In a subsequent patch, this will allow the portmapper to take a reference
to the rpc_xprt for which it is updating the port number, fixing an Oops.
Signed-off-by: Trond Myklebust <Trond.Myklebust@netapp.com>
The two function call API for creating a new RPC client is now obsolete.
Remove it.
Also, remove an unnecessary check to see whether the caller is capable of
using privileged network services. The kernel RPC client always uses a
privileged ephemeral port by default; callers are responsible for checking
the authority of users to make use of any RPC service, or for specifying
that a nonprivileged port is acceptable.
Test plan:
Repeated runs of Connectathon locking suite. Check network trace to ensure
correctness of NLM requests and replies.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: Trond Myklebust <Trond.Myklebust@netapp.com>
Prepare for more generic transport endpoint handling needed by transports
that might use different forms of addressing, such as IPv6.
Introduce a single function call to replace the two-call
xprt_create_proto/rpc_create_client API. Define a new rpc_create_args
structure that allows callers to pass in remote endpoint addresses of
varying length.
Test-plan:
Compile kernel with CONFIG_NFS enabled.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: Trond Myklebust <Trond.Myklebust@netapp.com>
IPv6 addresses are big (128 bytes). Now that no RPC client consumers treat
the addr field in rpc_xprt structs as an opaque, and access it only via the
API calls, we can safely widen the field in the rpc_xprt struct to
accomodate larger addresses.
Test plan:
Compile kernel with CONFIG_NFS enabled.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: Trond Myklebust <Trond.Myklebust@netapp.com>
Add a new method to the transport switch API to provide a way to convert
the opaque contents of xprt->addr to a human-readable string.
Test plan:
Compile kernel with CONFIG_NFS enabled.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: Trond Myklebust <Trond.Myklebust@netapp.com>
Introduce a clean transport switch API for plugging in different types of
rpcbind mechanisms. For instance, rpcbind can cleanly replace the
existing portmapper client, or a transport can choose to implement RPC
binding any way it likes.
Test plan:
Destructive testing (unplugging the network temporarily). Connectathon
with UDP and TCP. NFSv2/3 and NFSv4 mounting should be carefully checked.
Probably need to rig a server where certain services aren't running, or
that returns an error for some typical operation.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: Trond Myklebust <Trond.Myklebust@netapp.com>
Move connection and bind state that was maintained in the rpc_clnt
structure to the rpc_xprt structure. This will allow the creation of
a clean API for plugging in different types of bind mechanisms.
This brings improvements such as the elimination of a single spin lock to
control serialization for all in-kernel RPC binding. A set of per-xprt
bitops is used to serialize tasks during RPC binding, just like it now
works for making RPC transport connections.
Test-plan:
Destructive testing (unplugging the network temporarily). Connectathon
with UDP and TCP. NFSv2/3 and NFSv4 mounting should be carefully checked.
Probably need to rig a server where certain services aren't running, or
that returns an error for some typical operation.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: Trond Myklebust <Trond.Myklebust@netapp.com>
Hide the contents and format of xprt->addr by eliminating direct uses
of the xprt->addr.sin_port field. This change is required to support
alternate RPC host address formats (eg IPv6).
Test-plan:
Destructive testing (unplugging the network temporarily). Repeated runs of
Connectathon locking suite with UDP and TCP.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: Trond Myklebust <Trond.Myklebust@netapp.com>
Some hardware uses port 664 for its hardware-based IPMI listener. Teach
the RPC client to avoid using that port by raising the default minimum port
number to 665.
Test plan:
Find a mainboard known to use port 664 for IPMI; enable IPMI; mount NFS
servers in a tight loop.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: Trond Myklebust <Trond.Myklebust@netapp.com>
(cherry picked from 58e8cb3a035d22fc386e1c53a5d98c3f219530fb commit)
If we're part way through transmitting a TCP request, and the client
errors, then we need to disconnect and reconnect the TCP socket in order to
avoid confusing the server.
