Add helpers to prettify code that tests and/or marks whether or not a
register is available and/or dirty.
Suggested-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Now that indexing into arch.regs is either protected by WARN_ON_ONCE or
done with hardcoded enums, combine all definitions for registers that
are tracked by regs_avail and regs_dirty into 'enum kvm_reg'. Having a
single enum type will simplify additional cleanup related to regs_avail
and regs_dirty.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Reviewed-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Add WARN_ON_ONCE() checks in kvm_register_{read,write}() to detect reg
values that would cause KVM to overflow vcpu->arch.regs. Change the reg
param to an 'int' to make it clear that the reg index is unverified.
Regarding the overhead of WARN_ON_ONCE(), now that all fixed GPR reads
and writes use dedicated accessors, e.g. kvm_rax_read(), the overhead
is limited to flows where the reg index is generated at runtime. And
there is at least one historical bug where KVM has generated an out-of-
bounds access to arch.regs (see commit b68f3cc7d9, "KVM: x86: Always
use 32-bit SMRAM save state for 32-bit kernels").
Adding the WARN_ON_ONCE() protection paves the way for additional
cleanup related to kvm_reg and kvm_reg_ex.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Rework vmx_set_rflags() to avoid the extra code need to handle emulation
of real mode and invalid state when unrestricted guest is disabled. The
primary reason for doing so is to avoid the call to vmx_get_rflags(),
which will incur a VMREAD when RFLAGS is not already available. When
running nested VMs, the majority of calls to vmx_set_rflags() will occur
without an associated vmx_get_rflags(), i.e. when stuffing GUEST_RFLAGS
during transitions between vmcs01 and vmcs02.
Note, vmx_get_rflags() guarantees RFLAGS is marked available.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
[Replace "else" with early "return" in the unrestricted guest branch. - Paolo]
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Capture struct vcpu_vmx in a local variable to improve the readability
of vmx_{g,s}et_rflags().
No functional change intended.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Reviewed-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Skip the VMWRITE to update GUEST_CR3 if CR3 is not available, i.e. has
not been read from the VMCS since the last VM-Enter. If vcpu->arch.cr3
is stale, kvm_read_cr3(vcpu) will refresh vcpu->arch.cr3 from the VMCS,
meaning KVM will do a VMREAD and then VMWRITE the value it just pulled
from the VMCS.
Note, this is a purely theoretical change, no instances of skipping
the VMREAD+VMWRITE have been observed with this change.
Tested-by: Reto Buerki <reet@codelabs.ch>
Tested-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Performing a WBINVD and DF_FLUSH are expensive operations. Currently, a
WBINVD/DF_FLUSH is performed every time an SEV guest terminates. However,
the WBINVD/DF_FLUSH is only required when an ASID is being re-allocated
to a new SEV guest. Also, a single WBINVD/DF_FLUSH can enable all ASIDs
that have been disassociated from guests through DEACTIVATE.
To reduce the number of WBINVD/DF_FLUSH invocations, introduce a new ASID
bitmap to track ASIDs that need to be reclaimed. When an SEV guest is
terminated, add its ASID to the reclaim bitmap instead of clearing the
bitmap in the existing SEV ASID bitmap. This delays the need to perform a
WBINVD/DF_FLUSH invocation when an SEV guest terminates until all of the
available SEV ASIDs have been used. At that point, the WBINVD/DF_FLUSH
invocation can be performed and all ASIDs in the reclaim bitmap moved to
the available ASIDs bitmap.
The semaphore around DEACTIVATE can be changed to a read semaphore with
the semaphore taken in write mode before performing the WBINVD/DF_FLUSH.
Tested-by: David Rientjes <rientjes@google.com>
Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Performing a WBINVD and DF_FLUSH are expensive operations. The SEV support
currently performs this WBINVD/DF_FLUSH combination when an SEV guest is
terminated, so there is no need for it to be done before LAUNCH.
However, when the SEV firmware transitions the platform from UNINIT state
to INIT state, all ASIDs will be marked invalid across all threads.
Therefore, as part of transitioning the platform to INIT state, perform a
WBINVD/DF_FLUSH after a successful INIT in the PSP/SEV device driver.
Since the PSP/SEV device driver is x86 only, it can reference and use the
WBINVD related functions directly.
Cc: Gary Hook <gary.hook@amd.com>
Cc: Herbert Xu <herbert@gondor.apana.org.au>
Cc: "David S. Miller" <davem@davemloft.net>
Tested-by: David Rientjes <rientjes@google.com>
Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Write the desired L2 CR3 into vmcs02.GUEST_CR3 during nested VM-Enter
instead of deferring the VMWRITE until vmx_set_cr3(). If the VMWRITE
is deferred, then KVM can consume a stale vmcs02.GUEST_CR3 when it
refreshes vmcs12->guest_cr3 during nested_vmx_vmexit() if the emulated
VM-Exit occurs without actually entering L2, e.g. if the nested run
is squashed because nested VM-Enter (from L1) is putting L2 into HLT.
Note, the above scenario can occur regardless of whether L1 is
intercepting HLT, e.g. L1 can intercept HLT and then re-enter L2 with
vmcs.GUEST_ACTIVITY_STATE=HALTED. But practically speaking, a VMM will
likely put a guest into HALTED if and only if it's not intercepting HLT.
In an ideal world where EPT *requires* unrestricted guest (and vice
versa), VMX could handle CR3 similar to how it handles RSP and RIP,
e.g. mark CR3 dirty and conditionally load it at vmx_vcpu_run(). But
the unrestricted guest silliness complicates the dirty tracking logic
to the point that explicitly handling vmcs02.GUEST_CR3 during nested
VM-Enter is a simpler overall implementation.
Cc: stable@vger.kernel.org
Reported-and-tested-by: Reto Buerki <reet@codelabs.ch>
Tested-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Reviewed-by: Liran Alon <liran.alon@oracle.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Reviewed-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The SEV firmware DEACTIVATE command disassociates an SEV guest from an
ASID, clears the WBINVD indicator on all threads and indicates that the
SEV firmware DF_FLUSH command must be issued before the ASID can be
re-used. The SEV firmware DF_FLUSH command will return an error if a
WBINVD has not been performed on every thread before it has been invoked.
A window exists between the WBINVD and the invocation of the DF_FLUSH
command where an SEV firmware DEACTIVATE command could be invoked on
another thread, clearing the WBINVD indicator. This will cause the
subsequent SEV firmware DF_FLUSH command to fail which, in turn, results
in the SEV firmware ACTIVATE command failing for the reclaimed ASID.
This results in the SEV guest failing to start.
Use a mutex to close the WBINVD/DF_FLUSH window by obtaining the mutex
before the DEACTIVATE and releasing it after the DF_FLUSH. This ensures
that any DEACTIVATE cannot run before a DF_FLUSH has completed.
Fixes: 59414c9892 ("KVM: SVM: Add support for KVM_SEV_LAUNCH_START command")
Tested-by: David Rientjes <rientjes@google.com>
Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The SEV ASID bitmap currently is not protected against parallel SEV guest
startups. This can result in an SEV guest failing to start because another
SEV guest could have been assigned the same ASID value. Use a mutex to
serialize access to the SEV ASID bitmap.
Fixes: 1654efcbc4 ("KVM: SVM: Add KVM_SEV_INIT command")
Tested-by: David Rientjes <rientjes@google.com>
Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
After resetting the vCPU, the kvmclock MSR keeps the previous value but it is
not enabled. This can be confusing, so fix it.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Use BUG_ON instead of a if condition followed by BUG.
Generated by: scripts/coccinelle/misc/bugon.cocci
Fixes: 4b526de50e ("KVM: x86: Check kvm_rebooting in kvm_spurious_fault()")
CC: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: kbuild test robot <lkp@intel.com>
Signed-off-by: Julia Lawall <julia.lawall@lip6.fr>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Commit bf653b78f9 ("KVM: vmx: Introduce handle_unexpected_vmexit
and handle WAITPKG vmexit") introduced specialized handling of
specific exit-reasons that should not be raised by CPU because
KVM configures VMCS such that they should never be raised.
However, since commit 7396d337cf ("KVM: x86: Return to userspace
with internal error on unexpected exit reason"), VMX & SVM
exit handlers were modified to generically handle all unexpected
exit-reasons by returning to userspace with internal error.
Therefore, there is no need for specialized handling of specific
unexpected exit-reasons (This specialized handling also introduced
inconsistency for these exit-reasons to silently skip guest instruction
instead of return to userspace on internal-error).
Fixes: bf653b78f9 ("KVM: vmx: Introduce handle_unexpected_vmexit and handle WAITPKG vmexit")
Signed-off-by: Liran Alon <liran.alon@oracle.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
When the RDPID instruction is supported on the host, enumerate it in
KVM_GET_SUPPORTED_CPUID.
Signed-off-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
These are all functions which are invoked from elsewhere, so annotate
them as global using the new SYM_FUNC_START and their ENDPROC's by
SYM_FUNC_END.
Make sure ENTRY/ENDPROC is not defined on X86_64, given these were the
last users.
Signed-off-by: Jiri Slaby <jslaby@suse.cz>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> [hibernate]
Reviewed-by: Boris Ostrovsky <boris.ostrovsky@oracle.com> [xen bits]
Acked-by: Herbert Xu <herbert@gondor.apana.org.au> [crypto]
Cc: Allison Randal <allison@lohutok.net>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Andy Shevchenko <andy@infradead.org>
Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Armijn Hemel <armijn@tjaldur.nl>
Cc: Cao jin <caoj.fnst@cn.fujitsu.com>
Cc: Darren Hart <dvhart@infradead.org>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Enrico Weigelt <info@metux.net>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Herbert Xu <herbert@gondor.apana.org.au>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jim Mattson <jmattson@google.com>
Cc: Joerg Roedel <joro@8bytes.org>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Kate Stewart <kstewart@linuxfoundation.org>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: kvm ML <kvm@vger.kernel.org>
Cc: Len Brown <len.brown@intel.com>
Cc: linux-arch@vger.kernel.org
Cc: linux-crypto@vger.kernel.org
Cc: linux-efi <linux-efi@vger.kernel.org>
Cc: linux-efi@vger.kernel.org
Cc: linux-pm@vger.kernel.org
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Matt Fleming <matt@codeblueprint.co.uk>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Pavel Machek <pavel@ucw.cz>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: platform-driver-x86@vger.kernel.org
Cc: "Radim Krčmář" <rkrcmar@redhat.com>
Cc: Sean Christopherson <sean.j.christopherson@intel.com>
Cc: Stefano Stabellini <sstabellini@kernel.org>
Cc: "Steven Rostedt (VMware)" <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vitaly Kuznetsov <vkuznets@redhat.com>
Cc: Wanpeng Li <wanpengli@tencent.com>
Cc: Wei Huang <wei@redhat.com>
Cc: x86-ml <x86@kernel.org>
Cc: xen-devel@lists.xenproject.org
Cc: Xiaoyao Li <xiaoyao.li@linux.intel.com>
Link: https://lkml.kernel.org/r/20191011115108.12392-25-jslaby@suse.cz
Gather the emulate prefixes, which forcibly make the following
instruction emulated on virtualization, in one place.
Suggested-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Masami Hiramatsu <mhiramat@kernel.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Juergen Gross <jgross@suse.com>
Cc: x86@kernel.org
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: Andrew Cooper <andrew.cooper3@citrix.com>
Cc: Stefano Stabellini <sstabellini@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: xen-devel@lists.xenproject.org
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Link: https://lkml.kernel.org/r/156777563917.25081.7286628561790289995.stgit@devnote2
INTEL_PMC_MAX_GENERIC is currently 32, which exceeds the 18
contiguous MSR indices reserved by Intel for event selectors.
Since some machines actually have MSRs past the reserved range,
filtering them against x86_pmu.num_counters_gp may have false
positives. Cut the list to 18 entries to avoid this.
Reported-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Suggested-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Cc: Jim Mattson <jamttson@google.com>
Fixes: e2ada66ec4 ("kvm: x86: Add Intel PMU MSRs to msrs_to_save[]", 2019-08-21)
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Current versions of Intel's SDM incorrectly state that "bits 31:15 of
the VM-Entry exception error-code field" must be zero. In reality, bits
31:16 must be zero, i.e. error codes are 16-bit values.
The bogus error code check manifests as an unexpected VM-Entry failure
due to an invalid code field (error number 7) in L1, e.g. when injecting
a #GP with error_code=0x9f00.
