Remove includes of asm/kvm_host.h from files that already include
linux/kvm_host.h to make it more obvious that there is no ordering issue
between the two headers. linux/kvm_host.h includes asm/kvm_host.h to
pick up architecture specific settings, and this will never change, i.e.
including asm/kvm_host.h after linux/kvm_host.h may seem problematic,
but in practice is simply redundant.
Signed-off-by: Peter Xu <peterx@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Remove kvm_arch_vcpu_setup() now that all arch specific implementations
are nops.
Acked-by: Christoffer Dall <christoffer.dall@arm.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Reviewed-by: Cornelia Huck <cohuck@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
ARM/ARM64 has counters halt_successful_poll, halt_attempted_poll,
halt_poll_invalid, and halt_wakeup but never exposed those in debugfs.
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/1572164390-5851-1-git-send-email-borntraeger@de.ibm.com
Allow user space to inform the KVM host where in the physical memory
map the paravirtualized time structures should be located.
User space can set an attribute on the VCPU providing the IPA base
address of the stolen time structure for that VCPU. This must be
repeated for every VCPU in the VM.
The address is given in terms of the physical address visible to
the guest and must be 64 byte aligned. The guest will discover the
address via a hypercall.
Signed-off-by: Steven Price <steven.price@arm.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
In some scenarios, such as buggy guest or incorrect configuration of the
VMM and firmware description data, userspace will detect a memory access
to a portion of the IPA, which is not mapped to any MMIO region.
For this purpose, the appropriate action is to inject an external abort
to the guest. The kernel already has functionality to inject an
external abort, but we need to wire up a signal from user space that
lets user space tell the kernel to do this.
It turns out, we already have the set event functionality which we can
perfectly reuse for this.
Signed-off-by: Christoffer Dall <christoffer.dall@arm.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
The original implementation of vq_present() relied on aggressive
inlining in order for the compiler to know that the code is
correct, due to some const-casting issues. This was causing sparse
and clang to complain, while GCC compiled cleanly.
Commit 0c529ff789 addressed this problem, but since vq_present()
is no longer a function, there is now no implicit casting of the
returned value to the return type (bool).
In set_sve_vls(), this uncast bit value is compared against a bool,
and so may spuriously compare as unequal when both are nonzero. As
a result, KVM may reject valid SVE vector length configurations as
invalid, and vice versa.
Fix it by forcing the returned value to a bool.
Signed-off-by: Zhang Lei <zhang.lei@jp.fujitsu.com>
Fixes: 0c529ff789 ("KVM: arm64: Implement vq_present() as a macro")
Signed-off-by: Dave Martin <Dave.Martin@arm.com> [commit message rewrite]
Cc: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Another round of SPDX updates for 5.2-rc6
Here is what I am guessing is going to be the last "big" SPDX update for
5.2. It contains all of the remaining GPLv2 and GPLv2+ updates that
were "easy" to determine by pattern matching. The ones after this are
going to be a bit more difficult and the people on the spdx list will be
discussing them on a case-by-case basis now.
Another 5000+ files are fixed up, so our overall totals are:
Files checked: 64545
Files with SPDX: 45529
Compared to the 5.1 kernel which was:
Files checked: 63848
Files with SPDX: 22576
This is a huge improvement.
Also, we deleted another 20000 lines of boilerplate license crud, always
nice to see in a diffstat.
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-----BEGIN PGP SIGNATURE-----
iG0EABECAC0WIQT0tgzFv3jCIUoxPcsxR9QN2y37KQUCXQyQYA8cZ3JlZ0Brcm9h
aC5jb20ACgkQMUfUDdst+ymnGQCghETUBotn1p3hTjY56VEs6dGzpHMAnRT0m+lv
kbsjBGEJpLbMRB2krnaU
=RMcT
-----END PGP SIGNATURE-----
Merge tag 'spdx-5.2-rc6' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/spdx
Pull still more SPDX updates from Greg KH:
"Another round of SPDX updates for 5.2-rc6
Here is what I am guessing is going to be the last "big" SPDX update
for 5.2. It contains all of the remaining GPLv2 and GPLv2+ updates
that were "easy" to determine by pattern matching. The ones after this
are going to be a bit more difficult and the people on the spdx list
will be discussing them on a case-by-case basis now.
Another 5000+ files are fixed up, so our overall totals are:
Files checked: 64545
Files with SPDX: 45529
Compared to the 5.1 kernel which was:
Files checked: 63848
Files with SPDX: 22576
This is a huge improvement.
