Based on 1 normalized pattern(s):
this program is free software you can redistribute it and or modify
it under the terms of the gnu general public license as published by
the free software foundation either version 2 of the license or at
your option any later version
extracted by the scancode license scanner the SPDX license identifier
GPL-2.0-or-later
has been chosen to replace the boilerplate/reference in 3029 file(s).
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Allison Randal <allison@lohutok.net>
Cc: linux-spdx@vger.kernel.org
Link: https://lkml.kernel.org/r/20190527070032.746973796@linutronix.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Add two helpers to avoid hardcoding of instructions modifications.
Signed-off-by: Christophe Leroy <christophe.leroy@c-s.fr>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Using patch_site_addr() helper, patch_instruction_site() and
patch_branch_site() can be simplified and inlined.
Signed-off-by: Christophe Leroy <christophe.leroy@c-s.fr>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
This patch adds a helper to get the address of a patch_site.
Signed-off-by: Christophe Leroy <christophe.leroy@c-s.fr>
[mpe: Call it "patch site" addr]
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Add a macro and some helper C functions for patching single asm
instructions.
The gas macro means we can do something like:
1: nop
patch_site 1b, patch__foo
Which is less visually distracting than defining a GLOBAL symbol at 1,
and also doesn't pollute the symbol table which can confuse eg. perf.
These are obviously similar to our existing feature sections, but are
not automatically patched based on CPU/MMU features, rather they are
designed to be manually patched by C code at some arbitrary point.
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
This patch moves ASM_CONST() and stringify_in_c() into
dedicated asm-const.h, then cleans all related inclusions.
Signed-off-by: Christophe Leroy <christophe.leroy@c-s.fr>
[mpe: asm-compat.h should include asm-const.h]
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
feature fixups need to use patch_instruction() early in the boot,
even before the code is relocated to its final address, requiring
patch_instruction() to use PTRRELOC() in order to address data.
But feature fixups applies on code before it is set to read only,
even for modules. Therefore, feature fixups can use
raw_patch_instruction() instead.
Signed-off-by: Christophe Leroy <christophe.leroy@c-s.fr>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
When attempting to load a livepatch module, I got the following error:
module_64: patch_module: Expect noop after relocate, got 3c820000
The error was triggered by the following code in
unregister_netdevice_queue():
14c: 00 00 00 48 b 14c <unregister_netdevice_queue+0x14c>
14c: R_PPC64_REL24 net_set_todo
150: 00 00 82 3c addis r4,r2,0
GCC didn't insert a nop after the branch to net_set_todo() because it's
a sibling call, so it never returns. The nop isn't needed after the
branch in that case.
Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Acked-by: Naveen N. Rao <naveen.n.rao@linux.vnet.ibm.com>
Reviewed-and-tested-by: Kamalesh Babulal <kamalesh@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
This reverts commit 83e840c770 ("powerpc64/elfv1: Only dereference
function descriptor for non-text symbols").
Chandan reported that on newer kernels, trying to enable function_graph
tracer on ppc64 (BE) locks up the system with the following trace:
Unable to handle kernel paging request for data at address 0x600000002fa30010
Faulting instruction address: 0xc0000000001f1300
Thread overran stack, or stack corrupted
Oops: Kernel access of bad area, sig: 11 [#1]
BE SMP NR_CPUS=2048 DEBUG_PAGEALLOC NUMA pSeries
Modules linked in:
CPU: 1 PID: 6586 Comm: bash Not tainted 4.14.0-rc3-00162-g6e51f1f-dirty #20
task: c000000625c07200 task.stack: c000000625c07310
NIP: c0000000001f1300 LR: c000000000121cac CTR: c000000000061af8
REGS: c000000625c088c0 TRAP: 0380 Not tainted (4.14.0-rc3-00162-g6e51f1f-dirty)
MSR: 8000000000001032 <SF,ME,IR,DR,RI> CR: 28002848 XER: 00000000
CFAR: c0000000001f1320 SOFTE: 0
...
