Commit Graph

4 Commits

Author SHA1 Message Date
Linus Torvalds
36126f8f2e word-at-a-time: make the interfaces truly generic
This changes the interfaces in <asm/word-at-a-time.h> to be a bit more
complicated, but a lot more generic.

In particular, it allows us to really do the operations efficiently on
both little-endian and big-endian machines, pretty much regardless of
machine details.  For example, if you can rely on a fast population
count instruction on your architecture, this will allow you to make your
optimized <asm/word-at-a-time.h> file with that.

NOTE! The "generic" version in include/asm-generic/word-at-a-time.h is
not truly generic, it actually only works on big-endian.  Why? Because
on little-endian the generic algorithms are wasteful, since you can
inevitably do better. The x86 implementation is an example of that.

(The only truly non-generic part of the asm-generic implementation is
the "find_zero()" function, and you could make a little-endian version
of it.  And if the Kbuild infrastructure allowed us to pick a particular
header file, that would be lovely)

The <asm/word-at-a-time.h> functions are as follows:

 - WORD_AT_A_TIME_CONSTANTS: specific constants that the algorithm
   uses.

 - has_zero(): take a word, and determine if it has a zero byte in it.
   It gets the word, the pointer to the constant pool, and a pointer to
   an intermediate "data" field it can set.

   This is the "quick-and-dirty" zero tester: it's what is run inside
   the hot loops.

 - "prep_zero_mask()": take the word, the data that has_zero() produced,
   and the constant pool, and generate an *exact* mask of which byte had
   the first zero.  This is run directly *outside* the loop, and allows
   the "has_zero()" function to answer the "is there a zero byte"
   question without necessarily getting exactly *which* byte is the
   first one to contain a zero.

   If you do multiple byte lookups concurrently (eg "hash_name()", which
   looks for both NUL and '/' bytes), after you've done the prep_zero_mask()
   phase, the result of those can be or'ed together to get the "either
   or" case.

 - The result from "prep_zero_mask()" can then be fed into "find_zero()"
   (to find the byte offset of the first byte that was zero) or into
   "zero_bytemask()" (to find the bytemask of the bytes preceding the
   zero byte).

   The existence of zero_bytemask() is optional, and is not necessary
   for the normal string routines.  But dentry name hashing needs it, so
   if you enable DENTRY_WORD_AT_A_TIME you need to expose it.

This changes the generic strncpy_from_user() function and the dentry
hashing functions to use these modified word-at-a-time interfaces.  This
gets us back to the optimized state of the x86 strncpy that we lost in
the previous commit when moving over to the generic version.

Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-05-26 11:33:40 -07:00
David S. Miller
446969084d kernel: Move REPEAT_BYTE definition into linux/kernel.h
And make sure that everything using it explicitly includes
that header file.

Signed-off-by: David S. Miller <davem@davemloft.net>
2012-05-24 13:10:05 -07:00
Linus Torvalds
e419b4cc58 vfs: make word-at-a-time accesses handle a non-existing page
It turns out that there are more cases than CONFIG_DEBUG_PAGEALLOC that
can have holes in the kernel address space: it seems to happen easily
with Xen, and it looks like the AMD gart64 code will also punch holes
dynamically.

Actually hitting that case is still very unlikely, so just do the
access, and take an exception and fix it up for the very unlikely case
of it being a page-crosser with no next page.

And hey, this abstraction might even help other architectures that have
other issues with unaligned word accesses than the possible missing next
page.  IOW, this could do the byte order magic too.

Peter Anvin fixed a thinko in the shifting for the exception case.

Reported-and-tested-by: Jana Saout <jana@saout.de>
Cc:  Peter Anvin <hpa@zytor.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-05-03 14:01:40 -07:00
Linus Torvalds
f68e556e23 Make the "word-at-a-time" helper functions more commonly usable
I have a new optimized x86 "strncpy_from_user()" that will use these
same helper functions for all the same reasons the name lookup code uses
them.  This is preparation for that.

This moves them into an architecture-specific header file.  It's
architecture-specific for two reasons:

 - some of the functions are likely to want architecture-specific
   implementations.  Even if the current code happens to be "generic" in
   the sense that it should work on any little-endian machine, it's
   likely that the "multiply by a big constant and shift" implementation
   is less than optimal for an architecture that has a guaranteed fast
   bit count instruction, for example.

 - I expect that if architectures like sparc want to start playing
   around with this, we'll need to abstract out a few more details (in
   particular the actual unaligned accesses).  So we're likely to have
   more architecture-specific stuff if non-x86 architectures start using
   this.

   (and if it turns out that non-x86 architectures don't start using
   this, then having it in an architecture-specific header is still the
   right thing to do, of course)

Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-04-06 13:54:56 -07:00