Also, we deleted another 20000 lines of boilerplate license crud,
always nice to see in a diffstat"
* tag 'spdx-5.2-rc6' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/spdx: (65 commits)
treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 507
treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 506
treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 505
treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 504
treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 503
treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 502
treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 501
treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 500
treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 499
treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 498
treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 497
treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 496
treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 495
treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 491
treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 490
treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 489
treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 488
treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 487
treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 486
treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 485
...
Based on 1 normalized pattern(s):
this program is free software you can redistribute it and or modify
it under the terms of the gnu general public license version 2 as
published by the free software foundation this program is
distributed in the hope that it will be useful but without any
warranty without even the implied warranty of merchantability or
fitness for a particular purpose see the gnu general public license
for more details you should have received a copy of the gnu general
public license along with this program if not see http www gnu org
licenses
extracted by the scancode license scanner the SPDX license identifier
GPL-2.0-only
has been chosen to replace the boilerplate/reference in 503 file(s).
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Alexios Zavras <alexios.zavras@intel.com>
Reviewed-by: Allison Randal <allison@lohutok.net>
Reviewed-by: Enrico Weigelt <info@metux.net>
Cc: linux-spdx@vger.kernel.org
Link: https://lkml.kernel.org/r/20190602204653.811534538@linutronix.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Since commit d26c25a9d1 ("arm64: KVM: Tighten guest core register
access from userspace"), KVM_{GET,SET}_ONE_REG rejects register IDs
that do not correspond to a single underlying architectural register.
KVM_GET_REG_LIST was not changed to match however: instead, it
simply yields a list of 32-bit register IDs that together cover the
whole kvm_regs struct. This means that if userspace tries to use
the resulting list of IDs directly to drive calls to KVM_*_ONE_REG,
some of those calls will now fail.
This was not the intention. Instead, iterating KVM_*_ONE_REG over
the list of IDs returned by KVM_GET_REG_LIST should be guaranteed
to work.
This patch fixes the problem by splitting validate_core_offset()
into a backend core_reg_size_from_offset() which does all of the
work except for checking that the size field in the register ID
matches, and kvm_arm_copy_reg_indices() and num_core_regs() are
converted to use this to enumerate the valid offsets.
kvm_arm_copy_reg_indices() now also sets the register ID size field
appropriately based on the value returned, so the register ID
supplied to userspace is fully qualified for use with the register
access ioctls.
Cc: stable@vger.kernel.org
Fixes: d26c25a9d1 ("arm64: KVM: Tighten guest core register access from userspace")
Signed-off-by: Dave Martin <Dave.Martin@arm.com>
Reviewed-by: Andrew Jones <drjones@redhat.com>
Tested-by: Andrew Jones <drjones@redhat.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
This routine is a one-liner and doesn't really need to be function and
can be implemented as a macro.
Suggested-by: Dave Martin <Dave.Martin@arm.com>
Reviewed-by: Dave Martin <Dave.Martin@arm.com>
Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Correct virtualization of SVE relies for correctness on code in
set_sve_vls() that verifies consistency between the set of vector
lengths requested by userspace and the set of vector lengths
available on the host.
However, the purpose of this code is not obvious, and not likely to
be apparent at all to people who do not have detailed knowledge of
the SVE system-level architecture.
This patch adds a suitable comment to explain what these checks are
for.
No functional change.
Suggested-by: Andrew Jones <drjones@redhat.com>
Signed-off-by: Dave Martin <Dave.Martin@arm.com>
Reviewed-by: Andrew Jones <drjones@redhat.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
A complicated DIV_ROUND_UP() expression is currently written out
explicitly in multiple places in order to specify the size of the
bitmap exchanged with userspace to represent the value of the
KVM_REG_ARM64_SVE_VLS pseudo-register.
Userspace currently has no direct way to work this out either: for
documentation purposes, the size is just quoted as 8 u64s.
To make this more intuitive, this patch replaces these with a
single define, which is also exported to userspace as
KVM_ARM64_SVE_VLS_WORDS.
Since the number of words in a bitmap is just the index of the last
word used + 1, this patch expresses the bound that way instead.
This should make it clearer what is being expressed.
For userspace convenience, the minimum and maximum possible vector
lengths relevant to the KVM ABI are exposed to UAPI as
KVM_ARM64_SVE_VQ_MIN, KVM_ARM64_SVE_VQ_MAX. Since the only direct
use for these at present is manipulation of KVM_REG_ARM64_SVE_VLS,
no corresponding _VL_ macros are defined. They could be added
later if a need arises.
Since use of DIV_ROUND_UP() was the only reason for including
<linux/kernel.h> in guest.c, this patch also removes that #include.
Suggested-by: Andrew Jones <drjones@redhat.com>
Signed-off-by: Dave Martin <Dave.Martin@arm.com>
Reviewed-by: Andrew Jones <drjones@redhat.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
sve_reg_to_region() currently passes the result of
vcpu_sve_state_size() to array_index_nospec(), effectively
leading to a divide / modulo operation.