Nadav previously reported the bug[*], both to KVM and Intel, and fixed
the associated kvm-unit-test.
[*] https://patchwork.kernel.org/patch/11124749/
Reported-by: Nadav Amit <namit@vmware.com>
Cc: stable@vger.kernel.org
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Reviewed-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
INTEL_PMC_MAX_GENERIC is currently 32, which exceeds the 18 contiguous
MSR indices reserved by Intel for event selectors. Since some machines
actually have MSRs past the reserved range, these may survive the
filtering of msrs_to_save array and would be rejected by KVM_GET/SET_MSR.
To avoid this, cut the list to whatever CPUID reports for the host's
architectural PMU.
Reported-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Suggested-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Cc: Jim Mattson <jmattson@google.com>
Fixes: e2ada66ec4 ("kvm: x86: Add Intel PMU MSRs to msrs_to_save[]", 2019-08-21)
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
KVM can only virtualize as many PMCs as the host supports.
Limit the number of generic counters and fixed counters to the number
of corresponding counters supported on the host, rather than to
INTEL_PMC_MAX_GENERIC and INTEL_PMC_MAX_FIXED, respectively.
Note that INTEL_PMC_MAX_GENERIC is currently 32, which exceeds the 18
contiguous MSR indices reserved by Intel for event selectors. Since
the existing code relies on a contiguous range of MSR indices for
event selectors, it can't possibly work for more than 18 general
purpose counters.
Fixes: f5132b0138 ("KVM: Expose a version 2 architectural PMU to a guests")
Signed-off-by: Jim Mattson <jmattson@google.com>
Reviewed-by: Marc Orr <marcorr@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The largepages debugfs entry is incremented/decremented as shadow
pages are created or destroyed. Clearing it will result in an
underflow, which is harmless to KVM but ugly (and could be
misinterpreted by tools that use debugfs information), so make
this particular statistic read-only.
Cc: kvm-ppc@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The l1tf_vmx_mitigation is only set to VMENTER_L1D_FLUSH_NOT_REQUIRED
when the ARCH_CAPABILITIES MSR indicates that L1D flush is not required.
However, if the CPU is not affected by L1TF, l1tf_vmx_mitigation will
still be set to VMENTER_L1D_FLUSH_AUTO. This is certainly not the best
option for a !X86_BUG_L1TF CPU.
So force l1tf_vmx_mitigation to VMENTER_L1D_FLUSH_NOT_REQUIRED to make it
more explicit in case users are checking the vmentry_l1d_flush parameter.
Signed-off-by: Waiman Long <longman@redhat.com>
[Patch rewritten accoring to Borislav Petkov's suggestion. - Paolo]
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Shadow paging is fundamentally incompatible with the page-modification
log, because the GPAs in the log come from the wrong memory map.
In particular, for the EPT page-modification log, the GPAs in the log come
from L2 rather than L1. (If there was a non-EPT page-modification log,
we couldn't use it for shadow paging because it would log GVAs rather
than GPAs).
Therefore, we need to rely on write protection to record dirty pages.
This has the side effect of bypassing PML, since writes now result in an
EPT violation vmexit.
This is relatively easy to add to KVM, because pretty much the only place
that needs changing is spte_clear_dirty. The first access to the page
already goes through the page fault path and records the correct GPA;
it's only subsequent accesses that are wrong. Therefore, we can equip
set_spte (where the first access happens) to record that the SPTE will
have to be write protected, and then spte_clear_dirty will use this
information to do the right thing.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Currently, we are overloading SPTE_SPECIAL_MASK to mean both
"A/D bits unavailable" and MMIO, where the difference between the
two is determined by mio_mask and mmio_value.
However, the next patch will need two bits to distinguish
availability of A/D bits from write protection. So, while at
it give MMIO its own bit pattern, and move the two bits from
bit 62 to bits 52..53 since Intel is allocating EPT page table
bits from the top.
Reviewed-by: Junaid Shahid <junaids@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
I was surprised to see that the guest reported `fxsave_leak' while the
host did not. After digging deeper I noticed that the bits are simply
masked out during enumeration.
The XSAVEERPTR feature is actually a bug fix on AMD which means the
kernel can disable a workaround.
Pass XSAVEERPTR to the guest if available on the host.
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
CLZERO is available to the guest if it is supported on the
host. Therefore, enumerate support for the instruction in
KVM_GET_SUPPORTED_CPUID whenever it is supported on the host.
Signed-off-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
When the guest CPUID information represents an AMD vCPU, return all
zeroes for queries of undefined CPUID leaves, whether or not they are
in range.
Signed-off-by: Jim Mattson <jmattson@google.com>
Fixes: bd22f5cfcf ("KVM: move and fix substitue search for missing CPUID entries")
Reviewed-by: Marc Orr <marcorr@google.com>
Reviewed-by: Peter Shier <pshier@google.com>
Reviewed-by: Jacob Xu <jacobhxu@google.com>
Cc: Sean Christopherson <sean.j.christopherson@intel.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
For these CPUID leaves, the EDX output is not dependent on the ECX
input (i.e. the SIGNIFCANT_INDEX flag doesn't apply to
EDX). Furthermore, the low byte of the ECX output is always identical
to the low byte of the ECX input. KVM does not produce the correct ECX
and EDX outputs for any undefined subleaves beyond the first.
Special-case these CPUID leaves in kvm_cpuid, so that the ECX and EDX
outputs are properly generated for all undefined subleaves.
Fixes: 0771671749 ("KVM: Enhance guest cpuid management")
Fixes: a87f2d3a6e ("KVM: x86: Add Intel CPUID.1F cpuid emulation support")
Signed-off-by: Jim Mattson <jmattson@google.com>
Reviewed-by: Marc Orr <marcorr@google.com>
Reviewed-by: Peter Shier <pshier@google.com>
Reviewed-by: Jacob Xu <jacobhxu@google.com>
Cc: Sean Christopherson <sean.j.christopherson@intel.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Reported by syzkaller:
WARNING: CPU: 0 PID: 6544 at /home/kernel/data/kvm/arch/x86/kvm//vmx/vmx.c:4689 handle_desc+0x37/0x40 [kvm_intel]
CPU: 0 PID: 6544 Comm: a.out Tainted: G OE 5.3.0-rc4+ #4
RIP: 0010:handle_desc+0x37/0x40 [kvm_intel]
Call Trace:
vmx_handle_exit+0xbe/0x6b0 [kvm_intel]
vcpu_enter_guest+0x4dc/0x18d0 [kvm]
kvm_arch_vcpu_ioctl_run+0x407/0x660 [kvm]
kvm_vcpu_ioctl+0x3ad/0x690 [kvm]
do_vfs_ioctl+0xa2/0x690
ksys_ioctl+0x6d/0x80
__x64_sys_ioctl+0x1a/0x20
do_syscall_64+0x74/0x720
entry_SYSCALL_64_after_hwframe+0x49/0xbe
When CR4.UMIP is set, guest should have UMIP cpuid flag. Current
kvm set_sregs function doesn't have such check when userspace inputs
sregs values. SECONDARY_EXEC_DESC is enabled on writes to CR4.UMIP
in vmx_set_cr4 though guest doesn't have UMIP cpuid flag. The testcast
triggers handle_desc warning when executing ltr instruction since
guest architectural CR4 doesn't set UMIP. This patch fixes it by
adding valid CR4 and CPUID combination checking in __set_sregs.
syzkaller source: https://syzkaller.appspot.com/x/repro.c?x=138efb99600000
Reported-by: syzbot+0f1819555fbdce992df9@syzkaller.appspotmail.com
Cc: stable@vger.kernel.org
Signed-off-by: Wanpeng Li <wanpengli@tencent.com>
Reviewed-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Don't return -E2BIG from __do_cpuid_func when processing function 0BH
or 1FH and the last interesting subleaf occupies the last allocated
entry in the result array.
Cc: Paolo Bonzini <pbonzini@redhat.com>
Fixes: 831bf664e9 ("KVM: Refactor and simplify kvm_dev_ioctl_get_supported_cpuid")
Signed-off-by: Jim Mattson <jmattson@google.com>
Reviewed-by: Peter Shier <pshier@google.com>
Reviewed-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
5000 guest cycles delta is easy to encounter on desktop, per-vCPU
lapic_timer_advance_ns always keeps at 1000ns initial value, let's
loosen the filter a bit to let adaptive tuning make progress.
Signed-off-by: Wanpeng Li <wanpengli@tencent.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
KVM was incorrectly checking vmcs12->host_ia32_efer even if the "load
IA32_EFER" exit control was reset. Also, some checks were not using
the new CC macro for tracing.
Cleanup everything so that the vCPU's 64-bit mode is determined
directly from EFER_LMA and the VMCS checks are based on that, which
matches section 26.2.4 of the SDM.
Cc: Sean Christopherson <sean.j.christopherson@intel.com>
Cc: Krish Sadhukhan <krish.sadhukhan@oracle.com>
Fixes: 5845038c11
Reviewed-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The following was reported on i386:
arch/x86/kvm/vmx/vmx.c: In function 'hv_enable_direct_tlbflush':
arch/x86/kvm/vmx/vmx.c:503:10: warning: cast from pointer to integer of different size [-Wpointer-to-int-cast]
pr_debugs() in this function are more or less useless, let's just
remove them. evmcs->hv_vm_id can use 'unsigned long' instead of 'u64'.
Also, simplify the code a little bit.
Reported-by: kbuild test robot <lkp@intel.com>
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Now that VMREAD flows require a taken branch, courtesy of commit
3901336ed9 ("x86/kvm: Don't call kvm_spurious_fault() from .fixup")
bite the bullet and add full error handling to VMREAD, i.e. replace the
JMP added by __ex()/____kvm_handle_fault_on_reboot() with a hinted Jcc.
To minimize the code footprint, add a helper function, vmread_error(),
to handle both faults and failures so that the inline flow has a single
CALL.
Acked-by: Paolo Bonzini <pbonzini@redhat.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Rework the VMX instruction helpers using asm-goto to branch directly
to error/fault "handlers" in lieu of using __ex(), i.e. the generic
____kvm_handle_fault_on_reboot(). Branching directly to fault handling
code during fixup avoids the extra JMP that is inserted after every VMX
instruction when using the generic "fault on reboot" (see commit
3901336ed9, "x86/kvm: Don't call kvm_spurious_fault() from .fixup").
Opportunistically clean up the helpers so that they all have consistent
error handling and messages.
Leave the usage of ____kvm_handle_fault_on_reboot() (via __ex()) in
kvm_cpu_vmxoff() and nested_vmx_check_vmentry_hw() as is. The VMXOFF
case is not a fast path, i.e. the cleanliness of __ex() is worth the
JMP, and the extra JMP in nested_vmx_check_vmentry_hw() is unavoidable.
Note, VMREAD cannot get the asm-goto treatment as output operands aren't
compatible with GCC's asm-goto due to internal compiler restrictions.
Acked-by: Paolo Bonzini <pbonzini@redhat.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Explicitly check kvm_rebooting in kvm_spurious_fault() prior to invoking
BUG(), as opposed to assuming the caller has already done so. Letting
kvm_spurious_fault() be called "directly" will allow VMX to better
optimize its low level assembly flows.
As a happy side effect, kvm_spurious_fault() no longer needs to be
marked as a dead end since it doesn't unconditionally BUG().
Acked-by: Paolo Bonzini <pbonzini@redhat.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Allowing an unlimited number of MSRs to be specified via the VMX
load/store MSR lists (e.g., vm-entry MSR load list) is bad for two
reasons. First, a guest can specify an unreasonable number of MSRs,
forcing KVM to process all of them in software. Second, the SDM bounds
the number of MSRs allowed to be packed into the atomic switch MSR lists.
Quoting the "Miscellaneous Data" section in the "VMX Capability
Reporting Facility" appendix:
"Bits 27:25 is used to compute the recommended maximum number of MSRs
that should appear in the VM-exit MSR-store list, the VM-exit MSR-load
list, or the VM-entry MSR-load list. Specifically, if the value bits
27:25 of IA32_VMX_MISC is N, then 512 * (N + 1) is the recommended
maximum number of MSRs to be included in each list. If the limit is
exceeded, undefined processor behavior may result (including a machine
check during the VMX transition)."
