/vSX3jHroMFAl/BKpQUHHBib256aW5p
QHJlZGhhdC5jb20ACgkQv/vSX3jHroPrZgf+Jdw1ONU5hFLl5Xz2YneVppqMr3nh
X/Nr/dGzP+ve2FPNgkMotwqOWb/6jwKYKbliB2Q6fS51/7MiV7TDizna8ZpzEn12
M0/NMWtW7Luq7yTTnXUhClG4QfRvn90EaflxUYxCBSRRhDleJ9sCl4Ga5b1fDIdQ
AeDdqJV4ElCGUrPM1my4vemrbFeiiEeDeWZvb6TP5LlJS+EDZeehk9zEAB7PFwAu
oX3O8WUbRxRYakZR1PPIn8e0qh2zaVDFUk/sZKJLOCCPx2UnOErf3jV6rQEMeSPC
5aOspfq+gI3jukufdyNxcKxRSj8Jw63f0vDaUgd4H71dsG390gM6onQiQg==
=IyC5
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull kvm fixes from Paolo Bonzini:
"ARM:
- Fix alignment of the new HYP sections
- Fix GICR_TYPER access from userspace
S390:
- do not reset the global diag318 data for per-cpu reset
- do not mark memory as protected too early
- fix for destroy page ultravisor call
x86:
- fix for SEV debugging
- fix incorrect return code
- fix for 'noapic' with PIC in userspace and LAPIC in kernel
- fix for 5-level paging"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm:
kvm: x86/mmu: Fix get_mmio_spte() on CPUs supporting 5-level PT
KVM: x86: Fix split-irqchip vs interrupt injection window request
KVM: x86: handle !lapic_in_kernel case in kvm_cpu_*_extint
MAINTAINERS: Update email address for Sean Christopherson
MAINTAINERS: add uv.c also to KVM/s390
s390/uv: handle destroy page legacy interface
KVM: arm64: vgic-v3: Drop the reporting of GICR_TYPER.Last for userspace
KVM: SVM: fix error return code in svm_create_vcpu()
KVM: SVM: Fix offset computation bug in __sev_dbg_decrypt().
KVM: arm64: Correctly align nVHE percpu data
KVM: s390: remove diag318 reset code
KVM: s390: pv: Mark mm as protected after the set secure parameters and improve cleanup
Commit 95fb5b0258 ("kvm: x86/mmu: Support MMIO in the TDP MMU") caused
the following WARNING on an Intel Ice Lake CPU:
get_mmio_spte: detect reserved bits on spte, addr 0xb80a0, dump hierarchy:
------ spte 0xb80a0 level 5.
------ spte 0xfcd210107 level 4.
------ spte 0x1004c40107 level 3.
------ spte 0x1004c41107 level 2.
------ spte 0x1db00000000b83b6 level 1.
WARNING: CPU: 109 PID: 10254 at arch/x86/kvm/mmu/mmu.c:3569 kvm_mmu_page_fault.cold.150+0x54/0x22f [kvm]
...
Call Trace:
? kvm_io_bus_get_first_dev+0x55/0x110 [kvm]
vcpu_enter_guest+0xaa1/0x16a0 [kvm]
? vmx_get_cs_db_l_bits+0x17/0x30 [kvm_intel]
? skip_emulated_instruction+0xaa/0x150 [kvm_intel]
kvm_arch_vcpu_ioctl_run+0xca/0x520 [kvm]
The guest triggering this crashes. Note, this happens with the traditional
MMU and EPT enabled, not with the newly introduced TDP MMU. Turns out,
there was a subtle change in the above mentioned commit. Previously,
walk_shadow_page_get_mmio_spte() was setting 'root' to 'iterator.level'
which is returned by shadow_walk_init() and this equals to
'vcpu->arch.mmu->shadow_root_level'. Now, get_mmio_spte() sets it to
'int root = vcpu->arch.mmu->root_level'.
The difference between 'root_level' and 'shadow_root_level' on CPUs
supporting 5-level page tables is that in some case we don't want to
use 5-level, in particular when 'cpuid_maxphyaddr(vcpu) <= 48'
kvm_mmu_get_tdp_level() returns '4'. In case upper layer is not used,
the corresponding SPTE will fail '__is_rsvd_bits_set()' check.
Revert to using 'shadow_root_level'.