Currently the code bails out and returns -EINVAL if
vcpu_sve_state_size() turns out to be zero, in order to avoid going
ahead and attempting to divide by zero. This is reasonable, but it
should only happen if the kernel contains some other bug that
allowed this code to be reached without the vcpu having been
properly initialised.
To make it clear that this is a defence against bugs rather than
something that the user should be able to trigger, this patch marks
the check with WARN_ON().
Suggested-by: Andrew Jones <drjones@redhat.com>
Signed-off-by: Dave Martin <Dave.Martin@arm.com>
Reviewed-by: Andrew Jones <drjones@redhat.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Currently, the way error codes are generated when processing the
SVE register access ioctls in a bit haphazard.
This patch refactors the code so that the behaviour is more
consistent: now, -EINVAL should be returned only for unrecognised
register IDs or when some other runtime error occurs. -ENOENT is
returned for register IDs that are recognised, but whose
corresponding register (or slice) does not exist for the vcpu.
To this end, in {get,set}_sve_reg() we now delegate the
vcpu_has_sve() check down into {get,set}_sve_vls() and
sve_reg_to_region(). The KVM_REG_ARM64_SVE_VLS special case is
picked off first, then sve_reg_to_region() plays the role of
exhaustively validating or rejecting the register ID and (where
accepted) computing the applicable register region as before.
sve_reg_to_region() is rearranged so that -ENOENT or -EPERM is not
returned prematurely, before checking whether reg->id is in a
recognised range.
-EPERM is now only returned when an attempt is made to access an
actually existing register slice on an unfinalized vcpu.
Fixes: e1c9c98345 ("KVM: arm64/sve: Add SVE support to register access ioctl interface")
Fixes: 9033bba4b5 ("KVM: arm64/sve: Add pseudo-register for the guest's vector lengths")
Suggested-by: Andrew Jones <drjones@redhat.com>
Signed-off-by: Dave Martin <Dave.Martin@arm.com>
Reviewed-by: Andrew Jones <drjones@redhat.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
* Remove a few redundant blank lines that are stylistically
inconsistent with code already in guest.c and are just taking up
space.
* Delete a couple of pointless empty default cases from switch
statements whose behaviour is otherwise obvious anyway.
* Fix some typos and consolidate some redundantly duplicated
comments.
* Respell the slice index check in sve_reg_to_region() as "> 0"
to be more consistent with what is logically being checked here
(i.e., "is the slice index too large"), even though we don't try
to cope with multiple slices yet.
No functional change.
Suggested-by: Andrew Jones <drjones@redhat.com>
Signed-off-by: Dave Martin <Dave.Martin@arm.com>
Reviewed-by: Andrew Jones <drjones@redhat.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Currently, the SVE register ID macros are not all defined in the
same way, and advertise the fact that FFR maps onto the nonexistent
predicate register P16. This is really just for kernel
convenience, and may lead userspace into bad habits.
Instead, this patch masks the ID macro arguments so that
architecturally invalid register numbers will not be passed through
any more, and uses a literal KVM_REG_ARM64_SVE_FFR_BASE macro to
define KVM_REG_ARM64_SVE_FFR(), similarly to the way the _ZREG()
and _PREG() macros are defined.
Rather than plugging in magic numbers for the number of Z- and P-
registers and the maximum possible number of register slices, this
patch provides definitions for those too. Userspace is going to
need them in any case, and it makes sense for them to come from
<uapi/asm/kvm.h>.
sve_reg_to_region() uses convenience constants that are defined in
a different way, and also makes use of the fact that the FFR IDs
are really contiguous with the P15 IDs, so this patch retains the
existing convenience constants in guest.c, supplemented with a
couple of sanity checks to check for consistency with the UAPI
header.
Fixes: e1c9c98345 ("KVM: arm64/sve: Add SVE support to register access ioctl interface")
Suggested-by: Andrew Jones <drjones@redhat.com>
Signed-off-by: Dave Martin <Dave.Martin@arm.com>
Reviewed-by: Andrew Jones <drjones@redhat.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
The introduction of the SVE registers to userspace started with a
refactoring of the way we expose any register via the ONE_REG
interface.
Unfortunately, this change doesn't exactly behave as expected
if the number of registers is non-zero and consider everything
to be an error. The visible result is that QEMU barfs very early
when creating vcpus.
Make sure we only exit early in case there is an actual error, rather
than a positive number of registers...
Fixes: be25bbb392 ("KVM: arm64: Factor out core register ID enumeration")
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
This patch adds a new pseudo-register KVM_REG_ARM64_SVE_VLS to
allow userspace to set and query the set of vector lengths visible
to the guest.
