Commit Graph

1848 Commits

Author SHA1 Message Date
Paul Mackerras
6f868405fa KVM: PPC: Book3S HV: XIVE: Prevent races when releasing device
Now that we have the possibility of a XIVE or XICS-on-XIVE device being
released while the VM is still running, we need to be careful about
races and potential use-after-free bugs.  Although the kvmppc_xive
struct is not freed, but kept around for re-use, the kvmppc_xive_vcpu
structs are freed, and they are used extensively in both the XIVE native
and XICS-on-XIVE code.

There are various ways in which XIVE code gets invoked:

- VCPU entry and exit, which do push and pull operations on the XIVE hardware
- one_reg get and set functions (vcpu->mutex is held)
- XICS hypercalls (but only inside guest execution, not from
  kvmppc_pseries_do_hcall)
- device creation calls (kvm->lock is held)
- device callbacks - get/set attribute, mmap, pagefault, release/destroy
- set_mapped/clr_mapped calls (kvm->lock is held)
- connect_vcpu calls
- debugfs file read callbacks

Inside a device release function, we know that userspace cannot have an
open file descriptor referring to the device, nor can it have any mmapped
regions from the device.  Therefore the device callbacks are excluded,
as are the connect_vcpu calls (since they need a fd for the device).
Further, since the caller holds the kvm->lock mutex, no other device
creation calls or set/clr_mapped calls can be executing concurrently.

To exclude VCPU execution and XICS hypercalls, we temporarily set
kvm->arch.mmu_ready to 0.  This forces any VCPU task that is trying to
enter the guest to take the kvm->lock mutex, which is held by the caller
of the release function.  Then, sending an IPI to all other CPUs forces
any VCPU currently executing in the guest to exit.

Finally, we take the vcpu->mutex for each VCPU around the process of
cleaning up and freeing its XIVE data structures, in order to exclude
any one_reg get/set calls.

To exclude the debugfs read callbacks, we just need to ensure that
debugfs_remove is called before freeing any data structures.  Once it
returns we know that no CPU can be executing the callbacks (for our
kvmppc_xive instance).

Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
2019-04-30 19:41:01 +10:00
Cédric Le Goater
5422e95103 KVM: PPC: Book3S HV: XIVE: Replace the 'destroy' method by a 'release' method
When a P9 sPAPR VM boots, the CAS negotiation process determines which
interrupt mode to use (XICS legacy or XIVE native) and invokes a
machine reset to activate the chosen mode.

We introduce 'release' methods for the XICS-on-XIVE and the XIVE
native KVM devices which are called when the file descriptor of the
device is closed after the TIMA and ESB pages have been unmapped.
They perform the necessary cleanups : clear the vCPU interrupt
presenters that could be attached and then destroy the device. The
'release' methods replace the 'destroy' methods as 'destroy' is not
called anymore once 'release' is. Compatibility with older QEMU is
nevertheless maintained.

This is not considered as a safe operation as the vCPUs are still
running and could be referencing the KVM device through their
presenters. To protect the system from any breakage, the kvmppc_xive
objects representing both KVM devices are now stored in an array under
the VM. Allocation is performed on first usage and memory is freed
only when the VM exits.

[paulus@ozlabs.org - Moved freeing of xive structures to book3s.c,
 put it under #ifdef CONFIG_KVM_XICS.]

Signed-off-by: Cédric Le Goater <clg@kaod.org>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
2019-04-30 19:40:39 +10:00
Cédric Le Goater
3fab2d1058 KVM: PPC: Book3S HV: XIVE: Activate XIVE exploitation mode
Full support for the XIVE native exploitation mode is now available,
advertise the capability KVM_CAP_PPC_IRQ_XIVE for guests running on
PowerNV KVM Hypervisors only. Support for nested guests (pseries KVM
Hypervisor) is not yet available. XIVE should also have been activated
which is default setting on POWER9 systems running a recent Linux
kernel.

Signed-off-by: Cédric Le Goater <clg@kaod.org>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
2019-04-30 19:35:16 +10:00
Cédric Le Goater
232b984b7d KVM: PPC: Book3S HV: XIVE: Add passthrough support
The KVM XICS-over-XIVE device and the proposed KVM XIVE native device
implement an IRQ space for the guest using the generic IPI interrupts
of the XIVE IC controller. These interrupts are allocated at the OPAL
level and "mapped" into the guest IRQ number space in the range 0-0x1FFF.
Interrupt management is performed in the XIVE way: using loads and
stores on the addresses of the XIVE IPI interrupt ESB pages.

Both KVM devices share the same internal structure caching information
on the interrupts, among which the xive_irq_data struct containing the
addresses of the IPI ESB pages and an extra one in case of pass-through.
The later contains the addresses of the ESB pages of the underlying HW
controller interrupts, PHB4 in all cases for now.

A guest, when running in the XICS legacy interrupt mode, lets the KVM
XICS-over-XIVE device "handle" interrupt management, that is to
perform the loads and stores on the addresses of the ESB pages of the
guest interrupts. However, when running in XIVE native exploitation
mode, the KVM XIVE native device exposes the interrupt ESB pages to
the guest and lets the guest perform directly the loads and stores.

The VMA exposing the ESB pages make use of a custom VM fault handler
which role is to populate the VMA with appropriate pages. When a fault
occurs, the guest IRQ number is deduced from the offset, and the ESB
pages of associated XIVE IPI interrupt are inserted in the VMA (using
the internal structure caching information on the interrupts).

Supporting device passthrough in the guest running in XIVE native
exploitation mode adds some extra refinements because the ESB pages
of a different HW controller (PHB4) need to be exposed to the guest
along with the initial IPI ESB pages of the XIVE IC controller. But
the overall mechanic is the same.

When the device HW irqs are mapped into or unmapped from the guest
IRQ number space, the passthru_irq helpers, kvmppc_xive_set_mapped()
and kvmppc_xive_clr_mapped(), are called to record or clear the
passthrough interrupt information and to perform the switch.

The approach taken by this patch is to clear the ESB pages of the
guest IRQ number being mapped and let the VM fault handler repopulate.
The handler will insert the ESB page corresponding to the HW interrupt
of the device being passed-through or the initial IPI ESB page if the
device is being removed.

Signed-off-by: Cédric Le Goater <clg@kaod.org>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
2019-04-30 19:35:16 +10:00
Cédric Le Goater
6520ca64cd KVM: PPC: Book3S HV: XIVE: Add a mapping for the source ESB pages
Each source is associated with an Event State Buffer (ESB) with a
even/odd pair of pages which provides commands to manage the source:
to trigger, to EOI, to turn off the source for instance.

The custom VM fault handler will deduce the guest IRQ number from the
offset of the fault, and the ESB page of the associated XIVE interrupt
will be inserted into the VMA using the internal structure caching
information on the interrupts.

Signed-off-by: Cédric Le Goater <clg@kaod.org>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
2019-04-30 19:35:16 +10:00
Cédric Le Goater
39e9af3de5 KVM: PPC: Book3S HV: XIVE: Add a TIMA mapping
Each thread has an associated Thread Interrupt Management context
composed of a set of registers. These registers let the thread handle
priority management and interrupt acknowledgment. The most important
are :

    - Interrupt Pending Buffer     (IPB)
    - Current Processor Priority   (CPPR)
    - Notification Source Register (NSR)

They are exposed to software in four different pages each proposing a
view with a different privilege. The first page is for the physical
thread context and the second for the hypervisor. Only the third
(operating system) and the fourth (user level) are exposed the guest.