Fixes: 95fb5b0258 ("kvm: x86/mmu: Support MMIO in the TDP MMU")
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Message-Id: <20201126110206.2118959-1-vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
kvm_cpu_accept_dm_intr and kvm_vcpu_ready_for_interrupt_injection are
a hodge-podge of conditions, hacked together to get something that
more or less works. But what is actually needed is much simpler;
in both cases the fundamental question is, do we have a place to stash
an interrupt if userspace does KVM_INTERRUPT?
In userspace irqchip mode, that is !vcpu->arch.interrupt.injected.
Currently kvm_event_needs_reinjection(vcpu) covers it, but it is
unnecessarily restrictive.
In split irqchip mode it's a bit more complicated, we need to check
kvm_apic_accept_pic_intr(vcpu) (the IRQ window exit is basically an INTACK
cycle and thus requires ExtINTs not to be masked) as well as
!pending_userspace_extint(vcpu). However, there is no need to
check kvm_event_needs_reinjection(vcpu), since split irqchip keeps
pending ExtINT state separate from event injection state, and checking
kvm_cpu_has_interrupt(vcpu) is wrong too since ExtINT has higher
priority than APIC interrupts. In fact the latter fixes a bug:
when userspace requests an IRQ window vmexit, an interrupt in the
local APIC can cause kvm_cpu_has_interrupt() to be true and thus
kvm_vcpu_ready_for_interrupt_injection() to return false. When this
happens, vcpu_run does not exit to userspace but the interrupt window
vmexits keep occurring. The VM loops without any hope of making progress.
Once we try to fix these with something like
return kvm_arch_interrupt_allowed(vcpu) &&
- !kvm_cpu_has_interrupt(vcpu) &&
- !kvm_event_needs_reinjection(vcpu) &&
- kvm_cpu_accept_dm_intr(vcpu);
+ (!lapic_in_kernel(vcpu)
+ ? !vcpu->arch.interrupt.injected
+ : (kvm_apic_accept_pic_intr(vcpu)
+ && !pending_userspace_extint(v)));
we realize two things. First, thanks to the previous patch the complex
conditional can reuse !kvm_cpu_has_extint(vcpu). Second, the interrupt
window request in vcpu_enter_guest()
bool req_int_win =
dm_request_for_irq_injection(vcpu) &&
kvm_cpu_accept_dm_intr(vcpu);
should be kept in sync with kvm_vcpu_ready_for_interrupt_injection():
it is unnecessary to ask the processor for an interrupt window
if we would not be able to return to userspace. Therefore,
kvm_cpu_accept_dm_intr(vcpu) is basically !kvm_cpu_has_extint(vcpu)
ANDed with the existing check for masked ExtINT. It all makes sense:
- we can accept an interrupt from userspace if there is a place
to stash it (and, for irqchip split, ExtINTs are not masked).
Interrupts from userspace _can_ be accepted even if right now
EFLAGS.IF=0.
- in order to tell userspace we will inject its interrupt ("IRQ
window open" i.e. kvm_vcpu_ready_for_interrupt_injection), both
KVM and the vCPU need to be ready to accept the interrupt.
... and this is what the patch implements.
Reported-by: David Woodhouse <dwmw@amazon.co.uk>
Analyzed-by: David Woodhouse <dwmw@amazon.co.uk>
Cc: stable@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Reviewed-by: Nikos Tsironis <ntsironis@arrikto.com>
Reviewed-by: David Woodhouse <dwmw@amazon.co.uk>
Tested-by: David Woodhouse <dwmw@amazon.co.uk>
Centralize handling of interrupts from the userspace APIC
in kvm_cpu_has_extint and kvm_cpu_get_extint, since
userspace APIC interrupts are handled more or less the
same as ExtINTs are with split irqchip. This removes
duplicated code from kvm_cpu_has_injectable_intr and
kvm_cpu_has_interrupt, and makes the code more similar
between kvm_cpu_has_{extint,interrupt} on one side
and kvm_cpu_get_{extint,interrupt} on the other.
Cc: stable@vger.kernel.org
Reviewed-by: Filippo Sironi <sironi@amazon.de>
Reviewed-by: David Woodhouse <dwmw@amazon.co.uk>
Tested-by: David Woodhouse <dwmw@amazon.co.uk>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Fix to return a negative error code from the error handling case
instead of 0 in function svm_create_vcpu(), as done elsewhere in this
function.