In the future, multiple register slices per SVE register may be
visible through the ioctl interface. Once the set of slices has
been determined we would not be able to allow the vector length set
to be changed any more, in order to avoid userspace seeing
inconsistent sets of registers. For this reason, this patch adds
support for explicit finalization of the SVE configuration via the
KVM_ARM_VCPU_FINALIZE ioctl.
Finalization is the proper place to allocate the SVE register state
storage in vcpu->arch.sve_state, so this patch adds that as
appropriate. The data is freed via kvm_arch_vcpu_uninit(), which
was previously a no-op on arm64.
To simplify the logic for determining what vector lengths can be
supported, some code is added to KVM init to work this out, in the
kvm_arm_init_arch_resources() hook.
The KVM_REG_ARM64_SVE_VLS pseudo-register is not exposed yet.
Subsequent patches will allow SVE to be turned on for guest vcpus,
making it visible.
Signed-off-by: Dave Martin <Dave.Martin@arm.com>
Reviewed-by: Julien Thierry <julien.thierry@arm.com>
Tested-by: zhang.lei <zhang.lei@jp.fujitsu.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
This patch includes the SVE register IDs in the list returned by
KVM_GET_REG_LIST, as appropriate.
On a non-SVE-enabled vcpu, no new IDs are added.
On an SVE-enabled vcpu, IDs for the FPSIMD V-registers are removed
from the list, since userspace is required to access the Z-
registers instead in order to access the V-register content. For
the variably-sized SVE registers, the appropriate set of slice IDs
are enumerated, depending on the maximum vector length for the
vcpu.
As it currently stands, the SVE architecture never requires more
than one slice to exist per register, so this patch adds no
explicit support for enumerating multiple slices. The code can be
extended straightforwardly to support this in the future, if
needed.
Signed-off-by: Dave Martin <Dave.Martin@arm.com>
Reviewed-by: Julien Thierry <julien.thierry@arm.com>
Tested-by: zhang.lei <zhang.lei@jp.fujitsu.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
This patch adds the following registers for access via the
KVM_{GET,SET}_ONE_REG interface:
* KVM_REG_ARM64_SVE_ZREG(n, i) (n = 0..31) (in 2048-bit slices)
* KVM_REG_ARM64_SVE_PREG(n, i) (n = 0..15) (in 256-bit slices)
* KVM_REG_ARM64_SVE_FFR(i) (in 256-bit slices)
In order to adapt gracefully to future architectural extensions,
the registers are logically divided up into slices as noted above:
the i parameter denotes the slice index.
This allows us to reserve space in the ABI for future expansion of
these registers. However, as of today the architecture does not
permit registers to be larger than a single slice, so no code is
needed in the kernel to expose additional slices, for now. The
code can be extended later as needed to expose them up to a maximum
of 32 slices (as carved out in the architecture itself) if they
really exist someday.
The registers are only visible for vcpus that have SVE enabled.
They are not enumerated by KVM_GET_REG_LIST on vcpus that do not
have SVE.
Accesses to the FPSIMD registers via KVM_REG_ARM_CORE is not
allowed for SVE-enabled vcpus: SVE-aware userspace can use the
KVM_REG_ARM64_SVE_ZREG() interface instead to access the same
register state. This avoids some complex and pointless emulation
in the kernel to convert between the two views of these aliased
registers.
Signed-off-by: Dave Martin <Dave.Martin@arm.com>
Reviewed-by: Julien Thierry <julien.thierry@arm.com>
Tested-by: zhang.lei <zhang.lei@jp.fujitsu.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
In order to avoid the pointless complexity of maintaining two ioctl
register access views of the same data, this patch blocks ioctl
access to the FPSIMD V-registers on vcpus that support SVE.
This will make it more straightforward to add SVE register access
support.
Since SVE is an opt-in feature for userspace, this will not affect
existing users.
Signed-off-by: Dave Martin <Dave.Martin@arm.com>
Reviewed-by: Julien Thierry <julien.thierry@arm.com>
Tested-by: zhang.lei <zhang.lei@jp.fujitsu.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
In preparation for adding logic to filter out some KVM_REG_ARM_CORE
registers from the KVM_GET_REG_LIST output, this patch factors out
the core register enumeration into a separate function and rebuilds
num_core_regs() on top of it.
This may be a little more expensive (depending on how good a job
the compiler does of specialising the code), but KVM_GET_REG_LIST
is not a hot path.
This will make it easier to consolidate ID filtering code in one
place.
No functional change.
Signed-off-by: Dave Martin <Dave.Martin@arm.com>
Reviewed-by: Julien Thierry <julien.thierry@arm.com>
Tested-by: zhang.lei <zhang.lei@jp.fujitsu.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
arch/arm64/kvm/guest.c uses the string functions, but the
corresponding header is not included.