A custom VM fault handler will populate the VMA with the appropriate
pages, which should only be the OS page for now.

Signed-off-by: Cédric Le Goater <clg@kaod.org>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
2019-04-30 19:35:16 +10:00
Cédric Le Goater
e4945b9da5 KVM: PPC: Book3S HV: XIVE: Add get/set accessors for the VP XIVE state
The state of the thread interrupt management registers needs to be
collected for migration. These registers are cached under the
'xive_saved_state.w01' field of the VCPU when the VPCU context is
pulled from the HW thread. An OPAL call retrieves the backup of the
IPB register in the underlying XIVE NVT structure and merges it in the
KVM state.

Signed-off-by: Cédric Le Goater <clg@kaod.org>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
2019-04-30 19:35:16 +10:00
Cédric Le Goater
e6714bd167 KVM: PPC: Book3S HV: XIVE: Add a control to dirty the XIVE EQ pages
When migration of a VM is initiated, a first copy of the RAM is
transferred to the destination before the VM is stopped, but there is
no guarantee that the EQ pages in which the event notifications are
queued have not been modified.

To make sure migration will capture a consistent memory state, the
XIVE device should perform a XIVE quiesce sequence to stop the flow of
event notifications and stabilize the EQs. This is the purpose of the
KVM_DEV_XIVE_EQ_SYNC control which will also marks the EQ pages dirty
to force their transfer.

Signed-off-by: Cédric Le Goater <clg@kaod.org>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
2019-04-30 19:35:16 +10:00
Cédric Le Goater
7b46b6169a KVM: PPC: Book3S HV: XIVE: Add a control to sync the sources
This control will be used by the H_INT_SYNC hcall from QEMU to flush
event notifications on the XIVE IC owning the source.

Signed-off-by: Cédric Le Goater <clg@kaod.org>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
2019-04-30 19:35:16 +10:00
Cédric Le Goater
5ca8064748 KVM: PPC: Book3S HV: XIVE: Add a global reset control
This control is to be used by the H_INT_RESET hcall from QEMU. Its
purpose is to clear all configuration of the sources and EQs. This is
necessary in case of a kexec (for a kdump kernel for instance) to make
sure that no remaining configuration is left from the previous boot
setup so that the new kernel can start safely from a clean state.

The queue 7 is ignored when the XIVE device is configured to run in
single escalation mode. Prio 7 is used by escalations.

The XIVE VP is kept enabled as the vCPU is still active and connected
to the XIVE device.

Signed-off-by: Cédric Le Goater <clg@kaod.org>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
2019-04-30 19:35:16 +10:00
Cédric Le Goater
13ce3297c5 KVM: PPC: Book3S HV: XIVE: Add controls for the EQ configuration
These controls will be used by the H_INT_SET_QUEUE_CONFIG and
H_INT_GET_QUEUE_CONFIG hcalls from QEMU to configure the underlying
Event Queue in the XIVE IC. They will also be used to restore the
configuration of the XIVE EQs and to capture the internal run-time
state of the EQs. Both 'get' and 'set' rely on an OPAL call to access
the EQ toggle bit and EQ index which are updated by the XIVE IC when
event notifications are enqueued in the EQ.

The value of the guest physical address of the event queue is saved in
the XIVE internal xive_q structure for later use. That is when
migration needs to mark the EQ pages dirty to capture a consistent
memory state of the VM.

To be noted that H_INT_SET_QUEUE_CONFIG does not require the extra
OPAL call setting the EQ toggle bit and EQ index to configure the EQ,
but restoring the EQ state will.

Signed-off-by: Cédric Le Goater <clg@kaod.org>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
2019-04-30 19:35:16 +10:00
Cédric Le Goater
e8676ce50e KVM: PPC: Book3S HV: XIVE: Add a control to configure a source
This control will be used by the H_INT_SET_SOURCE_CONFIG hcall from
QEMU to configure the target of a source and also to restore the
configuration of a source when migrating the VM.

The XIVE source interrupt structure is extended with the value of the
Effective Interrupt Source Number. The EISN is the interrupt number
pushed in the event queue that the guest OS will use to dispatch
events internally. Caching the EISN value in KVM eases the test when
checking if a reconfiguration is indeed needed.

Signed-off-by: Cédric Le Goater <clg@kaod.org>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
2019-04-30 19:35:16 +10:00
Cédric Le Goater
4131f83c3d KVM: PPC: Book3S HV: XIVE: add a control to initialize a source
The XIVE KVM device maintains a list of interrupt sources for the VM
which are allocated in the pool of generic interrupts (IPIs) of the
main XIVE IC controller. These are used for the CPU IPIs as well as
for virtual device interrupts. The IRQ number space is defined by
QEMU.

The XIVE device reuses the source structures of the XICS-on-XIVE
device for the source blocks (2-level tree) and for the source
interrupts. Under XIVE native, the source interrupt caches mostly
configuration information and is less used than under the XICS-on-XIVE
device in which hcalls are still necessary at run-time.

When a source is initialized in KVM, an IPI interrupt source is simply
allocated at the OPAL level and then MASKED. KVM only needs to know
about its type: LSI or MSI.

Signed-off-by: Cédric Le Goater <clg@kaod.org>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
2019-04-30 19:35:16 +10:00
Cédric Le Goater
eacc56bb9d KVM: PPC: Book3S HV: XIVE: Introduce a new capability KVM_CAP_PPC_IRQ_XIVE
The user interface exposes a new capability KVM_CAP_PPC_IRQ_XIVE to
let QEMU connect the vCPU presenters to the XIVE KVM device if
required. The capability is not advertised for now as the full support
for the XIVE native exploitation mode is not yet available. When this
is case, the capability will be advertised on PowerNV Hypervisors
only. Nested guests (pseries KVM Hypervisor) are not supported.

Internally, the interface to the new KVM device is protected with a
new interrupt mode: KVMPPC_IRQ_XIVE.

Signed-off-by: Cédric Le Goater <clg@kaod.org>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
2019-04-30 19:35:16 +10:00
Cédric Le Goater
90c73795af KVM: PPC: Book3S HV: Add a new KVM device for the XIVE native exploitation mode
This is the basic framework for the new KVM device supporting the XIVE
native exploitation mode. The user interface exposes a new KVM device
to be created by QEMU, only available when running on a L0 hypervisor.
Support for nested guests is not available yet.

The XIVE device reuses the device structure of the XICS-on-XIVE device
as they have a lot in common. That could possibly change in the future
if the need arise.

Signed-off-by: Cédric Le Goater <clg@kaod.org>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
2019-04-30 19:35:16 +10:00
Paul Mackerras
a878957a81 Merge remote-tracking branch 'remotes/powerpc/topic/ppc-kvm' into kvm-ppc-next
This merges in the ppc-kvm topic branch from the powerpc tree to get
patches which touch both general powerpc code and KVM code, one of
which is a prerequisite for following patches.

Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
2019-04-30 19:32:47 +10:00
Suraj Jitindar Singh
44b198aee1 KVM: PPC: Book3S HV: Save/restore vrsave register in kvmhv_p9_guest_entry()
On POWER9 and later processors where the host can schedule vcpus on a
per thread basis, there is a streamlined entry path used when the guest
is radix. This entry path saves/restores the fp and vr state in
kvmhv_p9_guest_entry() by calling store_[fp/vr]_state() and
load_[fp/vr]_state(). This is the same as the old entry path however the
old entry path also saved/restored the VRSAVE register, which isn't done
in the new entry path.

This means that the vrsave register is now volatile across guest exit,
which is an incorrect change in behaviour.

Fix this by saving/restoring the vrsave register in kvmhv_p9_guest_entry().
This restores the old, correct, behaviour.

Fixes: 95a6432ce9 ("KVM: PPC: Book3S HV: Streamlined guest entry/exit path on P9 for radix guests")

Signed-off-by: Suraj Jitindar Singh <sjitindarsingh@gmail.com>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
2019-04-30 19:32:19 +10:00
Paul Mackerras
70ea13f6e6 KVM: PPC: Book3S HV: Flush TLB on secondary radix threads
When running on POWER9 with kvm_hv.indep_threads_mode = N and the host
in SMT1 mode, KVM will run guest VCPUs on offline secondary threads.
If those guests are in radix mode, we fail to load the LPID and flush
the TLB if necessary, leading to the guest crashing with an
unsupported MMU fault.  This arises from commit 9a4506e11b ("KVM:
PPC: Book3S HV: Make radix handle process scoped LPID flush in C,
with relocation on", 2018-05-17), which didn't consider the case
where indep_threads_mode = N.

For simplicity, this makes the real-mode guest entry path flush the
TLB in the same place for both radix and hash guests, as we did before
9a4506e11b, though the code is now C code rather than assembly code.
We also have the radix TLB flush open-coded rather than calling
radix__local_flush_tlb_lpid_guest(), because the TLB flush can be
called in real mode, and in real mode we don't want to invoke the
tracepoint code.

Fixes: 9a4506e11b ("KVM: PPC: Book3S HV: Make radix handle process scoped LPID flush in C, with relocation on")
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
2019-04-30 19:32:12 +10:00
Paul Mackerras
2940ba0c48 KVM: PPC: Book3S HV: Move HPT guest TLB flushing to C code
This replaces assembler code in book3s_hv_rmhandlers.S that checks
the kvm->arch.need_tlb_flush cpumask and optionally does a TLB flush
with C code in book3s_hv_builtin.c.  Note that unlike the radix
version, the hash version doesn't do an explicit ERAT invalidation
because we will invalidate and load up the SLB before entering the
guest, and that will invalidate the ERAT.

Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
2019-04-30 19:32:01 +10:00
Suraj Jitindar Singh
7ae9bda7ed KVM: PPC: Book3S HV: Handle virtual mode in XIVE VCPU push code
The code in book3s_hv_rmhandlers.S that pushes the XIVE virtual CPU
context to the hardware currently assumes it is being called in real
mode, which is usually true.  There is however a path by which it can
be executed in virtual mode, in the case where indep_threads_mode = N.
A virtual CPU executing on an offline secondary thread can take a
hypervisor interrupt in virtual mode and return from the
kvmppc_hv_entry() call after the kvm_secondary_got_guest label.
It is possible for it to be given another vcpu to execute before it
gets to execute the stop instruction.  In that case it will call
kvmppc_hv_entry() for the second VCPU in virtual mode, and the XIVE
vCPU push code will be executed in virtual mode.  The result in that
case will be a host crash due to an unexpected data storage interrupt
caused by executing the stdcix instruction in virtual mode.

This fixes it by adding a code path for virtual mode, which uses the
virtual TIMA pointer and normal load/store instructions.

[paulus@ozlabs.org - wrote patch description]

Signed-off-by: Suraj Jitindar Singh <sjitindarsingh@gmail.com>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
2019-04-30 19:31:52 +10:00
Paul Mackerras
1f80ba3d20 KVM: PPC: Book3S HV: Fix XICS-on-XIVE H_IPI when priority = 0
This fixes a bug in the XICS emulation on POWER9 machines which is
triggered by the guest doing a H_IPI with priority = 0 (the highest
priority).  What happens is that the notification interrupt arrives
at the destination at priority zero.  The loop in scan_interrupts()
sees that a priority 0 interrupt is pending, but because xc->mfrr is
zero, we break out of the loop before taking the notification
interrupt out of the queue and EOI-ing it.  (This doesn't happen
when xc->mfrr != 0; in that case we process the priority-0 notification
interrupt on the first iteration of the loop, and then break out of
a subsequent iteration of the loop with hirq == XICS_IPI.)

To fix this, we move the prio >= xc->mfrr check down to near the end
of the loop.  However, there are then some other things that need to
be adjusted.  Since we are potentially handling the notification
interrupt and also delivering an IPI to the guest in the same loop
iteration, we need to update pending and handle any q->pending_count
value before the xc->mfrr check, rather than at the end of the loop.
Also, we need to update the queue pointers when we have processed and
EOI-ed the notification interrupt, since we may not do it later.

Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
2019-04-30 19:29:23 +10:00
Palmer Dabbelt
6fabc9f20c KVM: PPC: Book3S HV: smb->smp comment fixup
I made the same typo when trying to grep for uses of smp_wmb and figured
I might as well fix it.

Signed-off-by: Palmer Dabbelt <palmer@sifive.com>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
2019-04-30 14:43:13 +10:00
Alexey Kardashevskiy
e1a1ef84cd KVM: PPC: Book3S: Allocate guest TCEs on demand too
We already allocate hardware TCE tables in multiple levels and skip
intermediate levels when we can, now it is a turn of the KVM TCE tables.
Thankfully these are allocated already in 2 levels.

This moves the table's last level allocation from the creating helper to
kvmppc_tce_put() and kvm_spapr_tce_fault(). Since such allocation cannot
be done in real mode, this creates a virtual mode version of
kvmppc_tce_put() which handles allocations.

This adds kvmppc_rm_ioba_validate() to do an additional test if
the consequent kvmppc_tce_put() needs a page which has not been allocated;
if this is the case, we bail out to virtual mode handlers.

The allocations are protected by a new mutex as kvm->lock is not suitable
for the task because the fault handler is called with the mmap_sem held
but kvmhv_setup_mmu() locks kvm->lock and mmap_sem in the reverse order.

Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
2019-04-30 14:43:13 +10:00
Alexey Kardashevskiy
2001825efc KVM: PPC: Book3S HV: Avoid lockdep debugging in TCE realmode handlers
The kvmppc_tce_to_ua() helper is called from real and virtual modes
and it works fine as long as CONFIG_DEBUG_LOCKDEP is not enabled.
However if the lockdep debugging is on, the lockdep will most likely break
in kvm_memslots() because of srcu_dereference_check() so we need to use
PPC-own kvm_memslots_raw() which uses realmode safe
rcu_dereference_raw_notrace().