Because KVM needs to protect itself and can't model "undefined processor
behavior", arbitrarily force a VM-entry to fail due to MSR loading when
the MSR load list is too large. Similarly, trigger an abort during a VM
exit that encounters an MSR load list or MSR store list that is too large.
The MSR list size is intentionally not pre-checked so as to maintain
compatibility with hardware inasmuch as possible.
Test these new checks with the kvm-unit-test "x86: nvmx: test max atomic
switch MSRs".
Suggested-by: Jim Mattson <jmattson@google.com>
Reviewed-by: Jim Mattson <jmattson@google.com>
Reviewed-by: Peter Shier <pshier@google.com>
Signed-off-by: Marc Orr <marcorr@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The RDPRU instruction gives the guest read access to the IA32_APERF
MSR and the IA32_MPERF MSR. According to volume 3 of the APM, "When
virtualization is enabled, this instruction can be intercepted by the
Hypervisor. The intercept bit is at VMCB byte offset 10h, bit 14."
Since we don't enumerate the instruction in KVM_SUPPORTED_CPUID,
intercept it and synthesize #UD.
Signed-off-by: Jim Mattson <jmattson@google.com>
Reviewed-by: Drew Schmitt <dasch@google.com>
Reviewed-by: Jacob Xu <jacobhxu@google.com>
Reviewed-by: Peter Shier <pshier@google.com>
Reviewed-by: Krish Sadhukhan <krish.sadhukhan@oracle.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
According to the Intel SDM, volume 2, "CPUID," the index is
significant (or partially significant) for CPUID leaves 0FH, 10H, 12H,
17H, 18H, and 1FH.
Add the corresponding flag to these CPUID leaves in do_host_cpuid().
Signed-off-by: Jim Mattson <jmattson@google.com>
Reviewed-by: Peter Shier <pshier@google.com>
Reviewed-by: Steve Rutherford <srutherford@google.com>
Fixes: a87f2d3a6e ("KVM: x86: Add Intel CPUID.1F cpuid emulation support")
Reviewed-by: Krish Sadhukhan <krish.sadhukhan@oracle.com>
Cc: stable@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Do not skip invalid shadow pages when zapping obsolete pages if the
pages' root_count has reached zero, in which case the page can be
immediately zapped and freed.
Update the comment accordingly.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Toggle mmu_valid_gen between '0' and '1' instead of blindly incrementing
the generation. Because slots_lock is held for the entire duration of
zapping obsolete pages, it's impossible for there to be multiple invalid
generations associated with shadow pages at any given time.
Toggling between the two generations (valid vs. invalid) allows changing
mmu_valid_gen from an unsigned long to a u8, which reduces the size of
struct kvm_mmu_page from 160 to 152 bytes on 64-bit KVM, i.e. reduces
KVM's memory footprint by 8 bytes per shadow page.
Set sp->mmu_valid_gen before it is added to active_mmu_pages.
Functionally this has no effect as kvm_mmu_alloc_page() has a single
caller that sets sp->mmu_valid_gen soon thereafter, but visually it is
jarring to see a shadow page being added to the list without its
mmu_valid_gen first being set.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Now that the fast invalidate mechanism has been reintroduced, restore
the performance tweaks for fast invalidation that existed prior to its
removal.
Paraphrasing the original changelog (commit 5ff0568374 was itself a
partial revert):
Don't force reloading the remote mmu when zapping an obsolete page, as
a MMU_RELOAD request has already been issued by kvm_mmu_zap_all_fast()
immediately after incrementing mmu_valid_gen, i.e. after marking pages
obsolete.
This reverts commit 5ff0568374.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Now that the fast invalidate mechanism has been reintroduced, restore
the performance tweaks for fast invalidation that existed prior to its
removal.
Paraphrashing the original changelog:
Reload the mmu on all vCPUs after updating the generation number so
that obsolete pages are not used by any vCPUs. This allows collapsing
all TLB flushes during obsolete page zapping into a single flush, as
there is no need to flush when dropping mmu_lock (to reschedule).
Note: a remote TLB flush is still needed before freeing the pages as
other vCPUs may be doing a lockless shadow page walk.
Opportunstically improve the comments restored by the revert (the
code itself is a true revert).
This reverts commit f34d251d66.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Now that the fast invalidate mechanism has been reintroduced, restore
the performance tweaks for fast invalidation that existed prior to its
removal.
Paraphrashing the original changelog:
Zap at least 10 shadow pages before releasing mmu_lock to reduce the
overhead associated with re-acquiring the lock.
Note: "10" is an arbitrary number, speculated to be high enough so
that a vCPU isn't stuck zapping obsolete pages for an extended period,
but small enough so that other vCPUs aren't starved waiting for
mmu_lock.
This reverts commit 43d2b14b10.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Now that the fast invalidate mechanism has been reintroduced, restore
the tracepoint associated with said mechanism.
Note, the name of the tracepoint deviates from the original tracepoint
so as to match KVM's current nomenclature.
This reverts commit 42560fb1f3.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Now that the fast invalidate mechanism has been reintroduced, restore
tracing of the generation number in shadow page tracepoints.
This reverts commit b59c4830ca.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Use the fast invalidate mechasim to zap MMIO sptes on a MMIO generation
wrap. The fast invalidate flow was reintroduced to fix a livelock bug
in kvm_mmu_zap_all() that can occur if kvm_mmu_zap_all() is invoked when
the guest has live vCPUs. I.e. using kvm_mmu_zap_all() to handle the
MMIO generation wrap is theoretically susceptible to the livelock bug.
This effectively reverts commit 4771450c34 ("Revert "KVM: MMU: drop
kvm_mmu_zap_mmio_sptes""), i.e. restores the behavior of commit
a8eca9dcc6 ("KVM: MMU: drop kvm_mmu_zap_mmio_sptes").
Note, this actually fixes commit 571c5af06e ("KVM: x86/mmu:
Voluntarily reschedule as needed when zapping MMIO sptes"), but there
is no need to incrementally revert back to using fast invalidate, e.g.
doing so doesn't provide any bisection or stability benefits.
Fixes: 571c5af06e ("KVM: x86/mmu: Voluntarily reschedule as needed when zapping MMIO sptes")
Cc: stable@vger.kernel.org
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Treat invalid shadow pages as obsolete to fix a bug where an obsolete
and invalid page with a non-zero root count could become non-obsolete
due to mmu_valid_gen wrapping. The bug is largely theoretical with the
current code base, as an unsigned long will effectively never wrap on
64-bit KVM, and userspace would have to deliberately stall a vCPU in
order to keep an obsolete invalid page on the active list while
simultaneously modifying memslots billions of times to trigger a wrap.
The obvious alternative is to use a 64-bit value for mmu_valid_gen,
but it's actually desirable to go in the opposite direction, i.e. using
a smaller 8-bit value to reduce KVM's memory footprint by 8 bytes per
shadow page, and relying on proper treatment of invalid pages instead of
preventing the generation from wrapping.
Note, "Fixes" points at a commit that was at one point reverted, but has
since been restored.
Fixes: 5304b8d37c ("KVM: MMU: fast invalidate all pages")
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Filter out drastic fluctuation and random fluctuation, remove
timer_advance_adjust_done altogether, the adjustment would be
continuous.
Signed-off-by: Wanpeng Li <wanpengli@tencent.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
As the latest Intel 64 and IA-32 Architectures Software Developer's
Manual, UMWAIT and TPAUSE instructions cause a VM exit if the
RDTSC exiting and enable user wait and pause VM-execution
controls are both 1.
Because KVM never enable RDTSC exiting, the vm-exit for UMWAIT and TPAUSE
should never happen. Considering EXIT_REASON_XSAVES and
EXIT_REASON_XRSTORS is also unexpected VM-exit for KVM. Introduce a common
exit helper handle_unexpected_vmexit() to handle these unexpected VM-exit.
Suggested-by: Sean Christopherson <sean.j.christopherson@intel.com>
Co-developed-by: Jingqi Liu <jingqi.liu@intel.com>
Signed-off-by: Jingqi Liu <jingqi.liu@intel.com>
Signed-off-by: Tao Xu <tao3.xu@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
UMWAIT and TPAUSE instructions use 32bit IA32_UMWAIT_CONTROL at MSR index
E1H to determines the maximum time in TSC-quanta that the processor can
reside in either C0.1 or C0.2.
This patch emulates MSR IA32_UMWAIT_CONTROL in guest and differentiate
IA32_UMWAIT_CONTROL between host and guest. The variable
mwait_control_cached in arch/x86/kernel/cpu/umwait.c caches the MSR value,
so this patch uses it to avoid frequently rdmsr of IA32_UMWAIT_CONTROL.
Co-developed-by: Jingqi Liu <jingqi.liu@intel.com>
Signed-off-by: Jingqi Liu <jingqi.liu@intel.com>
Signed-off-by: Tao Xu <tao3.xu@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
UMONITOR, UMWAIT and TPAUSE are a set of user wait instructions.
This patch adds support for user wait instructions in KVM. Availability
of the user wait instructions is indicated by the presence of the CPUID
feature flag WAITPKG CPUID.0x07.0x0:ECX[5]. User wait instructions may
be executed at any privilege level, and use 32bit IA32_UMWAIT_CONTROL MSR
to set the maximum time.
The behavior of user wait instructions in VMX non-root operation is
determined first by the setting of the "enable user wait and pause"
secondary processor-based VM-execution control bit 26.
If the VM-execution control is 0, UMONITOR/UMWAIT/TPAUSE cause
an invalid-opcode exception (#UD).
If the VM-execution control is 1, treatment is based on the
setting of the “RDTSC exiting†VM-execution control. Because KVM never
enables RDTSC exiting, if the instruction causes a delay, the amount of
time delayed is called here the physical delay. The physical delay is
first computed by determining the virtual delay. If
IA32_UMWAIT_CONTROL[31:2] is zero, the virtual delay is the value in
EDX:EAX minus the value that RDTSC would return; if
IA32_UMWAIT_CONTROL[31:2] is not zero, the virtual delay is the minimum
of that difference and AND(IA32_UMWAIT_CONTROL,FFFFFFFCH).
Because umwait and tpause can put a (psysical) CPU into a power saving
state, by default we dont't expose it to kvm and enable it only when
guest CPUID has it.
Detailed information about user wait instructions can be found in the
latest Intel 64 and IA-32 Architectures Software Developer's Manual.
Co-developed-by: Jingqi Liu <jingqi.liu@intel.com>
Signed-off-by: Jingqi Liu <jingqi.liu@intel.com>
Signed-off-by: Tao Xu <tao3.xu@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
VMX's EPT misconfig flow to handle fast-MMIO path falls back to decoding
the instruction to determine the instruction length when running as a
guest (Hyper-V doesn't fill VMCS.VM_EXIT_INSTRUCTION_LEN because it's
technically not defined for EPT misconfigs). Rather than implement the
slow skip in VMX's generic skip_emulated_instruction(),
handle_ept_misconfig() directly calls kvm_emulate_instruction() with
EMULTYPE_SKIP, which intentionally doesn't do single-step detection, and
so handle_ept_misconfig() misses a single-step #DB.
Rework the EPT misconfig fallback case to route it through
kvm_skip_emulated_instruction() so that single-step #DBs and interrupt
shadow updates are handled automatically. I.e. make VMX's slow skip
logic match SVM's and have the SVM flow not intentionally avoid the
shadow update.
Alternatively, the handle_ept_misconfig() could manually handle single-
step detection, but that results in EMULTYPE_SKIP having split logic for
the interrupt shadow vs. single-step #DBs, and split emulator logic is
largely what led to this mess in the first place.
Modifying SVM to mirror VMX flow isn't really an option as SVM's case
isn't limited to a specific exit reason, i.e. handling the slow skip in
skip_emulated_instruction() is mandatory for all intents and purposes.
Drop VMX's skip_emulated_instruction() wrapper since it can now fail,
and instead WARN if it fails unexpectedly, e.g. if exit_reason somehow
becomes corrupted.
Cc: Vitaly Kuznetsov <vkuznets@redhat.com>
Fixes: d391f12070 ("x86/kvm/vmx: do not use vm-exit instruction length for fast MMIO when running nested")
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Deferring emulation failure handling (in some cases) to the caller of
x86_emulate_instruction() has proven fragile, e.g. multiple instances of
KVM not setting run->exit_reason on EMULATE_FAIL, largely due to it
being difficult to discern what emulation types can return what result,
and which combination of types and results are handled where.