We seem to get away with this for now, but for completeness this
patch adds the #include, in preparation for adding yet more
memset() calls.
Signed-off-by: Dave Martin <Dave.Martin@arm.com>
Tested-by: zhang.lei <zhang.lei@jp.fujitsu.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
kvm_arm_num_regs() adds together various partial register counts in
a freeform sum expression, which makes it harder than necessary to
read diffs that add, modify or remove a single term in the sum
(which is expected to the common case under maintenance).
This patch refactors the code to add the term one per line, for
maximum readability.
Signed-off-by: Dave Martin <Dave.Martin@arm.com>
Reviewed-by: Alex Bennée <alex.bennee@linaro.org>
Tested-by: zhang.lei <zhang.lei@jp.fujitsu.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
ARM:
- Improved guest IPA space support (32 to 52 bits)
- RAS event delivery for 32bit
- PMU fixes
- Guest entry hardening
- Various cleanups
- Port of dirty_log_test selftest
PPC:
- Nested HV KVM support for radix guests on POWER9. The performance is
much better than with PR KVM. Migration and arbitrary level of
nesting is supported.
- Disable nested HV-KVM on early POWER9 chips that need a particular hardware
bug workaround
- One VM per core mode to prevent potential data leaks
- PCI pass-through optimization
- merge ppc-kvm topic branch and kvm-ppc-fixes to get a better base
s390:
- Initial version of AP crypto virtualization via vfio-mdev
- Improvement for vfio-ap
- Set the host program identifier
- Optimize page table locking
x86:
- Enable nested virtualization by default
- Implement Hyper-V IPI hypercalls
- Improve #PF and #DB handling
- Allow guests to use Enlightened VMCS
- Add migration selftests for VMCS and Enlightened VMCS
- Allow coalesced PIO accesses
- Add an option to perform nested VMCS host state consistency check
through hardware
- Automatic tuning of lapic_timer_advance_ns
- Many fixes, minor improvements, and cleanups
-----BEGIN PGP SIGNATURE-----
iQEcBAABCAAGBQJb0FINAAoJEED/6hsPKofoI60IAJRS3vOAQ9Fav8cJsO1oBHcX
3+NexfnBke1bzrjIR3SUcHKGZbdnVPNZc+Q4JjIbPpPmmOMU5jc9BC1dmd5f4Vzh
BMnQ0yCvgFv3A3fy/Icx1Z8NJppxosdmqdQLrQrNo8aD3cjnqY2yQixdXrAfzLzw
XEgKdIFCCz8oVN/C9TT4wwJn6l9OE7BM5bMKGFy5VNXzMu7t64UDOLbbjZxNgi1g
teYvfVGdt5mH0N7b2GPPWRbJmgnz5ygVVpVNQUEFrdKZoCm6r5u9d19N+RRXAwan
ZYFj10W2T8pJOUf3tryev4V33X7MRQitfJBo4tP5hZfi9uRX89np5zP1CFE7AtY=
=yEPW
-----END PGP SIGNATURE-----
Merge tag 'kvm-4.20-1' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull KVM updates from Radim Krčmář:
"ARM:
- Improved guest IPA space support (32 to 52 bits)
- RAS event delivery for 32bit
- PMU fixes
- Guest entry hardening
- Various cleanups
- Port of dirty_log_test selftest
PPC:
- Nested HV KVM support for radix guests on POWER9. The performance
is much better than with PR KVM. Migration and arbitrary level of
nesting is supported.
- Disable nested HV-KVM on early POWER9 chips that need a particular
hardware bug workaround
- One VM per core mode to prevent potential data leaks
- PCI pass-through optimization
- merge ppc-kvm topic branch and kvm-ppc-fixes to get a better base
s390:
- Initial version of AP crypto virtualization via vfio-mdev
- Improvement for vfio-ap
- Set the host program identifier
- Optimize page table locking
x86:
- Enable nested virtualization by default
- Implement Hyper-V IPI hypercalls
- Improve #PF and #DB handling
- Allow guests to use Enlightened VMCS
- Add migration selftests for VMCS and Enlightened VMCS
- Allow coalesced PIO accesses
- Add an option to perform nested VMCS host state consistency check
through hardware
- Automatic tuning of lapic_timer_advance_ns
- Many fixes, minor improvements, and cleanups"
* tag 'kvm-4.20-1' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (204 commits)
KVM/nVMX: Do not validate that posted_intr_desc_addr is page aligned
Revert "kvm: x86: optimize dr6 restore"
KVM: PPC: Optimize clearing TCEs for sparse tables
x86/kvm/nVMX: tweak shadow fields
selftests/kvm: add missing executables to .gitignore
KVM: arm64: Safety check PSTATE when entering guest and handle IL
KVM: PPC: Book3S HV: Don't use streamlined entry path on early POWER9 chips
arm/arm64: KVM: Enable 32 bits kvm vcpu events support
arm/arm64: KVM: Rename function kvm_arch_dev_ioctl_check_extension()
KVM: arm64: Fix caching of host MDCR_EL2 value
KVM: VMX: enable nested virtualization by default
KVM/x86: Use 32bit xor to clear registers in svm.c
kvm: x86: Introduce KVM_CAP_EXCEPTION_PAYLOAD
kvm: vmx: Defer setting of DR6 until #DB delivery
kvm: x86: Defer setting of CR2 until #PF delivery
kvm: x86: Add payload operands to kvm_multiple_exception
kvm: x86: Add exception payload fields to kvm_vcpu_events
kvm: x86: Add has_payload and payload to kvm_queued_exception
KVM: Documentation: Fix omission in struct kvm_vcpu_events
KVM: selftests: add Enlightened VMCS test
...