Fixes: f4c847a956 ("KVM: SVM: refactor msr permission bitmap allocation")
Reported-by: Hulk Robot <hulkci@huawei.com>
Signed-off-by: Chen Zhou <chenzhou10@huawei.com>
Message-Id: <20201117025426.167824-1-chenzhou10@huawei.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Fix offset computation in __sev_dbg_decrypt() to include the
source paddr before it is rounded down to be aligned to 16 bytes
as required by SEV API. This fixes incorrect guest memory dumps
observed when using qemu monitor.
Signed-off-by: Ashish Kalra <ashish.kalra@amd.com>
Message-Id: <20201110224205.29444-1-Ashish.Kalra@amd.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
without two-dimensional paging (EPT/NPT).
-----BEGIN PGP SIGNATURE-----
iQFIBAABCAAyFiEE8TM4V0tmI4mGbHaCv/vSX3jHroMFAl+xQ54UHHBib256aW5p
QHJlZGhhdC5jb20ACgkQv/vSX3jHroMzeQf+JP9NpXgeB7dhiODhmO5SyLdw0u9j
kVOM6+kHcEvG6o0yU1uUZr2ZPh9vIAwIjXi8Luiodcazdp6jvxvJ32CeMYJz2lel
y+3Gjp3WS2+FExOjBephBztaMHLihlWQt3E0EKuCc7StyfMhaZooiTRMpvrmiLWe
HQ/epM9oLMyrCqG9MKkvTwH0lDyB5CprV1BNt6YyKjt7d5swEqC75A6lOXnmdAah
utgx1agSIVQPv6vDF9HLaQaoelHT7ucudx+zIkvOAmoQ56AJMPfCr0+Af3ZVW+f/
I5tXVfBhoOV3BVSIsJS7Px0HcZt7siVtl6ISZZos8ox85S4ysjWm2vXFcQ==
=MiOr
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull kvm fixes from Paolo Bonzini:
"Fixes for ARM and x86, the latter especially for old processors
without two-dimensional paging (EPT/NPT)"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm:
kvm: mmu: fix is_tdp_mmu_check when the TDP MMU is not in use
KVM: SVM: Update cr3_lm_rsvd_bits for AMD SEV guests
KVM: x86: Introduce cr3_lm_rsvd_bits in kvm_vcpu_arch
KVM: x86: clflushopt should be treated as a no-op by emulation
KVM: arm64: Handle SCXTNUM_ELx traps
KVM: arm64: Unify trap handlers injecting an UNDEF
KVM: arm64: Allow setting of ID_AA64PFR0_EL1.CSV2 from userspace
- A set of commits which reduce the stack usage of various perf event
handling functions which allocated large data structs on stack causing
stack overflows in the worst case.
- Use the proper mechanism for detecting soft interrupts in the recursion
protection.
- Make the resursion protection simpler and more robust.
- Simplify the scheduling of event groups to make the code more robust and
prepare for fixing the issues vs. scheduling of exclusive event groups.
- Prevent event multiplexing and rotation for exclusive event groups
- Correct the perf event attribute exclusive semantics to take pinned
events, e.g. the PMU watchdog, into account
- Make the anythread filtering conditional for Intel's generic PMU
counters as it is not longer guaranteed to be supported on newer
CPUs. Check the corresponding CPUID leaf to make sure.
- Fixup a duplicate initialization in an array which was probably cause by
the usual copy & paste - forgot to edit mishap.