Now that x86_emulate_instruction() always handles emulation failure,
i.e. EMULATION_FAIL is only referenced in callers, remove the
emulation_result enums entirely. Per KVM's existing exit handling
conventions, return '0' and '1' for "exit to userspace" and "resume
guest" respectively. Doing so cleans up many callers, e.g. they can
return kvm_emulate_instruction() directly instead of having to interpret
its result.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Now that EMULATE_FAIL is completely unused, remove the last remaning
usage where KVM does something functional in response to EMULATE_FAIL.
Leave the check in place as a WARN_ON_ONCE to provide a better paper
trail when EMULATE_{DONE,FAIL,USER_EXIT} are completely removed.
Opportunistically remove the gotos in handle_invalid_guest_state().
With the EMULATE_FAIL handling gone there is no need to have a common
handler for emulation failure and the gotos only complicate things,
e.g. the signal_pending() check always returns '1', but this is far
from obvious when glancing through the code.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Request triple fault in kvm_inject_realmode_interrupt() instead of
returning EMULATE_FAIL and deferring to the caller. All existing
callers request triple fault and it's highly unlikely Real Mode is
going to acquire new features. While this consolidates a small amount
of code, the real goal is to remove the last reference to EMULATE_FAIL.
No functional change intended.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Consolidate the reporting of emulation failure into kvm_task_switch()
so that it can return EMULATE_USER_EXIT. This helps pave the way for
removing EMULATE_FAIL altogether.
This also fixes a theoretical bug where task switch interception could
suppress an EMULATE_USER_EXIT return.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Kill a few birds with one stone by forcing an exit to userspace on skip
emulation failure. This removes a reference to EMULATE_FAIL, fixes a
bug in handle_ept_misconfig() where it would exit to userspace without
setting run->exit_reason, and fixes a theoretical bug in SVM's
task_switch_interception() where it would overwrite run->exit_reason on
a return of EMULATE_USER_EXIT.
Note, this technically doesn't fully fix task_switch_interception()
as it now incorrectly handles EMULATE_FAIL, but in practice there is no
bug as EMULATE_FAIL will never be returned for EMULTYPE_SKIP.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Immediately inject a #UD and return EMULATE done if emulation fails when
handling an intercepted #UD. This helps pave the way for removing
EMULATE_FAIL altogether.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Add an explicit emulation type for forced #UD emulation and use it to
detect that KVM should unconditionally inject a #UD instead of falling
into its standard emulation failure handling.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Immediately inject a #GP when VMware emulation fails and return
EMULATE_DONE instead of propagating EMULATE_FAIL up the stack. This
helps pave the way for removing EMULATE_FAIL altogether.
Rename EMULTYPE_VMWARE to EMULTYPE_VMWARE_GP to document that the x86
emulator is called to handle VMware #GP interception, e.g. why a #GP
is injected on emulation failure for EMULTYPE_VMWARE_GP.
Drop EMULTYPE_NO_UD_ON_FAIL as a standalone type. The "no #UD on fail"
is used only in the VMWare case and is obsoleted by having the emulator
itself reinject #GP.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Reviewed-by: Liran Alon <liran.alon@oracle.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The VMware backdoor hooks #GP faults on IN{S}, OUT{S}, and RDPMC, none
of which generate a non-zero error code for their #GP. Re-injecting #GP
instead of attempting emulation on a non-zero error code will allow a
future patch to move #GP injection (for emulation failure) into
kvm_emulate_instruction() without having to plumb in the error code.
Reviewed-and-tested-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Reviewed-by: Liran Alon <liran.alon@oracle.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Return the single-step emulation result directly instead of via an out
param. Presumably at some point in the past kvm_vcpu_do_singlestep()
could be called with *r==EMULATE_USER_EXIT, but that is no longer the
case, i.e. all callers are happy to overwrite their own return variable.
Reviewed-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Reviewed-by: Liran Alon <liran.alon@oracle.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
When handling emulation failure, return the emulation result directly
instead of capturing it in a local variable. Future patches will move
additional cases into handle_emulation_failure(), clean up the cruft
before so there isn't an ugly mix of setting a local variable and
returning directly.
Reviewed-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Reviewed-by: Liran Alon <liran.alon@oracle.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Move the stat.mmio_exits update into x86_emulate_instruction(). This is
both a bug fix, e.g. the current update flows will incorrectly increment
mmio_exits on emulation failure, and a preparatory change to set the
stage for eliminating EMULATE_DONE and company.
Reviewed-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
According to section "Checks Related to Address-Space Size" in Intel SDM
vol 3C, the following checks are performed on vmentry of nested guests:
If the logical processor is outside IA-32e mode (if IA32_EFER.LMA = 0)
at the time of VM entry, the following must hold:
- The "IA-32e mode guest" VM-entry control is 0.
- The "host address-space size" VM-exit control is 0.
If the logical processor is in IA-32e mode (if IA32_EFER.LMA = 1) at the
time of VM entry, the "host address-space size" VM-exit control must be 1.
If the "host address-space size" VM-exit control is 0, the following must
hold:
- The "IA-32e mode guest" VM-entry control is 0.
- Bit 17 of the CR4 field (corresponding to CR4.PCIDE) is 0.
- Bits 63:32 in the RIP field are 0.
If the "host address-space size" VM-exit control is 1, the following must
hold:
- Bit 5 of the CR4 field (corresponding to CR4.PAE) is 1.
- The RIP field contains a canonical address.
On processors that do not support Intel 64 architecture, checks are
performed to ensure that the "IA-32e mode guest" VM-entry control and the
"host address-space size" VM-exit control are both 0.
Signed-off-by: Krish Sadhukhan <krish.sadhukhan@oracle.com>
Reviewed-by: Karl Heubaum <karl.heubaum@oracle.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Hyper-V 2019 doesn't expose MD_CLEAR CPUID bit to guests when it cannot
guarantee that two virtual processors won't end up running on sibling SMT
threads without knowing about it. This is done as an optimization as in
this case there is nothing the guest can do to protect itself against MDS
and issuing additional flush requests is just pointless. On bare metal the
topology is known, however, when Hyper-V is running nested (e.g. on top of
KVM) it needs an additional piece of information: a confirmation that the
exposed topology (wrt vCPU placement on different SMT threads) is
trustworthy.
NoNonArchitecturalCoreSharing (CPUID 0x40000004 EAX bit 18) is described in
TLFS as follows: "Indicates that a virtual processor will never share a
physical core with another virtual processor, except for virtual processors
that are reported as sibling SMT threads." From KVM we can give such
guarantee in two cases:
- SMT is unsupported or forcefully disabled (just 'disabled' doesn't work
as it can become re-enabled during the lifetime of the guest).
- vCPUs are properly pinned so the scheduler won't put them on sibling
SMT threads (when they're not reported as such).
This patch reports NoNonArchitecturalCoreSharing bit in to userspace in the
first case. The second case is outside of KVM's domain of responsibility
(as vCPU pinning is actually done by someone who manages KVM's userspace -
e.g. libvirt pinning QEMU threads).
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Reported by syzkaller:
kasan: GPF could be caused by NULL-ptr deref or user memory access
general protection fault: 0000 [#1] PREEMPT SMP KASAN
RIP: 0010:__apic_accept_irq+0x46/0x740 arch/x86/kvm/lapic.c:1029
Call Trace:
kvm_apic_set_irq+0xb4/0x140 arch/x86/kvm/lapic.c:558
stimer_notify_direct arch/x86/kvm/hyperv.c:648 [inline]
stimer_expiration arch/x86/kvm/hyperv.c:659 [inline]
kvm_hv_process_stimers+0x594/0x1650 arch/x86/kvm/hyperv.c:686
vcpu_enter_guest+0x2b2a/0x54b0 arch/x86/kvm/x86.c:7896
vcpu_run+0x393/0xd40 arch/x86/kvm/x86.c:8152
kvm_arch_vcpu_ioctl_run+0x636/0x900 arch/x86/kvm/x86.c:8360
kvm_vcpu_ioctl+0x6cf/0xaf0 arch/x86/kvm/../../../virt/kvm/kvm_main.c:2765
The testcase programs HV_X64_MSR_STIMERn_CONFIG/HV_X64_MSR_STIMERn_COUNT,
in addition, there is no lapic in the kernel, the counters value are small
enough in order that kvm_hv_process_stimers() inject this already-expired
timer interrupt into the guest through lapic in the kernel which triggers
the NULL deferencing. This patch fixes it by don't advertise direct mode
synthetic timers and discarding the inject when lapic is not in kernel.
syzkaller source: https://syzkaller.appspot.com/x/repro.c?x=1752fe0a600000
Reported-by: syzbot+dff25ee91f0c7d5c1695@syzkaller.appspotmail.com
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Signed-off-by: Wanpeng Li <wanpengli@tencent.com>
Reviewed-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Zapping collapsible sptes, a.k.a. 4k sptes that can be promoted into a
large page, is only necessary when changing only the dirty logging flag
of a memory region. If the memslot is also being moved, then all sptes
for the memslot are zapped when it is invalidated. When a memslot is
being created, it is impossible for there to be existing dirty mappings,
e.g. KVM can have MMIO sptes, but not present, and thus dirty, sptes.
Note, the comment and logic are shamelessly borrowed from MIPS's version
of kvm_arch_commit_memory_region().
Fixes: 3ea3b7fa9a ("kvm: mmu: lazy collapse small sptes into large sptes")
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
It was discovered that after commit 65efa61dc0 ("selftests: kvm: provide
common function to enable eVMCS") hyperv_cpuid selftest is failing on AMD.
The reason is that the commit changed _vcpu_ioctl() to vcpu_ioctl() in the
test and this one can't fail.
Instead of fixing the test is seems to make more sense to not announce
KVM_CAP_HYPERV_ENLIGHTENED_VMCS support if it is definitely missing
(on svm and in case kvm_intel.nested=0).
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Reviewed-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Since commit 5158917c7b ("KVM: x86: nVMX: Allow nested_enable_evmcs to
be NULL") the code in x86.c is prepared to see nested_enable_evmcs being
NULL and in VMX case it actually is when nesting is disabled. Remove the
unneeded stub from SVM code.
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Reviewed-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Hyper-V provides direct tlb flush function which helps
L1 Hypervisor to handle Hyper-V tlb flush request from
L2 guest. Add the function support for VMX.
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Tianyu Lan <Tianyu.Lan@microsoft.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Hyper-V direct tlb flush function should be enabled for
guest that only uses Hyper-V hypercall. User space
hypervisor(e.g, Qemu) can disable KVM identification in
CPUID and just exposes Hyper-V identification to make
sure the precondition. Add new KVM capability KVM_CAP_
HYPERV_DIRECT_TLBFLUSH for user space to enable Hyper-V
direct tlb function and this function is default to be
disabled in KVM.
Signed-off-by: Tianyu Lan <Tianyu.Lan@microsoft.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
These MSRs should be enumerated by KVM_GET_MSR_INDEX_LIST, so that
userspace knows that these MSRs may be part of the vCPU state.