There are some extra semicolon in kvm_target_cpu, remove it.
Signed-off-by: zhong jiang <zhongjiang@huawei.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Not all execution modes are valid for a guest, and some of them
depend on what the HW actually supports. Let's verify that what
userspace provides is compatible with both the VM settings and
the HW capabilities.
Cc: <stable@vger.kernel.org>
Fixes: 0d854a60b1 ("arm64: KVM: enable initialization of a 32bit vcpu")
Reviewed-by: Christoffer Dall <christoffer.dall@arm.com>
Reviewed-by: Mark Rutland <mark.rutland@arm.com>
Reviewed-by: Dave Martin <Dave.Martin@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
We currently allow userspace to access the core register file
in about any possible way, including straddling multiple
registers and doing unaligned accesses.
This is not the expected use of the ABI, and nobody is actually
using it that way. Let's tighten it by explicitly checking
the size and alignment for each field of the register file.
Cc: <stable@vger.kernel.org>
Fixes: 2f4a07c5f9 ("arm64: KVM: guest one-reg interface")
Reviewed-by: Christoffer Dall <christoffer.dall@arm.com>
Reviewed-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Dave Martin <Dave.Martin@arm.com>
[maz: rewrote Dave's initial patch to be more easily backported]
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
- Support for Group0 interrupts in guests
- Cache management optimizations for ARMv8.4 systems
- Userspace interface for RAS, allowing error retrival and injection
- Fault path optimization
- Emulated physical timer fixes
- Random cleanups
-----BEGIN PGP SIGNATURE-----
iQJJBAABCAAzFiEEn9UcU+C1Yxj9lZw9I9DQutE9ekMFAltxmb4VHG1hcmMuenlu
Z2llckBhcm0uY29tAAoJECPQ0LrRPXpD7E0P/0qn1IMtskaC7EglFCm72+NXe1CW
ZAtxTHzetjf7977dA3bVsg4gEKvVx5b3YuRT76u4hBoSa0rFJ8Q9iSC8wL4u9Idf
JUQjwVIUxMeGW5fR0VFDkd9SkDYtNGdjQcVl2I8UpV+lnLC/2Vfr4xR5qBad2pAQ
zjthdpQMjZWClyhPkOv6WjVsW0lNw0xDkZWgCViBY+TdT7Gmw/q8hmvj9TEwbMGT
7tmQl9MupQ2bLY8WuTiGA6eNiEZld9esJGthI43xGQDJl4Y3FeciIZWcBru20+wu
GnC3QS3FlmYlp2WuWcKU9lEGXhmoX/7/1WVhZkoMsIvi05c2JCxSxstK7QNfUaAH
8q2/Wc0fYIGm2owH+b1Mpn0w37GZtgl7Bxxzakg7B7Ko0q/EnO7z6XVup1/abKRU
NtUKlWIL7NDiHjHO6j0hBb3rGi7B3wo86P7GTPJb12Dg9EBF5DVhekXeGI/ChzE9
WIV1PxR0seSapzlJ92HHmWLAtcRLtXXesqcctmN4d2URBtsx9DEwo0Upiz//reYE
TBncQbtniVt2xXEl7sqNEYei75IxC3Dg1AgDL/zVQDl8PW0UvKo8Qb0cW7EnF9Vg
AcjD6R72dAgbqUMYOP0nriKxzXwa0Jls9aF3zBgcikKMGeyD6Z/Exlq4LexhSeuw
cWKsrQUYcLGKZPRN
=b6+A
-----END PGP SIGNATURE-----
Merge tag 'kvmarm-for-v4.19' of git://git.kernel.org/pub/scm/linux/kernel/git/kvmarm/kvmarm into HEAD
KVM/arm updates for 4.19
- Support for Group0 interrupts in guests
- Cache management optimizations for ARMv8.4 systems
- Userspace interface for RAS, allowing error retrival and injection
- Fault path optimization
- Emulated physical timer fixes
- Random cleanups
The get/set events helpers to do some work to check reserved
and padding fields are zero. This is useful on 32bit too.