Signed-off-by: Trond Myklebust <Trond.Myklebust@netapp.com>
(cherry picked from 031a50c8b9ea82616abd4a4e18021a25848941ce commit)
Monitor generic transport events. Add a transport switch callout to
format transport counters for export to user-land.
Test plan:
Compile kernel with CONFIG_NFS enabled.
Signed-off-by: Chuck Lever <cel@netapp.com>
Signed-off-by: Trond Myklebust <Trond.Myklebust@netapp.com>
If the server decides to close the RPC socket, we currently don't actually
respond until either another RPC call is scheduled, or until xprt_autoclose()
gets called by the socket expiry timer (which may be up to 5 minutes
later).
This patch ensures that xprt_autoclose() is called much sooner if the
server closes the socket.
Signed-off-by: Trond Myklebust <Trond.Myklebust@netapp.com>
At some point, transport endpoint addresses will no longer be IPv4. To hide
the structure of the rpc_xprt's address field from ULPs and port mappers,
add an API for setting the port number during an RPC bind operation.
Test-plan:
Destructive testing (unplugging the network temporarily). Connectathon
with UDP and TCP. NFSv2/3 and NFSv4 mounting should be carefully checked.
Probably need to rig a server where certain services aren't running, or
that returns an error for some typical operation.
Signed-off-by: Chuck Lever <cel@netapp.com>
Signed-off-by: Trond Myklebust <Trond.Myklebust@netapp.com>
Add RPC client transport switch support for replacing buffer management
on a per-transport basis.
In the current IPv4 socket transport implementation, RPC buffers are
allocated as needed for each RPC message that is sent. Some transport
implementations may choose to use pre-allocated buffers for encoding,
sending, receiving, and unmarshalling RPC messages, however. For
transports capable of direct data placement, the buffers can be carved
out of a pre-registered area of memory rather than from a slab cache.
Test-plan:
Millions of fsx operations. Performance characterization with "sio" and
"iozone". Use oprofile and other tools to look for significant regression
in CPU utilization.
Signed-off-by: Chuck Lever <cel@netapp.com>
Signed-off-by: Trond Myklebust <Trond.Myklebust@netapp.com>
For privacy, we need to allocate pages to store the encrypted data (passed
in pages can't be used without the risk of corrupting data in the page cache).
So we need a way to free that memory after the request has been transmitted.
Signed-off-by: J. Bruce Fields <bfields@citi.umich.edu>
Signed-off-by: Trond Myklebust <Trond.Myklebust@netapp.com>
Currently, call_encode will cause the entire RPC call to abort if it returns
an error. This is unnecessarily rigid, and gets in the way of attempts
to allow the NFSv4 layer to order RPC calls that carry sequence ids.
Signed-off-by: Trond Myklebust <Trond.Myklebust@netapp.com>
In fact, ->set_buffer_size should be completely functionless for non-UDP.
Test-plan:
Check socket buffer size on UDP sockets over time.
Signed-off-by: Chuck Lever <cel@netapp.com>
Signed-off-by: Trond Myklebust <Trond.Myklebust@netapp.com>
Each transport implementation can now set unique bind, connect,
reestablishment, and idle timeout values. These are variables,
allowing the values to be modified dynamically. This permits
exponential backoff of any of these values, for instance.
As an example, we implement exponential backoff for the connection
reestablishment timeout.
Test-plan:
Destructive testing (unplugging the network temporarily). Connectathon
with UDP and TCP.
Signed-off-by: Chuck Lever <cel@netapp.com>
Signed-off-by: Trond Myklebust <Trond.Myklebust@netapp.com>
Select an RPC client source port between 650 and 1023 instead of between
1 and 800. The old range conflicts with a number of network services.
Provide sysctls to allow admins to select a different port range.
Note that this doesn't affect user-level RPC library behavior, which
still uses 1 to 800.
Based on a suggestion by Olaf Kirch <okir@suse.de>.
Test-plan:
Repeated mount and unmount. Destructive testing. Idle timeouts.
Signed-off-by: Chuck Lever <cel@netapp.com>
Signed-off-by: Trond Myklebust <Trond.Myklebust@netapp.com>
Clean-up: Move some macros that are specific to the Van Jacobson
implementation into xprt.c. Get rid of the cong_wait field in
rpc_xprt, which is no longer used. Get rid of xprt_clear_backlog.