Signed-off-by: Jim Mattson <jmattson@google.com>
Reviewed-by: Eric Hankland <ehankland@google.com>
Reviewed-by: Peter Shier <pshier@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
* ARM: ITS translation cache; support for 512 vCPUs, various cleanups
and bugfixes
* PPC: various minor fixes and preparation
* x86: bugfixes all over the place (posted interrupts, SVM, emulation
corner cases, blocked INIT), some IPI optimizations
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2.0.22 (GNU/Linux)
iQEcBAABAgAGBQJdf7fdAAoJEL/70l94x66DJzkIAKDcuWXJB4Qtoto6yUvPiHZm
LYkY/Dn1zulb/DhzrBoXFey/jZXwl9kxMYkVTefnrAl0fRwFGX+G1UYnQrtAL6Gr
ifdTYdy3kZhXCnnp99QAantWDswJHo1THwbmHrlmkxS4MdisEaTHwgjaHrDRZ4/d
FAEwW2isSonP3YJfTtsKFFjL9k2D4iMnwZ/R2B7UOaWvgnerZ1GLmOkilvnzGGEV
IQ89IIkWlkKd4SKgq8RkDKlfW5JrLrSdTK2Uf0DvAxV+J0EFkEaR+WlLsqumra0z
Eg3KwNScfQj0DyT0TzurcOxObcQPoMNSFYXLRbUu1+i0CGgm90XpF1IosiuihgU=
=w6I3
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull KVM updates from Paolo Bonzini:
"s390:
- ioctl hardening
- selftests
ARM:
- ITS translation cache
- support for 512 vCPUs
- various cleanups and bugfixes
PPC:
- various minor fixes and preparation
x86:
- bugfixes all over the place (posted interrupts, SVM, emulation
corner cases, blocked INIT)
- some IPI optimizations"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (75 commits)
KVM: X86: Use IPI shorthands in kvm guest when support
KVM: x86: Fix INIT signal handling in various CPU states
KVM: VMX: Introduce exit reason for receiving INIT signal on guest-mode
KVM: VMX: Stop the preemption timer during vCPU reset
KVM: LAPIC: Micro optimize IPI latency
kvm: Nested KVM MMUs need PAE root too
KVM: x86: set ctxt->have_exception in x86_decode_insn()
KVM: x86: always stop emulation on page fault
KVM: nVMX: trace nested VM-Enter failures detected by H/W
KVM: nVMX: add tracepoint for failed nested VM-Enter
x86: KVM: svm: Fix a check in nested_svm_vmrun()
KVM: x86: Return to userspace with internal error on unexpected exit reason
KVM: x86: Add kvm_emulate_{rd,wr}msr() to consolidate VXM/SVM code
KVM: x86: Refactor up kvm_{g,s}et_msr() to simplify callers
doc: kvm: Fix return description of KVM_SET_MSRS
KVM: X86: Tune PLE Window tracepoint
KVM: VMX: Change ple_window type to unsigned int
KVM: X86: Remove tailing newline for tracepoints
KVM: X86: Trace vcpu_id for vmexit
KVM: x86: Manually calculate reserved bits when loading PDPTRS
...
Pull core timer updates from Thomas Gleixner:
"Timers and timekeeping updates:
- A large overhaul of the posix CPU timer code which is a preparation
for moving the CPU timer expiry out into task work so it can be
properly accounted on the task/process.
An update to the bogus permission checks will come later during the
merge window as feedback was not complete before heading of for
travel.
- Switch the timerqueue code to use cached rbtrees and get rid of the
homebrewn caching of the leftmost node.
- Consolidate hrtimer_init() + hrtimer_init_sleeper() calls into a
single function
- Implement the separation of hrtimers to be forced to expire in hard
interrupt context even when PREEMPT_RT is enabled and mark the
affected timers accordingly.
- Implement a mechanism for hrtimers and the timer wheel to protect
RT against priority inversion and live lock issues when a (hr)timer
which should be canceled is currently executing the callback.
Instead of infinitely spinning, the task which tries to cancel the
timer blocks on a per cpu base expiry lock which is held and
released by the (hr)timer expiry code.
- Enable the Hyper-V TSC page based sched_clock for Hyper-V guests
resulting in faster access to timekeeping functions.
- Updates to various clocksource/clockevent drivers and their device
tree bindings.
- The usual small improvements all over the place"
* 'timers-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (101 commits)
posix-cpu-timers: Fix permission check regression
posix-cpu-timers: Always clear head pointer on dequeue
hrtimer: Add a missing bracket and hide `migration_base' on !SMP
posix-cpu-timers: Make expiry_active check actually work correctly
posix-timers: Unbreak CONFIG_POSIX_TIMERS=n build
tick: Mark sched_timer to expire in hard interrupt context
hrtimer: Add kernel doc annotation for HRTIMER_MODE_HARD
x86/hyperv: Hide pv_ops access for CONFIG_PARAVIRT=n
posix-cpu-timers: Utilize timerqueue for storage
posix-cpu-timers: Move state tracking to struct posix_cputimers
posix-cpu-timers: Deduplicate rlimit handling
posix-cpu-timers: Remove pointless comparisons
posix-cpu-timers: Get rid of 64bit divisions
posix-cpu-timers: Consolidate timer expiry further
posix-cpu-timers: Get rid of zero checks
rlimit: Rewrite non-sensical RLIMIT_CPU comment
posix-cpu-timers: Respect INFINITY for hard RTTIME limit
posix-cpu-timers: Switch thread group sampling to array
posix-cpu-timers: Restructure expiry array
posix-cpu-timers: Remove cputime_expires
...
James Harvey reported a livelock that was introduced by commit
d012a06ab1 ("Revert "KVM: x86/mmu: Zap only the relevant pages when
removing a memslot"").
The livelock occurs because kvm_mmu_zap_all() as it exists today will
voluntarily reschedule and drop KVM's mmu_lock, which allows other vCPUs
to add shadow pages. With enough vCPUs, kvm_mmu_zap_all() can get stuck
in an infinite loop as it can never zap all pages before observing lock
contention or the need to reschedule. The equivalent of kvm_mmu_zap_all()
that was in use at the time of the reverted commit (4e103134b8, "KVM:
x86/mmu: Zap only the relevant pages when removing a memslot") employed
a fast invalidate mechanism and was not susceptible to the above livelock.
There are three ways to fix the livelock:
- Reverting the revert (commit d012a06ab1) is not a viable option as
the revert is needed to fix a regression that occurs when the guest has
one or more assigned devices. It's unlikely we'll root cause the device
assignment regression soon enough to fix the regression timely.
- Remove the conditional reschedule from kvm_mmu_zap_all(). However, although
removing the reschedule would be a smaller code change, it's less safe
in the sense that the resulting kvm_mmu_zap_all() hasn't been used in
the wild for flushing memslots since the fast invalidate mechanism was
introduced by commit 6ca18b6950 ("KVM: x86: use the fast way to
invalidate all pages"), back in 2013.
- Reintroduce the fast invalidate mechanism and use it when zapping shadow
pages in response to a memslot being deleted/moved, which is what this
patch does.
For all intents and purposes, this is a revert of commit ea145aacf4
("Revert "KVM: MMU: fast invalidate all pages"") and a partial revert of
commit 7390de1e99 ("Revert "KVM: x86: use the fast way to invalidate
all pages""), i.e. restores the behavior of commit 5304b8d37c ("KVM:
MMU: fast invalidate all pages") and commit 6ca18b6950 ("KVM: x86:
use the fast way to invalidate all pages") respectively.
Fixes: d012a06ab1 ("Revert "KVM: x86/mmu: Zap only the relevant pages when removing a memslot"")
Reported-by: James Harvey <jamespharvey20@gmail.com>
Cc: Alex Willamson <alex.williamson@redhat.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: stable@vger.kernel.org
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Emulation of VMPTRST can incorrectly inject a page fault
when passed an operand that points to an MMIO address.
The page fault will use uninitialized kernel stack memory
as the CR2 and error code.
The right behavior would be to abort the VM with a KVM_EXIT_INTERNAL_ERROR
exit to userspace; however, it is not an easy fix, so for now just ensure
that the error code and CR2 are zero.
Signed-off-by: Fuqian Huang <huangfq.daxian@gmail.com>
Cc: stable@vger.kernel.org
[add comment]
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The implementation of vmread to memory is still incomplete, as it
lacks the ability to do vmread to I/O memory just like vmptrst.
Cc: stable@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Commit cd7764fe9f ("KVM: x86: latch INITs while in system management mode")
changed code to latch INIT while vCPU is in SMM and process latched INIT
when leaving SMM. It left a subtle remark in commit message that similar
treatment should also be done while vCPU is in VMX non-root-mode.
However, INIT signals should actually be latched in various vCPU states:
(*) For both Intel and AMD, INIT signals should be latched while vCPU
is in SMM.
(*) For Intel, INIT should also be latched while vCPU is in VMX
operation and later processed when vCPU leaves VMX operation by
executing VMXOFF.
(*) For AMD, INIT should also be latched while vCPU runs with GIF=0
or in guest-mode with intercept defined on INIT signal.
To fix this:
1) Add kvm_x86_ops->apic_init_signal_blocked() such that each CPU vendor
can define the various CPU states in which INIT signals should be
blocked and modify kvm_apic_accept_events() to use it.
2) Modify vmx_check_nested_events() to check for pending INIT signal
while vCPU in guest-mode. If so, emualte vmexit on
EXIT_REASON_INIT_SIGNAL. Note that nSVM should have similar behaviour
but is currently left as a TODO comment to implement in the future
because nSVM don't yet implement svm_check_nested_events().
Note: Currently KVM nVMX implementation don't support VMX wait-for-SIPI
activity state as specified in MSR_IA32_VMX_MISC bits 6:8 exposed to
guest (See nested_vmx_setup_ctls_msrs()).
If and when support for this activity state will be implemented,
kvm_check_nested_events() would need to avoid emulating vmexit on
INIT signal in case activity-state is wait-for-SIPI. In addition,
kvm_apic_accept_events() would need to be modified to avoid discarding
SIPI in case VMX activity-state is wait-for-SIPI but instead delay
SIPI processing to vmx_check_nested_events() that would clear
pending APIC events and emulate vmexit on SIPI.
Reviewed-by: Joao Martins <joao.m.martins@oracle.com>
Co-developed-by: Nikita Leshenko <nikita.leshchenko@oracle.com>
Signed-off-by: Nikita Leshenko <nikita.leshchenko@oracle.com>
Signed-off-by: Liran Alon <liran.alon@oracle.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The hrtimer which is used to emulate lapic timer is stopped during
vcpu reset, preemption timer should do the same.
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Signed-off-by: Wanpeng Li <wanpengli@tencent.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
On AMD processors, in PAE 32bit mode, nested KVM instances don't
work. The L0 host get a kernel OOPS, which is related to
arch.mmu->pae_root being NULL.
The reason for this is that when setting up nested KVM instance,
arch.mmu is set to &arch.guest_mmu (while normally, it would be
&arch.root_mmu). However, the initialization and allocation of
pae_root only creates it in root_mmu. KVM code (ie. in
mmu_alloc_shadow_roots) then accesses arch.mmu->pae_root, which is the
unallocated arch.guest_mmu->pae_root.
This fix just allocates (and frees) pae_root in both guest_mmu and
root_mmu (and also lm_root if it was allocated). The allocation is
subject to previous restrictions ie. it won't allocate anything on
64-bit and AFAIK not on Intel.
Fixes: https://bugzilla.kernel.org/show_bug.cgi?id=203923
Fixes: 14c07ad89f ("x86/kvm/mmu: introduce guest_mmu")
Signed-off-by: Jiri Palecek <jpalecek@web.de>
Tested-by: Jiri Palecek <jpalecek@web.de>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
x86_emulate_instruction() takes into account ctxt->have_exception flag
during instruction decoding, but in practice this flag is never set in
x86_decode_insn().
Fixes: 6ea6e84309 ("KVM: x86: inject exceptions produced by x86_decode_insn")
Cc: stable@vger.kernel.org
Cc: Denis Lunev <den@virtuozzo.com>
Cc: Roman Kagan <rkagan@virtuozzo.com>
Cc: Denis Plotnikov <dplotnikov@virtuozzo.com>
Signed-off-by: Jan Dakinevich <jan.dakinevich@virtuozzo.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
inject_emulated_exception() returns true if and only if nested page
fault happens. However, page fault can come from guest page tables
walk, either nested or not nested. In both cases we should stop an
attempt to read under RIP and give guest to step over its own page
fault handler.
This is also visible when an emulated instruction causes a #GP fault
and the VMware backdoor is enabled. To handle the VMware backdoor,
KVM intercepts #GP faults; with only the next patch applied,
x86_emulate_instruction() injects a #GP but returns EMULATE_FAIL
instead of EMULATE_DONE. EMULATE_FAIL causes handle_exception_nmi()
(or gp_interception() for SVM) to re-inject the original #GP because it
thinks emulation failed due to a non-VMware opcode. This patch prevents
the issue as x86_emulate_instruction() will return EMULATE_DONE after
injecting the #GP.
Fixes: 6ea6e84309 ("KVM: x86: inject exceptions produced by x86_decode_insn")
Cc: stable@vger.kernel.org
Cc: Denis Lunev <den@virtuozzo.com>
Cc: Roman Kagan <rkagan@virtuozzo.com>
Cc: Denis Plotnikov <dplotnikov@virtuozzo.com>
Signed-off-by: Jan Dakinevich <jan.dakinevich@virtuozzo.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Use the recently added tracepoint for logging nested VM-Enter failures
instead of spamming the kernel log when hardware detects a consistency
check failure. Take the opportunity to print the name of the error code
instead of dumping the raw hex number, but limit the symbol table to
error codes that can reasonably be encountered by KVM.