Move this code into virt/kvm/arm/arm.c, and give the arch
code some underscores.
This is temporarily hidden behind __KVM_HAVE_VCPU_EVENTS until
32bit is wired up.
Signed-off-by: James Morse <james.morse@arm.com>
Reviewed-by: Dongjiu Geng <gengdongjiu@huawei.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
For the migrating VMs, user space may need to know the exception
state. For example, in the machine A, KVM make an SError pending,
when migrate to B, KVM also needs to pend an SError.
This new IOCTL exports user-invisible states related to SError.
Together with appropriate user space changes, user space can get/set
the SError exception state to do migrate/snapshot/suspend.
Signed-off-by: Dongjiu Geng <gengdongjiu@huawei.com>
Reviewed-by: James Morse <james.morse@arm.com>
[expanded documentation wording]
Signed-off-by: James Morse <james.morse@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Some code cares about the SPSR_ELx format for exceptions taken from
AArch32 to inspect or manipulate the SPSR_ELx value, which is already in
the SPSR_ELx format, and not in the AArch32 PSR format.
To separate these from cases where we care about the AArch32 PSR format,
migrate these cases to use the PSR_AA32_* definitions rather than
COMPAT_PSR_*.
There should be no functional change as a result of this patch.
Note that arm64 KVM does not support a compat KVM API, and always uses
the SPSR_ELx format, even for AArch32 guests.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Acked-by: Christoffer Dall <christoffer.dall@arm.com>
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Although we've implemented PSCI 0.1, 0.2 and 1.0, we expose either 0.1
or 1.0 to a guest, defaulting to the latest version of the PSCI
implementation that is compatible with the requested version. This is
no different from doing a firmware upgrade on KVM.
But in order to give a chance to hypothetical badly implemented guests
that would have a fit by discovering something other than PSCI 0.2,
let's provide a new API that allows userspace to pick one particular
version of the API.
This is implemented as a new class of "firmware" registers, where
we expose the PSCI version. This allows the PSCI version to be
save/restored as part of a guest migration, and also set to
any supported version if the guest requires it.
Cc: stable@vger.kernel.org #4.16
Reviewed-by: Christoffer Dall <cdall@kernel.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Calling vcpu_load() registers preempt notifiers for this vcpu and calls
kvm_arch_vcpu_load(). The latter will soon be doing a lot of heavy
lifting on arm/arm64 and will try to do things such as enabling the
virtual timer and setting us up to handle interrupts from the timer
hardware.
Loading state onto hardware registers and enabling hardware to signal
interrupts can be problematic when we're not actually about to run the
VCPU, because it makes it difficult to establish the right context when
handling interrupts from the timer, and it makes the register access
code difficult to reason about.
Luckily, now when we call vcpu_load in each ioctl implementation, we can
simply remove the call from the non-KVM_RUN vcpu ioctls, and our
kvm_arch_vcpu_load() is only used for loading vcpu content to the
physical CPU when we're actually going to run the vcpu.
Cc: stable@vger.kernel.org
Fixes: 9b062471e5 ("KVM: Move vcpu_load to arch-specific kvm_arch_vcpu_ioctl")
Reviewed-by: Julien Grall <julien.grall@arm.com>
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Reviewed-by: Andrew Jones <drjones@redhat.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Move vcpu_load() and vcpu_put() into the architecture specific
implementations of kvm_arch_vcpu_ioctl_set_guest_debug().
Reviewed-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Reviewed-by: Cornelia Huck <cohuck@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
First we define an ABI using the vcpu devices that lets userspace set
the interrupt numbers for the various timers on both the 32-bit and
64-bit KVM/ARM implementations.
Second, we add the definitions for the groups and attributes introduced
by the above ABI. (We add the PMU define on the 32-bit side as well for
symmetry and it may get used some day.)
Third, we set up the arch-specific vcpu device operation handlers to
call into the timer code for anything related to the
KVM_ARM_VCPU_TIMER_CTRL group.
Fourth, we implement support for getting and setting the timer interrupt
numbers using the above defined ABI in the arch timer code.
Fifth, we introduce error checking upon enabling the arch timer (which
is called when first running a VCPU) to check that all VCPUs are
configured to use the same PPI for the timer (as mandated by the
architecture) and that the virtual and physical timers are not
configured to use the same IRQ number.