NIP [c0000000001f1300] .__is_insn_slot_addr+0x30/0x90
LR [c000000000121cac] .kernel_text_address+0x18c/0x1c0
Call Trace:
[c000000625c08b40] [c0000000001bd040] .is_module_text_address+0x20/0x40 (unreliable)
[c000000625c08bc0] [c000000000121cac] .kernel_text_address+0x18c/0x1c0
[c000000625c08c50] [c000000000061960] .prepare_ftrace_return+0x50/0x130
[c000000625c08cf0] [c000000000061b10] .ftrace_graph_caller+0x14/0x34
[c000000625c08d60] [c000000000121b40] .kernel_text_address+0x20/0x1c0
[c000000625c08df0] [c000000000061960] .prepare_ftrace_return+0x50/0x130
...
[c000000625c0ab30] [c000000000061960] .prepare_ftrace_return+0x50/0x130
[c000000625c0abd0] [c000000000061b10] .ftrace_graph_caller+0x14/0x34
[c000000625c0ac40] [c000000000121b40] .kernel_text_address+0x20/0x1c0
[c000000625c0acd0] [c000000000061960] .prepare_ftrace_return+0x50/0x130
[c000000625c0ad70] [c000000000061b10] .ftrace_graph_caller+0x14/0x34
[c000000625c0ade0] [c000000000121b40] .kernel_text_address+0x20/0x1c0
This is because ftrace is using ppc_function_entry() for obtaining the
address of return_to_handler() in prepare_ftrace_return(). The call to
kernel_text_address() itself gets traced and we end up in a recursive
loop.
Fixes: 83e840c770 ("powerpc64/elfv1: Only dereference function descriptor for non-text symbols")
Cc: stable@vger.kernel.org # v4.13+
Reported-by: Chandan Rajendra <chandan@linux.vnet.ibm.com>
Signed-off-by: Naveen N. Rao <naveen.n.rao@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Currently, we assume that the function pointer we receive in
ppc_function_entry() points to a function descriptor. However, this is
not always the case. In particular, assembly symbols without the right
annotation do not have an associated function descriptor. Some of these
symbols are added to the kprobe blacklist using _ASM_NOKPROBE_SYMBOL().
When such addresses are subsequently processed through
arch_deref_entry_point() in populate_kprobe_blacklist(), we see the
below errors during bootup:
[ 0.663963] Failed to find blacklist at 7d9b02a648029b6c
[ 0.663970] Failed to find blacklist at a14d03d0394a0001
[ 0.663972] Failed to find blacklist at 7d5302a6f94d0388
[ 0.663973] Failed to find blacklist at 48027d11e8610178
[ 0.663974] Failed to find blacklist at f8010070f8410080
[ 0.663976] Failed to find blacklist at 386100704801f89d
[ 0.663977] Failed to find blacklist at 7d5302a6f94d00b0
Fix this by checking if the function pointer we receive in
ppc_function_entry() already points to kernel text. If so, we just
return it as is. If not, we assume that this is a function descriptor
and proceed to dereference it.
Suggested-by: Nicholas Piggin <npiggin@gmail.com>
Reviewed-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Naveen N. Rao <naveen.n.rao@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
kprobe_lookup_name() is specific to the kprobe subsystem and may not always
return the function entry point (in a subsequent patch for KPROBES_ON_FTRACE).
For looking up function entry points, introduce a separate helper and use it
in optprobes.c
Signed-off-by: Naveen N. Rao <naveen.n.rao@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Current infrastructure of kprobe uses the unconditional trap instruction
to probe a running kernel. Optprobe allows kprobe to replace the trap
with a branch instruction to a detour buffer. Detour buffer contains
instructions to create an in memory pt_regs. Detour buffer also has a
call to optimized_callback() which in turn call the pre_handler(). After
the execution of the pre-handler, a call is made for instruction
emulation. The NIP is determined in advanced through dummy instruction
emulation and a branch instruction is created to the NIP at the end of
the trampoline.
To address the limitation of branch instruction in POWER architecture,
detour buffer slot is allocated from a reserved area. For the time
being, 64KB is reserved in memory for this purpose.
Instructions which can be emulated using analyse_instr() are the
candidates for optimization. Before optimization ensure that the address
range between the detour buffer allocated and the instruction being
probed is within +/- 32MB.