This creates a realmode copy of kvmppc_tce_to_ua() which replaces
kvm_memslots() with kvm_memslots_raw().

Since kvmppc_rm_tce_to_ua() becomes static and can only be used inside
HV KVM, this moves it earlier under CONFIG_KVM_BOOK3S_HV_POSSIBLE.

This moves truly virtual-mode kvmppc_tce_to_ua() to where it belongs and
drops the prmap parameter which was never used in the virtual mode.

Fixes: d3695aa4f4 ("KVM: PPC: Add support for multiple-TCE hcalls", 2016-02-15)
Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
2019-04-30 14:43:13 +10:00
Alexey Kardashevskiy
3309bec85e KVM: PPC: Book3S HV: Fix lockdep warning when entering the guest
The trace_hardirqs_on() sets current->hardirqs_enabled and from here
the lockdep assumes interrupts are enabled although they are remain
disabled until the context switches to the guest. Consequent
srcu_read_lock() checks the flags in rcu_lock_acquire(), observes
disabled interrupts and prints a warning (see below).

This moves trace_hardirqs_on/off closer to __kvmppc_vcore_entry to
prevent lockdep from being confused.

DEBUG_LOCKS_WARN_ON(current->hardirqs_enabled)
WARNING: CPU: 16 PID: 8038 at kernel/locking/lockdep.c:4128 check_flags.part.25+0x224/0x280
[...]
NIP [c000000000185b84] check_flags.part.25+0x224/0x280
LR [c000000000185b80] check_flags.part.25+0x220/0x280
Call Trace:
[c000003fec253710] [c000000000185b80] check_flags.part.25+0x220/0x280 (unreliable)
[c000003fec253780] [c000000000187ea4] lock_acquire+0x94/0x260
[c000003fec253840] [c00800001a1e9768] kvmppc_run_core+0xa60/0x1ab0 [kvm_hv]
[c000003fec253a10] [c00800001a1ed944] kvmppc_vcpu_run_hv+0x73c/0xec0 [kvm_hv]
[c000003fec253ae0] [c00800001a1095dc] kvmppc_vcpu_run+0x34/0x48 [kvm]
[c000003fec253b00] [c00800001a1056bc] kvm_arch_vcpu_ioctl_run+0x2f4/0x400 [kvm]
[c000003fec253b90] [c00800001a0f3618] kvm_vcpu_ioctl+0x460/0x850 [kvm]
[c000003fec253d00] [c00000000041c4f4] do_vfs_ioctl+0xe4/0x930
[c000003fec253db0] [c00000000041ce04] ksys_ioctl+0xc4/0x110
[c000003fec253e00] [c00000000041ce78] sys_ioctl+0x28/0x80
[c000003fec253e20] [c00000000000b5a4] system_call+0x5c/0x70
Instruction dump:
419e0034 3d220004 39291730 81290000 2f890000 409e0020 3c82ffc6 3c62ffc5
3884be70 386329c0 4bf6ea71 60000000 <0fe00000> 3c62ffc6 3863be90 4801273d
irq event stamp: 1025
hardirqs last  enabled at (1025): [<c00800001a1e9728>] kvmppc_run_core+0xa20/0x1ab0 [kvm_hv]
hardirqs last disabled at (1024): [<c00800001a1e9358>] kvmppc_run_core+0x650/0x1ab0 [kvm_hv]
softirqs last  enabled at (0): [<c0000000000f1210>] copy_process.isra.4.part.5+0x5f0/0x1d00
softirqs last disabled at (0): [<0000000000000000>]           (null)
---[ end trace 31180adcc848993e ]---
possible reason: unannotated irqs-off.
irq event stamp: 1025
hardirqs last  enabled at (1025): [<c00800001a1e9728>] kvmppc_run_core+0xa20/0x1ab0 [kvm_hv]
hardirqs last disabled at (1024): [<c00800001a1e9358>] kvmppc_run_core+0x650/0x1ab0 [kvm_hv]
softirqs last  enabled at (0): [<c0000000000f1210>] copy_process.isra.4.part.5+0x5f0/0x1d00
softirqs last disabled at (0): [<0000000000000000>]           (null)

Fixes: 8b24e69fc4 ("KVM: PPC: Book3S HV: Close race with testing for signals on guest entry", 2017-06-26)
Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
2019-04-30 14:43:12 +10:00
Suraj Jitindar Singh
eadfb1c5f8 KVM: PPC: Book3S HV: Implement real mode H_PAGE_INIT handler
Implement a real mode handler for the H_CALL H_PAGE_INIT which can be
used to zero or copy a guest page. The page is defined to be 4k and must
be 4k aligned.

The in-kernel real mode handler halves the time to handle this H_CALL
compared to handling it in userspace for a hash guest.

Signed-off-by: Suraj Jitindar Singh <sjitindarsingh@gmail.com>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
2019-04-30 14:43:12 +10:00
Suraj Jitindar Singh
2d34d1c3bb KVM: PPC: Book3S HV: Implement virtual mode H_PAGE_INIT handler
Implement a virtual mode handler for the H_CALL H_PAGE_INIT which can be
used to zero or copy a guest page. The page is defined to be 4k and must
be 4k aligned.

The in-kernel handler halves the time to handle this H_CALL compared to
handling it in userspace for a radix guest.

Signed-off-by: Suraj Jitindar Singh <sjitindarsingh@gmail.com>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
2019-04-30 14:41:20 +10:00
Michael Neuling
c1fe190c06 powerpc: Add force enable of DAWR on P9 option
This adds a flag so that the DAWR can be enabled on P9 via:
  echo Y > /sys/kernel/debug/powerpc/dawr_enable_dangerous

The DAWR was previously force disabled on POWER9 in:
  9654153158 powerpc: Disable DAWR in the base POWER9 CPU features
Also see Documentation/powerpc/DAWR-POWER9.txt

This is a dangerous setting, USE AT YOUR OWN RISK.

Some users may not care about a bad user crashing their box
(ie. single user/desktop systems) and really want the DAWR.  This
allows them to force enable DAWR.

This flag can also be used to disable DAWR access. Once this is
cleared, all DAWR access should be cleared immediately and your
machine once again safe from crashing.

Userspace may get confused by toggling this. If DAWR is force
enabled/disabled between getting the number of breakpoints (via
PTRACE_GETHWDBGINFO) and setting the breakpoint, userspace will get an
inconsistent view of what's available. Similarly for guests.

For the DAWR to be enabled in a KVM guest, the DAWR needs to be force
enabled in the host AND the guest. For this reason, this won't work on
POWERVM as it doesn't allow the HCALL to work. Writes of 'Y' to the
dawr_enable_dangerous file will fail if the hypervisor doesn't support
writing the DAWR.

To double check the DAWR is working, run this kernel selftest:
  tools/testing/selftests/powerpc/ptrace/ptrace-hwbreak.c
Any errors/failures/skips mean something is wrong.

Signed-off-by: Michael Neuling <mikey@neuling.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2019-04-20 22:20:45 +10:00
Alexey Kardashevskiy
345077c8e1 KVM: PPC: Book3S: Protect memslots while validating user address
Guest physical to user address translation uses KVM memslots and reading
these requires holding the kvm->srcu lock. However recently introduced
kvmppc_tce_validate() broke the rule (see the lockdep warning below).