-----BEGIN PGP SIGNATURE-----
iQJHBAABCgAxFiEEQp8+kY+LLUocC4bMphj1TA10mKEFAl+xIi0THHRnbHhAbGlu
dXRyb25peC5kZQAKCRCmGPVMDXSYofixD/4+4gc8DhOmAkMrN0Z9tiW8ebgMKmb9
wZRkMr5Osi0GzLJOPZ6SdY6jd0A3rMN/sW6P1DT6pDtcty4bKFoW5VZBuUDIAhel
BC4C93L3y1En/GEZu1GTy3LvsBwLBQTOoY4goDjbdAbk60S/0RTHOGyQsRsOQFe6
fVs3iXozAFuaR6I6N3dlxuJAE51zvr8MyBWaUoByNDB//1+lLNW+JfClaAOG1oXx
qZIg/niatBVGzSGgKNRUyh3g8G1HJtabsA/NZ4PH8ZHuYABfmj4lmmUPR77ICLfV
wMITEBG7eaktB8EqM9hvaoOZLA5kpXHO2JbCFSs4c4x11mlC8g7QMV3poCw33YoN
a5TmT1A3muri1riy1/Ee9lXACOq7/tf2+Xfn9o6dvDdBwd6s5pzlhLGR8gILp2lF
2bcg3IwYvHT/Kiurb/WGNpbCqQIPJpcUcfs3tNBCCtKegahUQNnGjxN3NVo9RCit
zfL6xIJ8eZiYnsxXx4NKm744AukWiql3aRNgRkOdBP5WC68xt6VLcxG1YZKUoDhy
jRSOCD/DuPSMSvAAgN7S8OWlPsKWBxVxxWYV+K8FpwhgzbQ3WbS3UDiYkhgjeOxu
OlM692oWpllKvQWlvYthr2Be6oPCRRi1vvADNNbTKzgHk5i61bwympsGl1EZx3Pz
2ROp7NJFRESnqw==
=FzCf
-----END PGP SIGNATURE-----
Merge tag 'perf-urgent-2020-11-15' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull perf fixes from Thomas Gleixner:
"A set of fixes for perf:
- A set of commits which reduce the stack usage of various perf
event handling functions which allocated large data structs on
stack causing stack overflows in the worst case
- Use the proper mechanism for detecting soft interrupts in the
recursion protection
- Make the resursion protection simpler and more robust
- Simplify the scheduling of event groups to make the code more
robust and prepare for fixing the issues vs. scheduling of
exclusive event groups
- Prevent event multiplexing and rotation for exclusive event groups
- Correct the perf event attribute exclusive semantics to take
pinned events, e.g. the PMU watchdog, into account
- Make the anythread filtering conditional for Intel's generic PMU
counters as it is not longer guaranteed to be supported on newer
CPUs. Check the corresponding CPUID leaf to make sure
- Fixup a duplicate initialization in an array which was probably
caused by the usual 'copy & paste - forgot to edit' mishap"
* tag 'perf-urgent-2020-11-15' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
perf/x86/intel/uncore: Fix Add BW copypasta
perf/x86/intel: Make anythread filter support conditional
perf: Tweak perf_event_attr::exclusive semantics
perf: Fix event multiplexing for exclusive groups
perf: Simplify group_sched_in()
perf: Simplify group_sched_out()
perf/x86: Make dummy_iregs static
perf/arch: Remove perf_sample_data::regs_user_copy
perf: Optimize get_recursion_context()
perf: Fix get_recursion_context()
perf/x86: Reduce stack usage for x86_pmu::drain_pebs()
perf: Reduce stack usage of perf_output_begin()
In some cases where shadow paging is in use, the root page will
be either mmu->pae_root or vcpu->arch.mmu->lm_root. Then it will
not have an associated struct kvm_mmu_page, because it is allocated
with alloc_page instead of kvm_mmu_alloc_page.
Just return false quickly from is_tdp_mmu_root if the TDP MMU is
not in use, which also includes the case where shadow paging is
enabled.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
For AMD SEV guests, update the cr3_lm_rsvd_bits to mask
the memory encryption bit in reserved bits.
Signed-off-by: Babu Moger <babu.moger@amd.com>
Message-Id: <160521948301.32054.5783800787423231162.stgit@bmoger-ubuntu>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
SEV guests fail to boot on a system that supports the PCID feature.
While emulating the RSM instruction, KVM reads the guest CR3
and calls kvm_set_cr3(). If the vCPU is in the long mode,
kvm_set_cr3() does a sanity check for the CR3 value. In this case,
it validates whether the value has any reserved bits set. The
reserved bit range is 63:cpuid_maxphysaddr(). When AMD memory
encryption is enabled, the memory encryption bit is set in the CR3
value. The memory encryption bit may fall within the KVM reserved
bit range, causing the KVM emulation failure.
Introduce a new field cr3_lm_rsvd_bits in kvm_vcpu_arch which will
cache the reserved bits in the CR3 value. This will be initialized
to rsvd_bits(cpuid_maxphyaddr(vcpu), 63).
If the architecture has any special bits(like AMD SEV encryption bit)
that needs to be masked from the reserved bits, should be cleared
in vendor specific kvm_x86_ops.vcpu_after_set_cpuid handler.
Fixes: a780a3ea62 ("KVM: X86: Fix reserved bits check for MOV to CR3")
Signed-off-by: Babu Moger <babu.moger@amd.com>
Message-Id: <160521947657.32054.3264016688005356563.stgit@bmoger-ubuntu>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The instruction emulator ignores clflush instructions, yet fails to
support clflushopt. Treat both similarly.