Add an equivalent tracepoint in nested_vmx_check_vmentry_hw(), e.g. so
that tracing of "invalid control field" errors isn't suppressed when
nested early checks are enabled.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Debugging a failed VM-Enter is often like searching for a needle in a
haystack, e.g. there are over 80 consistency checks that funnel into
the "invalid control field" error code. One way to expedite debug is
to run the buggy code as an L1 guest under KVM (and pray that the
failing check is detected by KVM). However, extracting useful debug
information out of L0 KVM requires attaching a debugger to KVM and/or
modifying the source, e.g. to log which check is failing.
Make life a little less painful for VMM developers and add a tracepoint
for failed VM-Enter consistency checks. Ideally the tracepoint would
capture both what check failed and precisely why it failed, but logging
why a checked failed is difficult to do in a generic tracepoint without
resorting to invasive techniques, e.g. generating a custom string on
failure. That being said, for the vast majority of VM-Enter failures
the most difficult step is figuring out exactly what to look at, e.g.
figuring out which bit was incorrectly set in a control field is usually
not too painful once the guilty field as been identified.
To reach a happy medium between precision and ease of use, simply log
the code that detected a failed check, using a macro to execute the
check and log the trace event on failure. This approach enables tracing
arbitrary code, e.g. it's not limited to function calls or specific
formats of checks, and the changes to the existing code are minimally
invasive. A macro with a two-character name is desirable as usage of
the macro doesn't result in overly long lines or confusing alignment,
while still retaining some amount of readability. I.e. a one-character
name is a little too terse, and a three-character name results in the
contents being passed to the macro aligning with an indented line when
the macro is used an in if-statement, e.g.:
if (VCC(nested_vmx_check_long_line_one(...) &&
nested_vmx_check_long_line_two(...)))
return -EINVAL;
And that is the story of how the CC(), a.k.a. Consistency Check, macro
got its name.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
We refactored this code a bit and accidentally deleted the "-" character
from "-EINVAL". The kvm_vcpu_map() function never returns positive
EINVAL.
Fixes: c8e16b78c6 ("x86: KVM: svm: eliminate hardcoded RIP advancement from vmrun_interception()")
Cc: stable@vger.kernel.org
Signed-off-by: Dan Carpenter <dan.carpenter@oracle.com>
Reviewed-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Reviewed-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Receiving an unexpected exit reason from hardware should be considered
as a severe bug in KVM. Therefore, instead of just injecting #UD to
guest and ignore it, exit to userspace on internal error so that
it could handle it properly (probably by terminating guest).
In addition, prefer to use vcpu_unimpl() instead of WARN_ONCE()
as handling unexpected exit reason should be a rare unexpected
event (that was expected to never happen) and we prefer to print
a message on it every time it occurs to guest.
Furthermore, dump VMCS/VMCB to dmesg to assist diagnosing such cases.
Reviewed-by: Mihai Carabas <mihai.carabas@oracle.com>
Reviewed-by: Nikita Leshenko <nikita.leshchenko@oracle.com>
Reviewed-by: Joao Martins <joao.m.martins@oracle.com>
Signed-off-by: Liran Alon <liran.alon@oracle.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Move RDMSR and WRMSR emulation into common x86 code to consolidate
nearly identical SVM and VMX code.
Note, consolidating RDMSR introduces an extra indirect call, i.e.
retpoline, due to reaching {svm,vmx}_get_msr() via kvm_x86_ops, but a
guest kernel likely has bigger problems if increasing the latency of
RDMSR VM-Exits by ~70 cycles has a measurable impact on overall VM
performance. E.g. the only recurring RDMSR VM-Exits (after booting) on
my system running Linux 5.2 in the guest are for MSR_IA32_TSC_ADJUST via
arch_cpu_idle_enter().
No functional change intended.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Refactor the top-level MSR accessors to take/return the index and value
directly instead of requiring the caller to dump them into a msr_data
struct.
No functional change intended.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The PLE window tracepoint triggers even if the window is not changed,
and the wording can be a bit confusing too. One example line:
kvm_ple_window: vcpu 0: ple_window 4096 (shrink 4096)
It easily let people think of "the window now is 4096 which is
shrinked", but the truth is the value actually didn't change (4096).
Let's only dump this message if the value really changed, and we make
the message even simpler like:
kvm_ple_window: vcpu 4 old 4096 new 8192 (growed)
Signed-off-by: Peter Xu <peterx@redhat.com>
Reviewed-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The VMX ple_window is 32 bits wide, so logically it can overflow with
an int. The module parameter is declared as unsigned int which is
good, however the dynamic variable is not. Switching all the
ple_window references to use unsigned int.
The tracepoint changes will also affect SVM, but SVM is using an even
smaller width (16 bits) so it's always fine.
Suggested-by: Sean Christopherson <sean.j.christopherson@intel.com>
Reviewed-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Peter Xu <peterx@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Tracing the ID helps to pair vmenters and vmexits for guests with
multiple vCPUs.
Reviewed-by: Krish Sadhukhan <krish.sadhukhan@oracle.com>
Reviewed-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Peter Xu <peterx@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Manually generate the PDPTR reserved bit mask when explicitly loading
PDPTRs. The reserved bits that are being tracked by the MMU reflect the
current paging mode, which is unlikely to be PAE paging in the vast
majority of flows that use load_pdptrs(), e.g. CR0 and CR4 emulation,
__set_sregs(), etc... This can cause KVM to incorrectly signal a bad
PDPTR, or more likely, miss a reserved bit check and subsequently fail
a VM-Enter due to a bad VMCS.GUEST_PDPTR.
Add a one off helper to generate the reserved bits instead of sharing
code across the MMU's calculations and the PDPTR emulation. The PDPTR
reserved bits are basically set in stone, and pushing a helper into
the MMU's calculation adds unnecessary complexity without improving
readability.
Oppurtunistically fix/update the comment for load_pdptrs().
Note, the buggy commit also introduced a deliberate functional change,
"Also remove bit 5-6 from rsvd_bits_mask per latest SDM.", which was
effectively (and correctly) reverted by commit cd9ae5fe47 ("KVM: x86:
Fix page-tables reserved bits"). A bit of SDM archaeology shows that
the SDM from late 2008 had a bug (likely a copy+paste error) where it
listed bits 6:5 as AVL and A for PDPTEs used for 4k entries but reserved
for 2mb entries. I.e. the SDM contradicted itself, and bits 6:5 are and
always have been reserved.
Fixes: 20c466b561 ("KVM: Use rsvd_bits_mask in load_pdptrs()")
Cc: stable@vger.kernel.org
Cc: Nadav Amit <nadav.amit@gmail.com>
Reported-by: Doug Reiland <doug.reiland@intel.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Reviewed-by: Peter Xu <peterx@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
We can easily route hardware interrupts directly into VM context when
they target the "Fixed" or "LowPriority" delivery modes.
However, on modes such as "SMI" or "Init", we need to go via KVM code
to actually put the vCPU into a different mode of operation, so we can
not post the interrupt
Add code in the VMX and SVM PI logic to explicitly refuse to establish
posted mappings for advanced IRQ deliver modes. This reflects the logic
in __apic_accept_irq() which also only ever passes Fixed and LowPriority
interrupts as posted interrupts into the guest.
This fixes a bug I have with code which configures real hardware to
inject virtual SMIs into my guest.
Signed-off-by: Alexander Graf <graf@amazon.com>
Reviewed-by: Liran Alon <liran.alon@oracle.com>
Reviewed-by: Sean Christopherson <sean.j.christopherson@intel.com>
Reviewed-by: Wanpeng Li <wanpengli@tencent.com>
Cc: stable@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Don't advance RIP or inject a single-step #DB if emulation signals a
fault. This logic applies to all state updates that are conditional on
clean retirement of the emulation instruction, e.g. updating RFLAGS was
previously handled by commit 38827dbd3f ("KVM: x86: Do not update
EFLAGS on faulting emulation").
Not advancing RIP is likely a nop, i.e. ctxt->eip isn't updated with
ctxt->_eip until emulation "retires" anyways. Skipping #DB injection
fixes a bug reported by Andy Lutomirski where a #UD on SYSCALL due to
invalid state with EFLAGS.TF=1 would loop indefinitely due to emulation
overwriting the #UD with #DB and thus restarting the bad SYSCALL over
and over.
Cc: Nadav Amit <nadav.amit@gmail.com>
Cc: stable@vger.kernel.org
Reported-by: Andy Lutomirski <luto@kernel.org>
Fixes: 663f4c61b8 ("KVM: x86: handle singlestep during emulation")
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
If kvm_intel is loaded with nested=0 parameter an attempt to perform
KVM_GET_SUPPORTED_HV_CPUID results in OOPS as nested_get_evmcs_version hook
in kvm_x86_ops is NULL (we assign it in nested_vmx_hardware_setup() and
this only happens in case nested is enabled).
Check that kvm_x86_ops->nested_get_evmcs_version is not NULL before
calling it. With this, we can remove the stub from svm as it is no
longer needed.
Cc: <stable@vger.kernel.org>
Fixes: e2e871ab2f ("x86/kvm/hyper-v: Introduce nested_get_evmcs_version() helper")
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Reviewed-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
Fix an incorrect/stale comment regarding the vmx_vcpu pointer, as guest
registers are now loaded using a direct pointer to the start of the
register array.
Opportunistically add a comment to document why the vmx_vcpu pointer is
needed, its consumption via 'call vmx_update_host_rsp' is rather subtle.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Reviewed-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
KVM implementations that wrap struct kvm_vcpu with a vendor specific
struct, e.g. struct vcpu_vmx, must place the vcpu member at offset 0,
otherwise the usercopy region intended to encompass struct kvm_vcpu_arch
will instead overlap random chunks of the vendor specific struct.
E.g. padding a large number of bytes before struct kvm_vcpu triggers
a usercopy warn when running with CONFIG_HARDENED_USERCOPY=y.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Reviewed-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Remove a few stale checks for non-NULL ops now that the ops in question
are implemented by both VMX and SVM.
Note, this is **not** stable material, the Fixes tags are there purely
to show when a particular op was first supported by both VMX and SVM.
Fixes: 74f169090b ("kvm/svm: Setup MCG_CAP on AMD properly")
Fixes: b31c114b82 ("KVM: X86: Provide a capability to disable PAUSE intercepts")
Fixes: 411b44ba80 ("svm: Implements update_pi_irte hook to setup posted interrupt")
Cc: Krish Sadhukhan <krish.sadhukhan@oracle.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Replace the open-coded "is MMIO SPTE" checks in the MMU warnings
related to software-based access/dirty tracking to make the code
slightly more self-documenting.
No functional change intended.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
When shadow paging is enabled, KVM tracks the allowed access type for
MMIO SPTEs so that it can do a permission check on a MMIO GVA cache hit
without having to walk the guest's page tables. The tracking is done
by retaining the WRITE and USER bits of the access when inserting the
MMIO SPTE (read access is implicitly allowed), which allows the MMIO
page fault handler to retrieve and cache the WRITE/USER bits from the
SPTE.
Unfortunately for EPT, the mask used to retain the WRITE/USER bits is
hardcoded using the x86 paging versions of the bits. This funkiness
happens to work because KVM uses a completely different mask/value for
MMIO SPTEs when EPT is enabled, and the EPT mask/value just happens to
overlap exactly with the x86 WRITE/USER bits[*].
Explicitly define the access mask for MMIO SPTEs to accurately reflect
that EPT does not want to incorporate any access bits into the SPTE, and
so that KVM isn't subtly relying on EPT's WX bits always being set in
MMIO SPTEs, e.g. attempting to use other bits for experimentation breaks
horribly.
Note, vcpu_match_mmio_gva() explicits prevents matching GVA==0, and all
TDP flows explicit set mmio_gva to 0, i.e. zeroing vcpu->arch.access for
EPT has no (known) functional impact.
[*] Using WX to generate EPT misconfigurations (equivalent to reserved
bit page fault) ensures KVM can employ its MMIO page fault tricks
even platforms without reserved address bits.
Fixes: ce88decffd ("KVM: MMU: mmio page fault support")
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Rename "access" to "mmio_access" to match the other MMIO cache members
and to make it more obvious that it's tracking the access permissions
for the MMIO cache.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Just like we do with other intercepts, in vmrun_interception() we should be
doing kvm_skip_emulated_instruction() and not just RIP += 3. Also, it is
wrong to increment RIP before nested_svm_vmrun() as it can result in
kvm_inject_gp().