This moves srcu_read_lock(&vcpu->kvm->srcu) earlier to protect
kvmppc_tce_validate() as well.

=============================
WARNING: suspicious RCU usage
5.1.0-rc2-le_nv2_aikATfstn1-p1 #380 Not tainted
-----------------------------
include/linux/kvm_host.h:605 suspicious rcu_dereference_check() usage!

other info that might help us debug this:

rcu_scheduler_active = 2, debug_locks = 1
1 lock held by qemu-system-ppc/8020:
 #0: 0000000094972fe9 (&vcpu->mutex){+.+.}, at: kvm_vcpu_ioctl+0xdc/0x850 [kvm]

stack backtrace:
CPU: 44 PID: 8020 Comm: qemu-system-ppc Not tainted 5.1.0-rc2-le_nv2_aikATfstn1-p1 #380
Call Trace:
[c000003fece8f740] [c000000000bcc134] dump_stack+0xe8/0x164 (unreliable)
[c000003fece8f790] [c000000000181be0] lockdep_rcu_suspicious+0x130/0x170
[c000003fece8f810] [c0000000000d5f50] kvmppc_tce_to_ua+0x280/0x290
[c000003fece8f870] [c00800001a7e2c78] kvmppc_tce_validate+0x80/0x1b0 [kvm]
[c000003fece8f8e0] [c00800001a7e3fac] kvmppc_h_put_tce+0x94/0x3e4 [kvm]
[c000003fece8f9a0] [c00800001a8baac4] kvmppc_pseries_do_hcall+0x30c/0xce0 [kvm_hv]
[c000003fece8fa10] [c00800001a8bd89c] kvmppc_vcpu_run_hv+0x694/0xec0 [kvm_hv]
[c000003fece8fae0] [c00800001a7d95dc] kvmppc_vcpu_run+0x34/0x48 [kvm]
[c000003fece8fb00] [c00800001a7d56bc] kvm_arch_vcpu_ioctl_run+0x2f4/0x400 [kvm]
[c000003fece8fb90] [c00800001a7c3618] kvm_vcpu_ioctl+0x460/0x850 [kvm]
[c000003fece8fd00] [c00000000041c4f4] do_vfs_ioctl+0xe4/0x930
[c000003fece8fdb0] [c00000000041ce04] ksys_ioctl+0xc4/0x110
[c000003fece8fe00] [c00000000041ce78] sys_ioctl+0x28/0x80
[c000003fece8fe20] [c00000000000b5a4] system_call+0x5c/0x70

Fixes: 42de7b9e21 ("KVM: PPC: Validate TCEs against preregistered memory page sizes", 2018-09-10)
Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
2019-04-05 14:37:24 +11:00
Suraj Jitindar Singh
7cb9eb106d KVM: PPC: Book3S HV: Perserve PSSCR FAKE_SUSPEND bit on guest exit
There is a hardware bug in some POWER9 processors where a treclaim in
fake suspend mode can cause an inconsistency in the XER[SO] bit across
the threads of a core, the workaround being to force the core into SMT4
when doing the treclaim.

The FAKE_SUSPEND bit (bit 10) in the PSSCR is used to control whether a
thread is in fake suspend or real suspend. The important difference here
being that thread reconfiguration is blocked in real suspend but not
fake suspend mode.

When we exit a guest which was in fake suspend mode, we force the core
into SMT4 while we do the treclaim in kvmppc_save_tm_hv().
However on the new exit path introduced with the function
kvmhv_run_single_vcpu() we restore the host PSSCR before calling
kvmppc_save_tm_hv() which means that if we were in fake suspend mode we
put the thread into real suspend mode when we clear the
PSSCR[FAKE_SUSPEND] bit. This means that we block thread reconfiguration
and the thread which is trying to get the core into SMT4 before it can
do the treclaim spins forever since it itself is blocking thread
reconfiguration. The result is that that core is essentially lost.

This results in a trace such as:
[   93.512904] CPU: 7 PID: 13352 Comm: qemu-system-ppc Not tainted 5.0.0 #4
[   93.512905] NIP:  c000000000098a04 LR: c0000000000cc59c CTR: 0000000000000000
[   93.512908] REGS: c000003fffd2bd70 TRAP: 0100   Not tainted  (5.0.0)
[   93.512908] MSR:  9000000302883033 <SF,HV,VEC,VSX,FP,ME,IR,DR,RI,LE,TM[SE]>  CR: 22222444  XER: 00000000
[   93.512914] CFAR: c000000000098a5c IRQMASK: 3
[   93.512915] PACATMSCRATCH: 0000000000000001
[   93.512916] GPR00: 0000000000000001 c000003f6cc1b830 c000000001033100 0000000000000004
[   93.512928] GPR04: 0000000000000004 0000000000000002 0000000000000004 0000000000000007
[   93.512930] GPR08: 0000000000000000 0000000000000004 0000000000000000 0000000000000004
[   93.512932] GPR12: c000203fff7fc000 c000003fffff9500 0000000000000000 0000000000000000
[   93.512935] GPR16: 2000000000300375 000000000000059f 0000000000000000 0000000000000000
[   93.512951] GPR20: 0000000000000000 0000000000080053 004000000256f41f c000003f6aa88ef0
[   93.512953] GPR24: c000003f6aa89100 0000000000000010 0000000000000000 0000000000000000
[   93.512956] GPR28: c000003f9e9a0800 0000000000000000 0000000000000001 c000203fff7fc000
[   93.512959] NIP [c000000000098a04] pnv_power9_force_smt4_catch+0x1b4/0x2c0
[   93.512960] LR [c0000000000cc59c] kvmppc_save_tm_hv+0x40/0x88
[   93.512960] Call Trace:
[   93.512961] [c000003f6cc1b830] [0000000000080053] 0x80053 (unreliable)
[   93.512965] [c000003f6cc1b8a0] [c00800001e9cb030] kvmhv_p9_guest_entry+0x508/0x6b0 [kvm_hv]
[   93.512967] [c000003f6cc1b940] [c00800001e9cba44] kvmhv_run_single_vcpu+0x2dc/0xb90 [kvm_hv]
[   93.512968] [c000003f6cc1ba10] [c00800001e9cc948] kvmppc_vcpu_run_hv+0x650/0xb90 [kvm_hv]
[   93.512969] [c000003f6cc1bae0] [c00800001e8f620c] kvmppc_vcpu_run+0x34/0x48 [kvm]
[   93.512971] [c000003f6cc1bb00] [c00800001e8f2d4c] kvm_arch_vcpu_ioctl_run+0x2f4/0x400 [kvm]
[   93.512972] [c000003f6cc1bb90] [c00800001e8e3918] kvm_vcpu_ioctl+0x460/0x7d0 [kvm]
[   93.512974] [c000003f6cc1bd00] [c0000000003ae2c0] do_vfs_ioctl+0xe0/0x8e0
[   93.512975] [c000003f6cc1bdb0] [c0000000003aeb24] ksys_ioctl+0x64/0xe0
[   93.512978] [c000003f6cc1be00] [c0000000003aebc8] sys_ioctl+0x28/0x80
[   93.512981] [c000003f6cc1be20] [c00000000000b3a4] system_call+0x5c/0x70
[   93.512983] Instruction dump:
[   93.512986] 419dffbc e98c0000 2e8b0000 38000001 60000000 60000000 60000000 40950068
[   93.512993] 392bffff 39400000 79290020 39290001 <7d2903a6> 60000000 60000000 7d235214

To fix this we preserve the PSSCR[FAKE_SUSPEND] bit until we call
kvmppc_save_tm_hv() which will mean the core can get into SMT4 and
perform the treclaim. Note kvmppc_save_tm_hv() clears the
PSSCR[FAKE_SUSPEND] bit again so there is no need to explicitly do that.

