Commit Graph

2 Commits

Author SHA1 Message Date
Thomas Gleixner
1802d0beec treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 174
Based on 1 normalized pattern(s):

  this program is free software you can redistribute it and or modify
  it under the terms of the gnu general public license version 2 as
  published by the free software foundation this program is
  distributed in the hope that it will be useful but without any
  warranty without even the implied warranty of merchantability or
  fitness for a particular purpose see the gnu general public license
  for more details

extracted by the scancode license scanner the SPDX license identifier

  GPL-2.0-only

has been chosen to replace the boilerplate/reference in 655 file(s).

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Allison Randal <allison@lohutok.net>
Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Richard Fontana <rfontana@redhat.com>
Cc: linux-spdx@vger.kernel.org
Link: https://lkml.kernel.org/r/20190527070034.575739538@linutronix.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-05-30 11:26:41 -07:00
Dave Gerlach
a01bc0d5f5 remoteproc/wkup_m3: add a remoteproc driver for TI Wakeup M3
Add a remoteproc driver to load the firmware and boot a small
Wakeup M3 processor present on TI AM33xx and AM43xx SoCs. This
Wakeup M3 remote processor is an integrated Cortex M3 that allows
the SoC to enter the lowest possible power state by taking control
from the MPU after it has gone into its own low power state and
shutting off any additional peripherals.

The Wakeup M3 processor has two internal memory regions - 16 kB of
unified instruction memory called UMEM used to store executable
code, and 8 kB of data memory called DMEM used for all data sections.
The Wakeup M3 processor executes its code entirely from within the
UMEM and uses the DMEM for any data. It does not use any external
memory or any other external resources. The device address view has
the UMEM at address 0x0 and DMEM at address 0x80000, and these are
computed automatically within the driver based on relative address
calculation from the corresponding device tree IOMEM resources.
These device addresses are used to aid the core remoteproc ELF
loader code to properly translate and load the firmware segments
through the .rproc_da_to_va ops.

Signed-off-by: Dave Gerlach <d-gerlach@ti.com>
Signed-off-by: Suman Anna <s-anna@ti.com>
Signed-off-by: Ohad Ben-Cohen <ohad@wizery.com>
2015-06-17 09:58:08 +03:00