Signed-off-by: Anju T Sudhakar <anju@linux.vnet.ibm.com>
Signed-off-by: Naveen N. Rao <naveen.n.rao@linux.vnet.ibm.com>
Acked-by: Masami Hiramatsu <mhiramat@kernel.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
To permit the use of relative branch instruction in powerpc, the target
address has to be relatively nearby, since the address is specified in an
immediate field (24 bit filed) in the instruction opcode itself. Here
nearby refers to 32MB on either side of the current instruction.
This patch verifies whether the target address is within +/- 32MB
range or not.
Signed-off-by: Naveen N. Rao <naveen.n.rao@linux.vnet.ibm.com>
Signed-off-by: Anju T Sudhakar <anju@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
We're approaching 20 locations where we need to check for ELF ABI v2.
That's fine, except the logic is a bit awkward, because we have to check
that _CALL_ELF is defined and then what its value is.
So check it once in asm/types.h and define PPC64_ELF_ABI_v2 when ELF ABI
v2 is detected.
We also have a few places where what we're really trying to check is
that we are using the 64-bit v1 ABI, ie. function descriptors. So also
add a #define for that, which simplifies several checks.
Signed-off-by: Naveen N. Rao <naveen.n.rao@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
The gcc switch -mprofile-kernel defines a new ABI for calling _mcount()
very early in the function with minimal overhead.
Although mprofile-kernel has been available since GCC 3.4, there were
bugs which were only fixed recently. Currently it is known to work in
GCC 4.9, 5 and 6.
Additionally there are two possible code sequences generated by the
flag, the first uses mflr/std/bl and the second is optimised to omit the
std. Currently only gcc 6 has the optimised sequence. This patch
supports both sequences.
Initial work started by Vojtech Pavlik, used with permission.
Key changes:
- rework _mcount() to work for both the old and new ABIs.
- implement new versions of ftrace_caller() and ftrace_graph_caller()
which deal with the new ABI.
- updates to __ftrace_make_nop() to recognise the new mcount calling
sequence.
- updates to __ftrace_make_call() to recognise the nop'ed sequence.
- implement ftrace_modify_call().
- updates to the module loader to surpress the toc save in the module
stub when calling mcount with the new ABI.
Reviewed-by: Balbir Singh <bsingharora@gmail.com>
Signed-off-by: Torsten Duwe <duwe@suse.de>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
ABIv2 has the concept of a global and local entry point to a function.
In most cases we are interested in the local entry point, and so that is
what ppc_function_entry() returns.
However we have a case in the ftrace code where we want the global entry
point, and there may be other places we need it too. Rather than special
casing each, add an accessor.
For ABIv1 and 32-bit there is only a single entry point, so we return
that. That means it's safe for the caller to use this without also
checking the ABI version.
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
So that it can be used by other codes. No function change.
Signed-off-by: Kevin Hao <haokexin@gmail.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
For ftrace to use the patch_instruction code, it needs to check for
faults on write. Ftrace updates code all over the kernel, and we need to
know if code is updated or not due to protections that are placed on
some portions of the kernel. If ftrace does not detect a fault, it will
error later on, and it will be much more difficult to find the problem.
By changing patch_instruction() to detect faults, then ftrace will be
able to make use of it too.
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Create a new header that becomes a single location for defining PowerPC
opcodes used by code that is either generationg instructions
at runtime (fixups, debug, etc.), emulating instructions, or just
compiling instructions old assemblers don't know about.
We currently don't handle the floating point emulation or alignment decode
as both are better handled by the specific decode support they already
have.
Added support for the new dcbzl, dcbal, msgsnd, tlbilx, & wait instructions
since older assemblers don't know about them.
Signed-off-by: Kumar Gala <galak@kernel.crashing.org>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
from include/asm-powerpc. This is the result of a
mkdir arch/powerpc/include/asm
git mv include/asm-powerpc/* arch/powerpc/include/asm
Followed by a few documentation/comment fixups and a couple of places
where <asm-powepc/...> was being used explicitly. Of the latter only
one was outside the arch code and it is a driver only built for powerpc.
Signed-off-by: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Paul Mackerras <paulus@samba.org>