We can't call kvm_skip_emulated_instruction() after nested_svm_vmrun() so
move it inside.
Suggested-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Reviewed-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Regardless of whether or not nested_svm_vmrun_msrpm() fails, we return 1
from vmrun_interception() so there's no point in doing goto. Also,
nested_svm_vmrun_msrpm() call can be made from nested_svm_vmrun() where
other nested launch issues are handled.
nested_svm_vmrun() returns a bool, however, its result is ignored in
vmrun_interception() as we always return '1'. As a preparatory change
to putting kvm_skip_emulated_instruction() inside nested_svm_vmrun()
make nested_svm_vmrun() return an int (always '1' for now).
Suggested-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Reviewed-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Various intercepts hard-code the respective instruction lengths to optimize
skip_emulated_instruction(): when next_rip is pre-set we skip
kvm_emulate_instruction(vcpu, EMULTYPE_SKIP). The optimization is, however,
incorrect: different (redundant) prefixes could be used to enlarge the
instruction. We can't really avoid decoding.
svm->next_rip is not used when CPU supports 'nrips' (X86_FEATURE_NRIPS)
feature: next RIP is provided in VMCB. The feature is not really new
(Opteron G3s had it already) and the change should have zero affect.
Remove manual svm->next_rip setting with hard-coded instruction lengths.
The only case where we now use svm->next_rip is EXIT_IOIO: the instruction
length is provided to us by hardware.
Hardcoded RIP advancement remains in vmrun_interception(), this is going to
be taken care of separately.
Reported-by: Jim Mattson <jmattson@google.com>
Reviewed-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
To avoid hardcoding xsetbv length to '3' we need to support decoding it in
the emulator.
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
When doing x86_emulate_instruction(EMULTYPE_SKIP) interrupt shadow has to
be cleared if and only if the skipping is successful.
There are two immediate issues:
- In SVM skip_emulated_instruction() we are not zapping interrupt shadow
in case kvm_emulate_instruction(EMULTYPE_SKIP) is used to advance RIP
(!nrpip_save).
- In VMX handle_ept_misconfig() when running as a nested hypervisor we
(static_cpu_has(X86_FEATURE_HYPERVISOR) case) forget to clear interrupt
shadow.
Note that we intentionally don't handle the case when the skipped
instruction is supposed to prolong the interrupt shadow ("MOV/POP SS") as
skip-emulation of those instructions should not happen under normal
circumstances.
Suggested-by: Sean Christopherson <sean.j.christopherson@intel.com>
Reviewed-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
On AMD, kvm_x86_ops->skip_emulated_instruction(vcpu) can, in theory,
fail: in !nrips case we call kvm_emulate_instruction(EMULTYPE_SKIP).
Currently, we only do printk(KERN_DEBUG) when this happens and this
is not ideal. Propagate the error up the stack.
On VMX, skip_emulated_instruction() doesn't fail, we have two call
sites calling it explicitly: handle_exception_nmi() and
handle_task_switch(), we can just ignore the result.
On SVM, we also have two explicit call sites:
svm_queue_exception() and it seems we don't need to do anything there as
we check if RIP was advanced or not. In task_switch_interception(),
however, we are better off not proceeding to kvm_task_switch() in case
skip_emulated_instruction() failed.
Suggested-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
svm->next_rip is only used by skip_emulated_instruction() and in case
kvm_set_msr() fails we rightfully don't do that. Move svm->next_rip
advancement to 'else' branch to avoid creating false impression that
it's always advanced (and make it look like rdmsr_interception()).
This is a preparatory change to removing hardcoded RIP advancement
from instruction intercepts, no functional change.
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Reviewed-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Jump to the common error handling in x86_decode_insn() if
__do_insn_fetch_bytes() fails so that its error code is converted to the
appropriate return type. Although the various helpers used by
x86_decode_insn() return X86EMUL_* values, x86_decode_insn() itself
returns EMULATION_FAILED or EMULATION_OK.
This doesn't cause a functional issue as the sole caller,
x86_emulate_instruction(), currently only cares about success vs.
failure, and success is indicated by '0' for both types
(X86EMUL_CONTINUE and EMULATION_OK).
Fixes: 285ca9e948 ("KVM: emulate: speed up do_insn_fetch")
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Similar to AMD bits, set the Intel bits from the vendor-independent
feature and bug flags, because KVM_GET_SUPPORTED_CPUID does not care
about the vendor and they should be set on AMD processors as well.
Suggested-by: Jim Mattson <jmattson@google.com>
Reviewed-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Even though it is preferrable to use SPEC_CTRL (represented by
X86_FEATURE_AMD_SSBD) instead of VIRT_SPEC, VIRT_SPEC is always
supported anyway because otherwise it would be impossible to
migrate from old to new CPUs. Make this apparent in the
result of KVM_GET_SUPPORTED_CPUID as well.
However, we need to hide the bit on Intel processors, so move
the setting to svm_set_supported_cpuid.
Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Reported-by: Eduardo Habkost <ehabkost@redhat.com>
Reviewed-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The AMD_* bits have to be set from the vendor-independent
feature and bug flags, because KVM_GET_SUPPORTED_CPUID does not care
about the vendor and they should be set on Intel processors as well.
On top of this, SSBD, STIBP and AMD_SSB_NO bit were not set, and
VIRT_SSBD does not have to be added manually because it is a
cpufeature that comes directly from the host's CPUID bit.
Reviewed-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
This reverts commit 4e103134b8.
Alex Williamson reported regressions with device assignment with
this patch. Even though the bug is probably elsewhere and still
latent, this is needed to fix the regression.
Fixes: 4e103134b8 ("KVM: x86/mmu: Zap only the relevant pages when removing a memslot", 2019-02-05)
Reported-by: Alex Willamson <alex.williamson@redhat.com>
Cc: stable@vger.kernel.org
Cc: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
new_entry is reassigned a new value next line. So
it's redundant and remove it.
Signed-off-by: Miaohe Lin <linmiaohe@huawei.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
recalculate_apic_map does not santize ldr and it's possible that
multiple bits are set. In that case, a previous valid entry
can potentially be overwritten by an invalid one.
This condition is hit when booting a 32 bit, >8 CPU, RHEL6 guest and then
triggering a crash to boot a kdump kernel. This is the sequence of
events:
1. Linux boots in bigsmp mode and enables PhysFlat, however, it still
writes to the LDR which probably will never be used.
2. However, when booting into kdump, the stale LDR values remain as
they are not cleared by the guest and there isn't a apic reset.
3. kdump boots with 1 cpu, and uses Logical Destination Mode but the
logical map has been overwritten and points to an inactive vcpu.
Signed-off-by: Radim Krcmar <rkrcmar@redhat.com>
Signed-off-by: Bandan Das <bsd@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
When calling debugfs functions, there is no need to ever check the
return value. The function can work or not, but the code logic should
never do something different based on this.
Also, when doing this, change kvm_arch_create_vcpu_debugfs() to return
void instead of an integer, as we should not care at all about if this
function actually does anything or not.
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: "Radim Krčmář" <rkrcmar@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: <x86@kernel.org>
Cc: <kvm@vger.kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
There is no need for this function as all arches have to implement
kvm_arch_create_vcpu_debugfs() no matter what. A #define symbol
let us actually simplify the code.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
After commit d73eb57b80 (KVM: Boost vCPUs that are delivering interrupts), a
five years old bug is exposed. Running ebizzy benchmark in three 80 vCPUs VMs
on one 80 pCPUs Skylake server, a lot of rcu_sched stall warning splatting
in the VMs after stress testing:
INFO: rcu_sched detected stalls on CPUs/tasks: { 4 41 57 62 77} (detected by 15, t=60004 jiffies, g=899, c=898, q=15073)
Call Trace:
flush_tlb_mm_range+0x68/0x140
tlb_flush_mmu.part.75+0x37/0xe0
tlb_finish_mmu+0x55/0x60
zap_page_range+0x142/0x190
SyS_madvise+0x3cd/0x9c0
system_call_fastpath+0x1c/0x21
swait_active() sustains to be true before finish_swait() is called in
kvm_vcpu_block(), voluntarily preempted vCPUs are taken into account
by kvm_vcpu_on_spin() loop greatly increases the probability condition
kvm_arch_vcpu_runnable(vcpu) is checked and can be true, when APICv
is enabled the yield-candidate vCPU's VMCS RVI field leaks(by
vmx_sync_pir_to_irr()) into spinning-on-a-taken-lock vCPU's current
VMCS.
This patch fixes it by checking conservatively a subset of events.
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Christian Borntraeger <borntraeger@de.ibm.com>
Cc: Marc Zyngier <Marc.Zyngier@arm.com>
Cc: stable@vger.kernel.org
Fixes: 98f4a1467 (KVM: add kvm_arch_vcpu_runnable() test to kvm_vcpu_on_spin() loop)
Signed-off-by: Wanpeng Li <wanpengli@tencent.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
kvm_set_pending_timer() will take care to wake up the sleeping vCPU which
has pending timer, don't need to check this in apic_timer_expired() again.
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Signed-off-by: Wanpeng Li <wanpengli@tencent.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
On PREEMPT_RT enabled kernels unmarked hrtimers are moved into soft
interrupt expiry mode by default.
While that's not a functional requirement for the KVM local APIC timer
emulation, it's a latency issue which can be avoided by marking the timer
so hard interrupt context expiry is enforced.
No functional change.
[ tglx: Split out from larger combo patch. Add changelog. ]
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Paolo Bonzini <pbonzini@redhat.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20190726185753.363363474@linutronix.de
Commit 11752adb (locking/pvqspinlock: Implement hybrid PV queued/unfair locks)
introduces hybrid PV queued/unfair locks
- queued mode (no starvation)
- unfair mode (good performance on not heavily contended lock)
The lock waiter goes into the unfair mode especially in VMs with over-commit
vCPUs since increaing over-commitment increase the likehood that the queue
head vCPU may have been preempted and not actively spinning.
However, reschedule queue head vCPU timely to acquire the lock still can get
better performance than just depending on lock stealing in over-subscribe
scenario.
Testing on 80 HT 2 socket Xeon Skylake server, with 80 vCPUs VM 80GB RAM:
ebizzy -M
vanilla boosting improved
1VM 23520 25040 6%
2VM 8000 13600 70%
3VM 3100 5400 74%
The lock holder vCPU yields to the queue head vCPU when unlock, to boost queue
head vCPU which is involuntary preemption or the one which is voluntary halt
due to fail to acquire the lock after a short spin in the guest.
Cc: Waiman Long <longman@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Signed-off-by: Wanpeng Li <wanpengli@tencent.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Renaming docs seems to be en vogue at the moment, so fix on of the
grossly misnamed directories. We usually never use "virtual" as
a shortcut for virtualization in the kernel, but always virt,
as seen in the virt/ top-level directory. Fix up the documentation
to match that.
Fixes: ed16648eb5 ("Move kvm, uml, and lguest subdirectories under a common "virtual" directory, I.E:")
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
After reverting commit 240c35a378 (kvm: x86: Use task structs fpu field
for user), struct kvm_vcpu is 19456 bytes on my server, PAGE_ALLOC_COSTLY_ORDER(3)
is the order at which allocations are deemed costly to service. In serveless
scenario, one host can service hundreds/thoudands firecracker/kata-container
instances, howerver, new instance will fail to launch after memory is too
fragmented to allocate kvm_vcpu struct on host, this was observed in some
cloud provider product environments.
This patch dynamically allocates user_fpu, kvm_vcpu is 15168 bytes now on my
Skylake server.
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Signed-off-by: Wanpeng Li <wanpengli@tencent.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The idea before commit 240c35a37 (which has just been reverted)
was that we have the following FPU states:
userspace (QEMU) guest
---------------------------------------------------------------------------
processor vcpu->arch.guest_fpu
>>> KVM_RUN: kvm_load_guest_fpu
vcpu->arch.user_fpu processor
>>> preempt out
vcpu->arch.user_fpu current->thread.fpu
>>> preempt in
vcpu->arch.user_fpu processor
>>> back to userspace
>>> kvm_put_guest_fpu
processor vcpu->arch.guest_fpu
---------------------------------------------------------------------------
With the new lazy model we want to get the state back to the processor
when schedule in from current->thread.fpu.