Fixes: 95a6432ce9 ("KVM: PPC: Book3S HV: Streamlined guest entry/exit path on P9 for radix guests")

Signed-off-by: Suraj Jitindar Singh <sjitindarsingh@gmail.com>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
2019-04-05 14:37:24 +11:00
Linus Torvalds
636deed6c0 ARM: some cleanups, direct physical timer assignment, cache sanitization
for 32-bit guests
 
 s390: interrupt cleanup, introduction of the Guest Information Block,
 preparation for processor subfunctions in cpu models
 
 PPC: bug fixes and improvements, especially related to machine checks
 and protection keys
 
 x86: many, many cleanups, including removing a bunch of MMU code for
 unnecessary optimizations; plus AVIC fixes.
 
 Generic: memcg accounting
 -----BEGIN PGP SIGNATURE-----
 Version: GnuPG v2.0.22 (GNU/Linux)
 
 iQEcBAABAgAGBQJci+7XAAoJEL/70l94x66DUMkIAKvEefhceySHYiTpfefjLjIC
 16RewgHa+9CO4Oo5iXiWd90fKxtXLXmxDQOS4VGzN0rxvLGRw/fyXIxL1MDOkaAO
 l8SLSNuewY4XBUgISL3PMz123r18DAGOuy9mEcYU/IMesYD2F+wy5lJ17HIGq6X2
 RpoF1p3qO1jfkPTKOob6Ixd4H5beJNPKpdth7LY3PJaVhDxgouj32fxnLnATVSnN
 gENQ10fnt8BCjshRYW6Z2/9bF15JCkUFR1xdBW2/xh1oj+kvPqqqk2bEN1eVQzUy
 2hT/XkwtpthqjSbX8NNavWRSFnOnbMLTRKQyIXmFVsM5VoSrwtiGsCFzBgcT++I=
 =XIzU
 -----END PGP SIGNATURE-----

Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm

Pull KVM updates from Paolo Bonzini:
 "ARM:
   - some cleanups
   - direct physical timer assignment
   - cache sanitization for 32-bit guests

  s390:
   - interrupt cleanup
   - introduction of the Guest Information Block
   - preparation for processor subfunctions in cpu models

  PPC:
   - bug fixes and improvements, especially related to machine checks
     and protection keys

  x86:
   - many, many cleanups, including removing a bunch of MMU code for
     unnecessary optimizations
   - AVIC fixes

  Generic:
   - memcg accounting"

* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (147 commits)
  kvm: vmx: fix formatting of a comment
  KVM: doc: Document the life cycle of a VM and its resources
  MAINTAINERS: Add KVM selftests to existing KVM entry
  Revert "KVM/MMU: Flush tlb directly in the kvm_zap_gfn_range()"
  KVM: PPC: Book3S: Add count cache flush parameters to kvmppc_get_cpu_char()
  KVM: PPC: Fix compilation when KVM is not enabled
  KVM: Minor cleanups for kvm_main.c
  KVM: s390: add debug logging for cpu model subfunctions
  KVM: s390: implement subfunction processor calls
  arm64: KVM: Fix architecturally invalid reset value for FPEXC32_EL2
  KVM: arm/arm64: Remove unused timer variable
  KVM: PPC: Book3S: Improve KVM reference counting
  KVM: PPC: Book3S HV: Fix build failure without IOMMU support
  Revert "KVM: Eliminate extra function calls in kvm_get_dirty_log_protect()"
  x86: kvmguest: use TSC clocksource if invariant TSC is exposed
  KVM: Never start grow vCPU halt_poll_ns from value below halt_poll_ns_grow_start
  KVM: Expose the initial start value in grow_halt_poll_ns() as a module parameter
  KVM: grow_halt_poll_ns() should never shrink vCPU halt_poll_ns
  KVM: x86/mmu: Consolidate kvm_mmu_zap_all() and kvm_mmu_zap_mmio_sptes()
  KVM: x86/mmu: WARN if zapping a MMIO spte results in zapping children
  ...
2019-03-15 15:00:28 -07:00
Michael Ellerman
2de04718ec Merge branch 'topic/ppc-kvm' into next
Merge another commit in the topic/ppc-kvm branch we're sharing with
kvm-ppc.
2019-03-02 14:42:28 +11:00
Suraj Jitindar Singh
2b57ecd020 KVM: PPC: Book3S: Add count cache flush parameters to kvmppc_get_cpu_char()
Add KVM_PPC_CPU_CHAR_BCCTR_FLUSH_ASSIST &
KVM_PPC_CPU_BEHAV_FLUSH_COUNT_CACHE to the characteristics returned
from the H_GET_CPU_CHARACTERISTICS H-CALL, as queried from either the
hypervisor or the device tree.

Signed-off-by: Suraj Jitindar Singh <sjitindarsingh@gmail.com>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
2019-03-01 15:11:14 +11:00
Christophe Leroy
92ab45c5f2 powerpc: Avoid circular header inclusion in mmu-hash.h
When activating CONFIG_THREAD_INFO_IN_TASK, linux/sched.h includes
asm/current.h. This generates a circular dependency. To avoid that,
asm/processor.h shall not be included in mmu-hash.h.

In order to do that, this patch moves into a new header called
asm/task_size_64/32.h all the TASK_SIZE related constants, which can
then be included in mmu-hash.h directly.

Signed-off-by: Christophe Leroy <christophe.leroy@c-s.fr>
Reviewed-by: Nicholas Piggin <npiggin@gmail.com>
[mpe: Split out all the TASK_SIZE constants not just 64-bit ones]
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2019-02-23 22:31:39 +11:00
Paolo Bonzini
54a1f393ce PPC KVM update for 5.1
There are no major new features this time, just a collection of bug
 fixes and improvements in various areas, including machine check
 handling and context switching of protection-key-related registers.
 -----BEGIN PGP SIGNATURE-----
 Version: GnuPG v2
 
 iQEcBAABCAAGBQJcb3lEAAoJEJ2a6ncsY3GflNwH/2ezxhHv7CRy18d2D3F+Kna+
 YQs3V/pJfBRvVdV7ZLxnR03H/NmzAK3UOzRfqGodYUtbF+gUDqSuM27lAxMKrjBv
 S87X5g/1ZdiQNnqYK7PIBn75Tx27vnw2kJAif8rXTfqbj8qLUsXcNhsziA16sJOA
 azbD5PBp9mOVzTojawyriJ3H8LYqw+vinad0idvFrApFCuNmMxv56FR6H+IBadt7
 1UJyx6AegQACdhxvy0CzmZjzzXw02z9zeFUa4lakm2sORc4fbbyyZ68CtkGURg7A
 8rt2j9SGt649ExpjfG2Cz/UihMGIMXSAOrpqTZMfyd9UPzPgHeKx2FidnxASUBc=
 =PIT8
 -----END PGP SIGNATURE-----

Merge tag 'kvm-ppc-next-5.1-1' of git://git.kernel.org/pub/scm/linux/kernel/git/paulus/powerpc into kvm-next

PPC KVM update for 5.1

There are no major new features this time, just a collection of bug
fixes and improvements in various areas, including machine check
handling and context switching of protection-key-related registers.
2019-02-22 17:43:05 +01:00
Paul Mackerras
0a0c50f771 Merge remote-tracking branch 'remotes/powerpc/topic/ppc-kvm' into kvm-ppc-next
This merges in the "ppc-kvm" topic branch of the powerpc tree to get a
series of commits that touch both general arch/powerpc code and KVM
code.  These commits will be merged both via the KVM tree and the
powerpc tree.

Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
2019-02-22 13:52:30 +11:00
Michael Ellerman
c3c7470c75 powerpc/kvm: Save and restore host AMR/IAMR/UAMOR
When the hash MMU is active the AMR, IAMR and UAMOR are used for
pkeys. The AMR is directly writable by user space, and the UAMOR masks
those writes, meaning both registers are effectively user register
state. The IAMR is used to create an execute only key.

Also we must maintain the value of at least the AMR when running in
process context, so that any memory accesses done by the kernel on
behalf of the process are correctly controlled by the AMR.

Although we are correctly switching all registers when going into a
guest, on returning to the host we just write 0 into all regs, except
on Power9 where we restore the IAMR correctly.

This could be observed by a user process if it writes the AMR, then
runs a guest and we then return immediately to it without
rescheduling. Because we have written 0 to the AMR that would have the
effect of granting read/write permission to pages that the process was
trying to protect.

In addition, when using the Radix MMU, the AMR can prevent inadvertent
kernel access to userspace data, writing 0 to the AMR disables that
protection.

So save and restore AMR, IAMR and UAMOR.

Fixes: cf43d3b264 ("powerpc: Enable pkey subsystem")
Cc: stable@vger.kernel.org # v4.16+
Signed-off-by: Russell Currey <ruscur@russell.cc>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Acked-by: Paul Mackerras <paulus@ozlabs.org>
2019-02-22 13:41:13 +11:00
Alexey Kardashevskiy
716cb11608 KVM: PPC: Book3S: Improve KVM reference counting
The anon fd's ops releases the KVM reference in the release hook.
However we reference the KVM object after we create the fd so there is
small window when the release function can be called and
dereferenced the KVM object which potentially may free it.

It is not a problem at the moment as the file is created and KVM is
referenced under the KVM lock and the release function obtains the same
lock before dereferencing the KVM (although the lock is not held when
calling kvm_put_kvm()) but it is potentially fragile against future changes.

This references the KVM object before creating a file.

Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
2019-02-22 12:51:02 +11:00
Jordan Niethe
e40542aff9 KVM: PPC: Book3S HV: Fix build failure without IOMMU support
Currently trying to build without IOMMU support will fail:

  (.text+0x1380): undefined reference to `kvmppc_h_get_tce'
  (.text+0x1384): undefined reference to `kvmppc_rm_h_put_tce'
  (.text+0x149c): undefined reference to `kvmppc_rm_h_stuff_tce'
  (.text+0x14a0): undefined reference to `kvmppc_rm_h_put_tce_indirect'

This happens because turning off IOMMU support will prevent
book3s_64_vio_hv.c from being built because it is only built when
SPAPR_TCE_IOMMU is set, which depends on IOMMU support.

Fix it using ifdefs for the undefined references.

Fixes: 76d837a4c0 ("KVM: PPC: Book3S PR: Don't include SPAPR TCE code on non-pseries platforms")
Signed-off-by: Jordan Niethe <jniethe5@gmail.com>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
2019-02-22 12:51:02 +11:00
Michael Ellerman
e121ee6bc3 Merge branch 'topic/ppc-kvm' into next
Merge commits we're sharing with kvm-ppc tree.
2019-02-22 00:09:56 +11:00
Paul Mackerras
c057720184 powerpc/64s: Better printing of machine check info for guest MCEs
This adds an "in_guest" parameter to machine_check_print_event_info()
so that we can avoid trying to translate guest NIP values into
symbolic form using the host kernel's symbol table.

Reviewed-by: Aravinda Prasad <aravinda@linux.vnet.ibm.com>
Reviewed-by: Mahesh Salgaonkar <mahesh@linux.vnet.ibm.com>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2019-02-21 23:16:45 +11:00
Paul Mackerras
884dfb722d KVM: PPC: Book3S HV: Simplify machine check handling
This makes the handling of machine check interrupts that occur inside
a guest simpler and more robust, with less done in assembler code and
in real mode.

Now, when a machine check occurs inside a guest, we always get the
machine check event struct and put a copy in the vcpu struct for the
vcpu where the machine check occurred.  We no longer call
machine_check_queue_event() from kvmppc_realmode_mc_power7(), because
on POWER8, when a vcpu is running on an offline secondary thread and
we call machine_check_queue_event(), that calls irq_work_queue(),
which doesn't work because the CPU is offline, but instead triggers
the WARN_ON(lazy_irq_pending()) in pnv_smp_cpu_kill_self() (which
fires again and again because nothing clears the condition).

All that machine_check_queue_event() actually does is to cause the
event to be printed to the console.  For a machine check occurring in
the guest, we now print the event in kvmppc_handle_exit_hv()
instead.

The assembly code at label machine_check_realmode now just calls C
code and then continues exiting the guest.  We no longer either
synthesize a machine check for the guest in assembly code or return
to the guest without a machine check.

The code in kvmppc_handle_exit_hv() is extended to handle the case
where the guest is not FWNMI-capable.  In that case we now always
synthesize a machine check interrupt for the guest.  Previously, if
the host thinks it has recovered the machine check fully, it would
return to the guest without any notification that the machine check
had occurred.  If the machine check was caused by some action of the
guest (such as creating duplicate SLB entries), it is much better to
tell the guest that it has caused a problem.  Therefore we now always
generate a machine check interrupt for guests that are not
FWNMI-capable.

Reviewed-by: Aravinda Prasad <aravinda@linux.vnet.ibm.com>
Reviewed-by: Mahesh Salgaonkar <mahesh@linux.vnet.ibm.com>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2019-02-21 23:16:44 +11:00
Michael Ellerman
d976f6807e KVM: PPC: Book3S HV: Context switch AMR on Power9
kvmhv_p9_guest_entry() implements a fast-path guest entry for Power9
when guest and host are both running with the Radix MMU.

Currently in that path we don't save the host AMR (Authority Mask
Register) value, and we always restore 0 on return to the host. That
is OK at the moment because the AMR is not used for storage keys with
the Radix MMU.

However we plan to start using the AMR on Radix to prevent the kernel
from reading/writing to userspace outside of copy_to/from_user(). In
order to make that work we need to save/restore the AMR value.