Test-plan:
Compile with CONFIG_NFS enabled.
Signed-off-by: Chuck Lever <cel@netapp.com>
Signed-off-by: Trond Myklebust <Trond.Myklebust@netapp.com>
Get rid of the "xprt->nocong" variable.
Test-plan:
Use WAN simulation to cause sporadic bursty packet loss with UDP mounts.
Look for significant regression in performance or client stability.
Signed-off-by: Chuck Lever <cel@netapp.com>
Signed-off-by: Trond Myklebust <Trond.Myklebust@netapp.com>
The final place where congestion control state is adjusted is in
xprt_release, where each request is finally released. Add a callout
there to allow transports to perform additional processing when a
request is about to be released.
Test-plan:
Use WAN simulation to cause sporadic bursty packet loss. Look for significant
regression in performance or client stability.
Signed-off-by: Chuck Lever <cel@netapp.com>
Signed-off-by: Trond Myklebust <Trond.Myklebust@netapp.com>
A new interface that allows transports to adjust their congestion window
using the Van Jacobson implementation in xprt.c is provided.
Test-plan:
Use WAN simulation to cause sporadic bursty packet loss. Look for
significant regression in performance or client stability.
Signed-off-by: Chuck Lever <cel@netapp.com>
Signed-off-by: Trond Myklebust <Trond.Myklebust@netapp.com>
Allow transports to hook the retransmit timer interrupt. Some transports
calculate their congestion window here so that a retransmit timeout has
immediate effect on the congestion window.
Test-plan:
Use WAN simulation to cause sporadic bursty packet loss. Look for significant
regression in performance or client stability.
Signed-off-by: Chuck Lever <cel@netapp.com>
Signed-off-by: Trond Myklebust <Trond.Myklebust@netapp.com>
The next method we abstract is the one that releases a transport,
allowing another task to have access to the transport.
Again, one generic version of this is provided for transports that
don't need the RPC client to perform congestion control, and one
version is for transports that can use the original Van Jacobson
implementation in xprt.c.
Test-plan:
Use WAN simulation to cause sporadic bursty packet loss. Look for
significant regression in performance or client stability.
Signed-off-by: Chuck Lever <cel@netapp.com>
Signed-off-by: Trond Myklebust <Trond.Myklebust@netapp.com>
The next several patches introduce an API that allows transports to
choose whether the RPC client provides congestion control or whether
the transport itself provides it.
The first method we abstract is the one that serializes access to the
RPC transport to prevent the bytes from different requests from mingling
together. This method provides proper request serialization and the
opportunity to prevent new requests from being started because the
transport is congested.
The normal situation is for the transport to handle congestion control
itself. Although NFS over UDP was first, it has been recognized after
years of experience that having the transport provide congestion control
is much better than doing it in the RPC client. Thus TCP, and probably
every future transport implementation, will use the default method,
xprt_lock_write, provided in xprt.c, which does not provide any kind
of congestion control. UDP can continue using the xprt.c-provided
Van Jacobson congestion avoidance implementation.
Test-plan:
Use WAN simulation to cause sporadic bursty packet loss. Look for significant
regression in performance or client stability.
Signed-off-by: Chuck Lever <cel@netapp.com>
Signed-off-by: Trond Myklebust <Trond.Myklebust@netapp.com>
Prepare the way to remove the "xprt->nocong" variable by adding a callout
to the RPC client transport switch API to handle setting RPC retransmit
timeouts.
Add a pair of generic helper functions that provide the ability to set a
simple fixed timeout, or to set a timeout based on the state of a round-
trip estimator.
Test-plan:
Use WAN simulation to cause sporadic bursty packet loss. Look for significant
regression in performance or client stability.
Signed-off-by: Chuck Lever <cel@netapp.com>
Signed-off-by: Trond Myklebust <Trond.Myklebust@netapp.com>
Now we can fix up the last few places that use the "xprt->stream"
variable, and get rid of it from the rpc_xprt structure.