Reported-by: Thomas Lambertz <mail@thomaslambertz.de>
Reported-by: anthony <antdev66@gmail.com>
Tested-by: anthony <antdev66@gmail.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Thomas Lambertz <mail@thomaslambertz.de>
Cc: anthony <antdev66@gmail.com>
Cc: stable@vger.kernel.org
Fixes: 5f409e20b (x86/fpu: Defer FPU state load until return to userspace)
Signed-off-by: Wanpeng Li <wanpengli@tencent.com>
[Add a comment in front of the warning. - Paolo]
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
This reverts commit 240c35a378
("kvm: x86: Use task structs fpu field for user", 2018-11-06).
The commit is broken and causes QEMU's FPU state to be destroyed
when KVM_RUN is preempted.
Fixes: 240c35a378 ("kvm: x86: Use task structs fpu field for user")
Cc: stable@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Letting this pend may cause nested_get_vmcs12_pages to run against an
invalid state, corrupting the effective vmcs of L1.
This was triggerable in QEMU after a guest corruption in L2, followed by
a L1 reset.
Signed-off-by: Jan Kiszka <jan.kiszka@siemens.com>
Reviewed-by: Liran Alon <liran.alon@oracle.com>
Cc: stable@vger.kernel.org
Fixes: 7f7f1ba33c ("KVM: x86: do not load vmcs12 pages while still in SMM")
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Pull core fixes from Thomas Gleixner:
- A collection of objtool fixes which address recent fallout partially
exposed by newer toolchains, clang, BPF and general code changes.
- Force USER_DS for user stack traces
[ Note: the "objtool fixes" are not all to objtool itself, but for
kernel code that triggers objtool warnings.
Things like missing function size annotations, or code that confuses
the unwinder etc. - Linus]
* 'core-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (27 commits)
objtool: Support conditional retpolines
objtool: Convert insn type to enum
objtool: Fix seg fault on bad switch table entry
objtool: Support repeated uses of the same C jump table
objtool: Refactor jump table code
objtool: Refactor sibling call detection logic
objtool: Do frame pointer check before dead end check
objtool: Change dead_end_function() to return boolean
objtool: Warn on zero-length functions
objtool: Refactor function alias logic
objtool: Track original function across branches
objtool: Add mcsafe_handle_tail() to the uaccess safe list
bpf: Disable GCC -fgcse optimization for ___bpf_prog_run()
x86/uaccess: Remove redundant CLACs in getuser/putuser error paths
x86/uaccess: Don't leak AC flag into fentry from mcsafe_handle_tail()
x86/uaccess: Remove ELF function annotation from copy_user_handle_tail()
x86/head/64: Annotate start_cpu0() as non-callable
x86/entry: Fix thunk function ELF sizes
x86/kvm: Don't call kvm_spurious_fault() from .fixup
x86/kvm: Replace vmx_vmenter()'s call to kvm_spurious_fault() with UD2
...
Updates KVM_CAP_PMU_EVENT_FILTER so it can also whitelist or blacklist
fixed counters.
Signed-off-by: Eric Hankland <ehankland@google.com>
[No need to check padding fields for zero. - Paolo]
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
If a KVM guest is reset while running a nested guest, free_nested will
disable the shadow VMCS execution control in the vmcs01. However,
on the next KVM_RUN vmx_vcpu_run would nevertheless try to sync
the VMCS12 to the shadow VMCS which has since been freed.
This causes a vmptrld of a NULL pointer on my machime, but Jan reports
the host to hang altogether. Let's see how much this trivial patch fixes.
Reported-by: Jan Kiszka <jan.kiszka@siemens.com>
Cc: Liran Alon <liran.alon@oracle.com>
Cc: stable@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
If a perf_event creation fails due to any reason of the host perf
subsystem, it has no chance to log the corresponding event for guest
which may cause abnormal sampling data in guest result. In debug mode,
this message helps to understand the state of vPMC and we may not
limit the number of occurrences but not in a spamming style.
Suggested-by: Joe Perches <joe@perches.com>
Signed-off-by: Like Xu <like.xu@linux.intel.com>
Cc: stable@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
When CPU raise #NPF on guest data access and guest CR4.SMAP=1, it is
possible that CPU microcode implementing DecodeAssist will fail
to read bytes of instruction which caused #NPF. This is AMD errata
1096 and it happens because CPU microcode reading instruction bytes
incorrectly attempts to read code as implicit supervisor-mode data
accesses (that is, just like it would read e.g. a TSS), which are
susceptible to SMAP faults. The microcode reads CS:RIP and if it is
a user-mode address according to the page tables, the processor
gives up and returns no instruction bytes. In this case,
GuestIntrBytes field of the VMCB on a VMEXIT will incorrectly
return 0 instead of the correct guest instruction bytes.
Current KVM code attemps to detect and workaround this errata, but it
has multiple issues:
1) It mistakenly checks if guest CR4.SMAP=0 instead of guest CR4.SMAP=1,
which is required for encountering a SMAP fault.
2) It assumes SMAP faults can only occur when guest CPL==3.
However, in case guest CR4.SMEP=0, the guest can execute an instruction
which reside in a user-accessible page with CPL<3 priviledge. If this
instruction raise a #NPF on it's data access, then CPU DecodeAssist
microcode will still encounter a SMAP violation. Even though no sane
OS will do so (as it's an obvious priviledge escalation vulnerability),
we still need to handle this semanticly correct in KVM side.
Note that (2) *is* a useful optimization, because CR4.SMAP=1 is an easy
triggerable condition and guests usually enable SMAP together with SMEP.
If the vCPU has CR4.SMEP=1, the errata could indeed be encountered onlt
at guest CPL==3; otherwise, the CPU would raise a SMEP fault to guest
instead of #NPF. We keep this condition to avoid false positives in
the detection of the errata.
In addition, to avoid future confusion and improve code readbility,
include details of the errata in code and not just in commit message.
Fixes: 05d5a48635 ("KVM: SVM: Workaround errata#1096 (insn_len maybe zero on SMAP violation)")
Cc: Singh Brijesh <brijesh.singh@amd.com>
Cc: Sean Christopherson <sean.j.christopherson@intel.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Reviewed-by: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Signed-off-by: Liran Alon <liran.alon@oracle.com>
Reviewed-by: Brijesh Singh <brijesh.singh@amd.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Dedicated instances are currently disturbed by unnecessary jitter due
to the emulated lapic timers firing on the same pCPUs where the
vCPUs reside. There is no hardware virtual timer on Intel for guest
like ARM, so both programming timer in guest and the emulated timer fires
incur vmexits. This patch tries to avoid vmexit when the emulated timer
fires, at least in dedicated instance scenario when nohz_full is enabled.
In that case, the emulated timers can be offload to the nearest busy
housekeeping cpus since APICv has been found for several years in server
processors. The guest timer interrupt can then be injected via posted interrupts,
which are delivered by the housekeeping cpu once the emulated timer fires.
The host should tuned so that vCPUs are placed on isolated physical
processors, and with several pCPUs surplus for busy housekeeping.
If disabled mwait/hlt/pause vmexits keep the vCPUs in non-root mode,
~3% redis performance benefit can be observed on Skylake server, and the
number of external interrupt vmexits drops substantially. Without patch
VM-EXIT Samples Samples% Time% Min Time Max Time Avg time
EXTERNAL_INTERRUPT 42916 49.43% 39.30% 0.47us 106.09us 0.71us ( +- 1.09% )
While with patch:
VM-EXIT Samples Samples% Time% Min Time Max Time Avg time
EXTERNAL_INTERRUPT 6871 9.29% 2.96% 0.44us 57.88us 0.72us ( +- 4.02% )
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Marcelo Tosatti <mtosatti@redhat.com>
Signed-off-by: Wanpeng Li <wanpengli@tencent.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Objtool reports the following:
arch/x86/kvm/vmx/vmenter.o: warning: objtool: vmx_vmenter()+0x14: call without frame pointer save/setup
But frame pointers are necessarily broken anyway, because
__vmx_vcpu_run() clobbers RBP with the guest's value before calling
vmx_vmenter(). So calling without a frame pointer doesn't make things
any worse.
Make objtool happy by changing the call to a UD2.
Suggested-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Paolo Bonzini <pbonzini@redhat.com>
Link: https://lkml.kernel.org/r/9fc2216c9dc972f95bb65ce2966a682c6bda1cb0.1563413318.git.jpoimboe@redhat.com
Some of the fastop functions, e.g. em_setcc(), are actually just used as
global labels which point to blocks of functions. The global labels are
incorrectly annotated as functions. Also the functions themselves don't
have size annotations.
Fixes a bunch of warnings like the following:
arch/x86/kvm/emulate.o: warning: objtool: seto() is missing an ELF size annotation
arch/x86/kvm/emulate.o: warning: objtool: em_setcc() is missing an ELF size annotation
arch/x86/kvm/emulate.o: warning: objtool: setno() is missing an ELF size annotation
arch/x86/kvm/emulate.o: warning: objtool: setc() is missing an ELF size annotation
Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Paolo Bonzini <pbonzini@redhat.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/c8cc9be60ebbceb3092aa5dd91916039a1f88275.1563413318.git.jpoimboe@redhat.com
Commit 61abdbe0bc ("kvm: x86: make lapic hrtimer pinned") pinned the
lapic timer to avoid to wait until the next kvm exit for the guest to
see KVM_REQ_PENDING_TIMER set. There is another solution to give a kick
after setting the KVM_REQ_PENDING_TIMER bit, make lapic timer unpinned
will be used in follow up patches.
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Marcelo Tosatti <mtosatti@redhat.com>
Signed-off-by: Wanpeng Li <wanpengli@tencent.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
To avoid semantic inconsistency, the fixed_counters in Intel vPMU
need to be reset to 0 in intel_pmu_reset() as gp_counters does.
Signed-off-by: Like Xu <like.xu@linux.intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
As reported by Maxime at
https://bugzilla.kernel.org/show_bug.cgi?id=204175:
In vmx/nested.c::get_vmx_mem_address(), when the guest runs in long mode,
the base address of the memory operand is computed with a simple:
*ret = s.base + off;
This is incorrect, the base applies only to FS and GS, not to the others.
Because of that, if the guest uses a VMX instruction based on DS and has
a DS.base that is non-zero, KVM wrongfully adds the base to the
resulting address.
Reported-by: Maxime Villard <max@m00nbsd.net>
Reviewed-by: Joao Martins <joao.m.martins@oracle.com>
Signed-off-by: Liran Alon <liran.alon@oracle.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The ioapic_debug and apic_debug have been not used
for years, and kvm tracepoints are enough for debugging,
so remove them as Paolo suggested.
However, there may be something wrong when pv evi get/put
user, so it's better to retain some log there.
Signed-off-by: Yi Wang <wang.yi59@zte.com.cn>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
There are some pr_debug in TSC code, which may have
been no use, so remove them as Paolo suggested.
Signed-off-by: Yi Wang <wang.yi59@zte.com.cn>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
This fixes the following coccinelle warning:
WARNING: return of 0/1 in function 'vmx_need_emulation_on_page_fault'
with return type bool
Return false instead of 0.
Signed-off-by: Yi Wang <wang.yi59@zte.com.cn>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
clang finds a contruct suspicious that converts an unsigned
character to a signed integer and back, causing an overflow:
arch/x86/kvm/mmu.c:4605:39: error: implicit conversion from 'int' to 'u8' (aka 'unsigned char') changes value from -205 to 51 [-Werror,-Wconstant-conversion]
u8 wf = (pfec & PFERR_WRITE_MASK) ? ~w : 0;
~~ ^~
arch/x86/kvm/mmu.c:4607:38: error: implicit conversion from 'int' to 'u8' (aka 'unsigned char') changes value from -241 to 15 [-Werror,-Wconstant-conversion]
u8 uf = (pfec & PFERR_USER_MASK) ? ~u : 0;
~~ ^~
arch/x86/kvm/mmu.c:4609:39: error: implicit conversion from 'int' to 'u8' (aka 'unsigned char') changes value from -171 to 85 [-Werror,-Wconstant-conversion]
u8 ff = (pfec & PFERR_FETCH_MASK) ? ~x : 0;
~~ ^~
Add an explicit cast to tell clang that everything works as
intended here.
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Link: https://github.com/ClangBuiltLinux/linux/issues/95
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>