We only restore the value if it is different from the guest value,
which is already in the register when we exit to the host. This should
mean we rarely need to actually restore the value when running a
modern Linux as a guest, because it will be using the same value as
us.

Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Tested-by: Russell Currey <ruscur@russell.cc>
2019-02-21 13:19:52 +11:00
Nir Weiner
dee339b5c1 KVM: Never start grow vCPU halt_poll_ns from value below halt_poll_ns_grow_start
grow_halt_poll_ns() have a strange behaviour in case
(vcpu->halt_poll_ns != 0) &&
(vcpu->halt_poll_ns < halt_poll_ns_grow_start).

In this case, vcpu->halt_poll_ns will be multiplied by grow factor
(halt_poll_ns_grow) which will require several grow iteration in order
to reach a value bigger than halt_poll_ns_grow_start.
This means that growing vcpu->halt_poll_ns from value of 0 is slower
than growing it from a positive value less than halt_poll_ns_grow_start.
Which is misleading and inaccurate.

Fix issue by changing grow_halt_poll_ns() to set vcpu->halt_poll_ns
to halt_poll_ns_grow_start in any case that
(vcpu->halt_poll_ns < halt_poll_ns_grow_start).
Regardless if vcpu->halt_poll_ns is 0.

use READ_ONCE to get a consistent number for all cases.

Reviewed-by: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Reviewed-by: Liran Alon <liran.alon@oracle.com>
Signed-off-by: Nir Weiner <nir.weiner@oracle.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-02-20 22:48:51 +01:00
Nir Weiner
49113d360b KVM: Expose the initial start value in grow_halt_poll_ns() as a module parameter
The hard-coded value 10000 in grow_halt_poll_ns() stands for the initial
start value when raising up vcpu->halt_poll_ns.
It actually sets the first timeout to the first polling session.
This value has significant effect on how tolerant we are to outliers.
On the standard case, higher value is better - we will spend more time
in the polling busyloop, handle events/interrupts faster and result
in better performance.
But on outliers it puts us in a busy loop that does nothing.
Even if the shrink factor is zero, we will still waste time on the first
iteration.
The optimal value changes between different workloads. It depends on
outliers rate and polling sessions length.
As this value has significant effect on the dynamic halt-polling
algorithm, it should be configurable and exposed.

Reviewed-by: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Reviewed-by: Liran Alon <liran.alon@oracle.com>
Signed-off-by: Nir Weiner <nir.weiner@oracle.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-02-20 22:48:50 +01:00
Nir Weiner
7fa08e71b4 KVM: grow_halt_poll_ns() should never shrink vCPU halt_poll_ns
grow_halt_poll_ns() have a strange behavior in case
(halt_poll_ns_grow == 0) && (vcpu->halt_poll_ns != 0).

In this case, vcpu->halt_pol_ns will be set to zero.
That results in shrinking instead of growing.

Fix issue by changing grow_halt_poll_ns() to not modify
vcpu->halt_poll_ns in case halt_poll_ns_grow is zero

Reviewed-by: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Reviewed-by: Liran Alon <liran.alon@oracle.com>
Signed-off-by: Nir Weiner <nir.weiner@oracle.com>
Suggested-by: Liran Alon <liran.alon@oracle.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-02-20 22:48:50 +01:00
Suraj Jitindar Singh
8f1f7b9bed KVM: PPC: Book3S HV: Add KVM stat largepages_[2M/1G]
This adds an entry to the kvm_stats_debugfs directory which provides the
number of large (2M or 1G) pages which have been used to setup the guest
mappings, for radix guests.

Signed-off-by: Suraj Jitindar Singh <sjitindarsingh@gmail.com>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
2019-02-19 16:00:15 +11:00
Alexey Kardashevskiy
a67614cc05 KVM: PPC: Release all hardware TCE tables attached to a group
The SPAPR TCE KVM device references all hardware IOMMU tables assigned to
some IOMMU group to ensure that in-kernel KVM acceleration of H_PUT_TCE
can work. The tables are references when an IOMMU group gets registered
with the VFIO KVM device by the KVM_DEV_VFIO_GROUP_ADD ioctl;
KVM_DEV_VFIO_GROUP_DEL calls into the dereferencing code
in kvm_spapr_tce_release_iommu_group() which walks through the list of
LIOBNs, finds a matching IOMMU table and calls kref_put() when found.

However that code stops after the very first successful derefencing
leaving other tables referenced till the SPAPR TCE KVM device is destroyed
which normally happens on guest reboot or termination so if we do hotplug
and unplug in a loop, we are leaking IOMMU tables here.

This removes a premature return to let kvm_spapr_tce_release_iommu_group()
find and dereference all attached tables.

Fixes: 121f80ba68 ("KVM: PPC: VFIO: Add in-kernel acceleration for VFIO")
Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
2019-02-19 16:00:15 +11:00
Suraj Jitindar Singh
1b6422574e KVM: PPC: Book3S HV: Optimise mmio emulation for devices on FAST_MMIO_BUS
Devices on the KVM_FAST_MMIO_BUS by definition have length zero and are
thus used for notification purposes rather than data transfer. For
example eventfd for virtio devices.

This means that when emulating mmio instructions which target devices on
this bus we can immediately handle them and return without needing to load
the instruction from guest memory.

For now we restrict this to stores as this is the only use case at
present.

For a normal guest the effect is negligible, however for a nested guest
we save on the order of 5us per access.

Signed-off-by: Suraj Jitindar Singh <sjitindarsingh@gmail.com>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
2019-02-19 16:00:15 +11:00
Paul Mackerras
03f953329b KVM: PPC: Book3S: Allow XICS emulation to work in nested hosts using XIVE
Currently, the KVM code assumes that if the host kernel is using the
XIVE interrupt controller (the new interrupt controller that first
appeared in POWER9 systems), then the in-kernel XICS emulation will
use the XIVE hardware to deliver interrupts to the guest.  However,
this only works when the host is running in hypervisor mode and has
full access to all of the XIVE functionality.  It doesn't work in any
nested virtualization scenario, either with PR KVM or nested-HV KVM,
because the XICS-on-XIVE code calls directly into the native-XIVE
routines, which are not initialized and cannot function correctly
because they use OPAL calls, and OPAL is not available in a guest.

This means that using the in-kernel XICS emulation in a nested
hypervisor that is using XIVE as its interrupt controller will cause a
(nested) host kernel crash.  To fix this, we change most of the places
where the current code calls xive_enabled() to select between the
XICS-on-XIVE emulation and the plain XICS emulation to call a new
function, xics_on_xive(), which returns false in a guest.

However, there is a further twist.  The plain XICS emulation has some
functions which are used in real mode and access the underlying XICS
controller (the interrupt controller of the host) directly.  In the
case of a nested hypervisor, this means doing XICS hypercalls
directly.  When the nested host is using XIVE as its interrupt
controller, these hypercalls will fail.  Therefore this also adds
checks in the places where the XICS emulation wants to access the
underlying interrupt controller directly, and if that is XIVE, makes
the code use the virtual mode fallback paths, which call generic
kernel infrastructure rather than doing direct XICS access.

Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Reviewed-by: Cédric Le Goater <clg@kaod.org>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
2019-02-19 16:00:15 +11:00