Test-plan:
Destructive testing (unplugging the network temporarily). Connectathon
with UDP and TCP.
Signed-off-by: Chuck Lever <cel@netapp.com>
Signed-off-by: Trond Myklebust <Trond.Myklebust@netapp.com>
Add a generic mechanism for skipping over transport-specific headers
when constructing an RPC request. This removes another "xprt->stream"
dependency.
Test-plan:
Write-intensive workload on a single mount point (try both UDP and
TCP).
Signed-off-by: Chuck Lever <cel@netapp.com>
Signed-off-by: Trond Myklebust <Trond.Myklebust@netapp.com>
Split the socket write space callback function into a TCP version and UDP
version, eliminating one dependence on the "xprt->stream" variable.
Keep the common pieces of this path in xprt.c so other transports can use
it too.
Test-plan:
Write-intensive workload on a single mount point.
Version: Thu, 11 Aug 2005 16:07:51 -0400
Signed-off-by: Chuck Lever <cel@netapp.com>
Signed-off-by: Trond Myklebust <Trond.Myklebust@netapp.com>
Clean-up: change some comments to reflect the realities of the new RPC
transport switch mechanism. Get rid of unused xprt_receive() prototype.
Also, organize function prototypes in xprt.h by usage and scope.
Test-plan:
Compile kernel with CONFIG_NFS enabled.
Version: Thu, 11 Aug 2005 16:07:21 -0400
Signed-off-by: Chuck Lever <cel@netapp.com>
Signed-off-by: Trond Myklebust <Trond.Myklebust@netapp.com>
Clean-up: remove only reference to xprt->pending from the socket transport
implementation. This makes a cleaner interface for other transport
implementations as well.
Test-plan:
Compile kernel with CONFIG_NFS enabled.
Version: Thu, 11 Aug 2005 16:06:52 -0400
Signed-off-by: Chuck Lever <cel@netapp.com>
Signed-off-by: Trond Myklebust <Trond.Myklebust@netapp.com>
Clean-up: get rid of a name reference to sockets in the generic parts of the
RPC client by renaming the sockstate field in the rpc_xprt structure.
Test-plan:
Compile kernel with CONFIG_NFS enabled.
Version: Thu, 11 Aug 2005 16:05:53 -0400
Signed-off-by: Chuck Lever <cel@netapp.com>
Signed-off-by: Trond Myklebust <Trond.Myklebust@netapp.com>
Clean-up: Replace the xprt_lock with something more aptly named. This lock
single-threads the XID and request slot reservation process.
Test-plan:
Compile kernel with CONFIG_NFS enabled.
Version: Thu, 11 Aug 2005 16:05:26 -0400
Signed-off-by: Chuck Lever <cel@netapp.com>
Signed-off-by: Trond Myklebust <Trond.Myklebust@netapp.com>
Clean-up: replace a name reference to sockets in the generic parts of the RPC
client by renaming sock_lock in the rpc_xprt structure.
Test-plan:
Compile kernel with CONFIG_NFS enabled.
Version: Thu, 11 Aug 2005 16:05:00 -0400
Signed-off-by: Chuck Lever <cel@netapp.com>
Signed-off-by: Trond Myklebust <Trond.Myklebust@netapp.com>
Move the bulk of client-side socket-specific code into a separate source
file, net/sunrpc/xprtsock.c.
Test-plan:
Millions of fsx operations. Performance characterization such as "sio" or
"iozone". Destructive testing (unplugging the network temporarily, server
reboots). Connectathon with v2, v3, and v4.
Version: Thu, 11 Aug 2005 16:03:38 -0400
Signed-off-by: Chuck Lever <cel@netapp.com>
Signed-off-by: Trond Myklebust <Trond.Myklebust@netapp.com>
Initial git repository build. I'm not bothering with the full history,
even though we have it. We can create a separate "historical" git
archive of that later if we want to, and in the meantime it's about
3.2GB when imported into git - space that would just make the early
git days unnecessarily complicated, when we don't have a lot of good
infrastructure for it.
Let it rip!