Fixes: 13e457e0ee ("KVM: x86: Emulator does not decode clflush well")
Signed-off-by: David Edmondson <david.edmondson@oracle.com>
Message-Id: <20201103120400.240882-1-david.edmondson@oracle.com>
Reviewed-by: Joao Martins <joao.m.martins@oracle.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Starting with Arch Perfmon v5, the anythread filter on generic counters may be
deprecated. The current kernel was exporting the any filter without checking.
On Icelake, it means you could do cpu/event=0x3c,any/ even though the filter
does not exist. This patch corrects the problem by relying on the CPUID 0xa leaf
function to determine if anythread is supported or not as described in the
Intel SDM Vol3b 18.2.5.1 AnyThread Deprecation section.
Signed-off-by: Stephane Eranian <eranian@google.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20201028194247.3160610-1-eranian@google.com
Windows2016 guest tries to enable LBR by setting the corresponding bits
in MSR_IA32_DEBUGCTLMSR. KVM does not emulate MSR_IA32_DEBUGCTLMSR and
spams the host kernel logs with error messages like:
kvm [...]: vcpu1, guest rIP: 0xfffff800a8b687d3 kvm_set_msr_common: MSR_IA32_DEBUGCTLMSR 0x1, nop"
This patch fixes this by enabling error logging only with
'report_ignored_msrs=1'.
Signed-off-by: Pankaj Gupta <pankaj.gupta@cloud.ionos.com>
Message-Id: <20201105153932.24316-1-pankaj.gupta.linux@gmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Commit 5b9bb0ebbc ("kvm: x86: encapsulate wrmsr(MSR_KVM_SYSTEM_TIME)
emulation in helper fn", 2020-10-21) subtly changed the behavior of guest
writes to MSR_KVM_SYSTEM_TIME(_NEW). Restore the previous behavior; update
the masterclock any time the guest uses a different msr than before.
Fixes: 5b9bb0ebbc ("kvm: x86: encapsulate wrmsr(MSR_KVM_SYSTEM_TIME) emulation in helper fn", 2020-10-21)
Signed-off-by: Oliver Upton <oupton@google.com>
Reviewed-by: Peter Shier <pshier@google.com>
Message-Id: <20201027231044.655110-6-oupton@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Make the paravirtual cpuid enforcement mechanism idempotent to ioctl()
ordering by updating pv_cpuid.features whenever userspace requests the
capability. Extract this update out of kvm_update_cpuid_runtime() into a
new helper function and move its other call site into
kvm_vcpu_after_set_cpuid() where it more likely belongs.
Fixes: 66570e966d ("kvm: x86: only provide PV features if enabled in guest's CPUID")
Signed-off-by: Oliver Upton <oupton@google.com>
Reviewed-by: Peter Shier <pshier@google.com>
Message-Id: <20201027231044.655110-5-oupton@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
commit 66570e966d ("kvm: x86: only provide PV features if enabled in
guest's CPUID") only protects against disallowed guest writes to KVM
paravirtual msrs, leaving msr reads unchecked. Fix this by enforcing
KVM_CPUID_FEATURES for msr reads as well.
Fixes: 66570e966d ("kvm: x86: only provide PV features if enabled in guest's CPUID")
Signed-off-by: Oliver Upton <oupton@google.com>
Reviewed-by: Peter Shier <pshier@google.com>
Message-Id: <20201027231044.655110-4-oupton@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Recent introduction of the userspace msr filtering added code that uses
negative error codes for cases that result in either #GP delivery to
the guest, or handled by the userspace msr filtering.
This breaks an assumption that a negative error code returned from the
msr emulation code is a semi-fatal error which should be returned
to userspace via KVM_RUN ioctl and usually kill the guest.
Fix this by reusing the already existing KVM_MSR_RET_INVALID error code,
and by adding a new KVM_MSR_RET_FILTERED error code for the
userspace filtered msrs.
Fixes: 291f35fb2c1d1 ("KVM: x86: report negative values from wrmsr emulation to userspace")
Reported-by: Qian Cai <cai@redhat.com>
Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20201101115523.115780-1-mlevitsk@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Fix an off-by-one style bug in pte_list_add() where it failed to
account the last full set of SPTEs, i.e. when desc->sptes is full
and desc->more is NULL.
Merge the two "PTE_LIST_EXT-1" checks as part of the fix to avoid
an extra comparison.
Signed-off-by: Li RongQing <lirongqing@baidu.com>
Reviewed-by: Sean Christopherson <sean.j.christopherson@intel.com>
Message-Id: <1601196297-24104-1-git-send-email-lirongqing@baidu.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>