Signed-off-by: Christoffer Dall <cdall@linaro.org>
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
This was entirely automated, using the script by Al:
PATT='^[[:blank:]]*#[[:blank:]]*include[[:blank:]]*<asm/uaccess.h>'
sed -i -e "s!$PATT!#include <linux/uaccess.h>!" \
$(git grep -l "$PATT"|grep -v ^include/linux/uaccess.h)
to do the replacement at the end of the merge window.
Requested-by: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
but lots of architecture-specific changes.
* ARM:
- VHE support so that we can run the kernel at EL2 on ARMv8.1 systems
- PMU support for guests
- 32bit world switch rewritten in C
- various optimizations to the vgic save/restore code.
* PPC:
- enabled KVM-VFIO integration ("VFIO device")
- optimizations to speed up IPIs between vcpus
- in-kernel handling of IOMMU hypercalls
- support for dynamic DMA windows (DDW).
* s390:
- provide the floating point registers via sync regs;
- separated instruction vs. data accesses
- dirty log improvements for huge guests
- bugfixes and documentation improvements.
* x86:
- Hyper-V VMBus hypercall userspace exit
- alternative implementation of lowest-priority interrupts using vector
hashing (for better VT-d posted interrupt support)
- fixed guest debugging with nested virtualizations
- improved interrupt tracking in the in-kernel IOAPIC
- generic infrastructure for tracking writes to guest memory---currently
its only use is to speedup the legacy shadow paging (pre-EPT) case, but
in the future it will be used for virtual GPUs as well
- much cleanup (LAPIC, kvmclock, MMU, PIT), including ubsan fixes.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2.0.22 (GNU/Linux)
iQEcBAABAgAGBQJW5r3BAAoJEL/70l94x66D2pMH/jTSWWwdTUJMctrDjPVzKzG0
yOzHW5vSLFoFlwEOY2VpslnXzn5TUVmCAfrdmFNmQcSw6hGb3K/xA/ZX/KLwWhyb
oZpr123ycahga+3q/ht/dFUBCCyWeIVMdsLSFwpobEBzPL0pMgc9joLgdUC6UpWX
tmN0LoCAeS7spC4TTiTTpw3gZ/L+aB0B6CXhOMjldb9q/2CsgaGyoVvKA199nk9o
Ngu7ImDt7l/x1VJX4/6E/17VHuwqAdUrrnbqerB/2oJ5ixsZsHMGzxQ3sHCmvyJx
WG5L00ubB1oAJAs9fBg58Y/MdiWX99XqFhdEfxq4foZEiQuCyxygVvq3JwZTxII=
=OUZZ
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull KVM updates from Paolo Bonzini:
"One of the largest releases for KVM... Hardly any generic
changes, but lots of architecture-specific updates.
ARM:
- VHE support so that we can run the kernel at EL2 on ARMv8.1 systems
- PMU support for guests
- 32bit world switch rewritten in C
- various optimizations to the vgic save/restore code.
PPC:
- enabled KVM-VFIO integration ("VFIO device")
- optimizations to speed up IPIs between vcpus
- in-kernel handling of IOMMU hypercalls
- support for dynamic DMA windows (DDW).
s390:
- provide the floating point registers via sync regs;
- separated instruction vs. data accesses
- dirty log improvements for huge guests
- bugfixes and documentation improvements.
x86:
- Hyper-V VMBus hypercall userspace exit
- alternative implementation of lowest-priority interrupts using
vector hashing (for better VT-d posted interrupt support)
- fixed guest debugging with nested virtualizations
- improved interrupt tracking in the in-kernel IOAPIC
- generic infrastructure for tracking writes to guest
memory - currently its only use is to speedup the legacy shadow
paging (pre-EPT) case, but in the future it will be used for
virtual GPUs as well
- much cleanup (LAPIC, kvmclock, MMU, PIT), including ubsan fixes"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (217 commits)
KVM: x86: remove eager_fpu field of struct kvm_vcpu_arch
KVM: x86: disable MPX if host did not enable MPX XSAVE features
arm64: KVM: vgic-v3: Only wipe LRs on vcpu exit
arm64: KVM: vgic-v3: Reset LRs at boot time
arm64: KVM: vgic-v3: Do not save an LR known to be empty
arm64: KVM: vgic-v3: Save maintenance interrupt state only if required
arm64: KVM: vgic-v3: Avoid accessing ICH registers
KVM: arm/arm64: vgic-v2: Make GICD_SGIR quicker to hit
KVM: arm/arm64: vgic-v2: Only wipe LRs on vcpu exit
KVM: arm/arm64: vgic-v2: Reset LRs at boot time
KVM: arm/arm64: vgic-v2: Do not save an LR known to be empty
KVM: arm/arm64: vgic-v2: Move GICH_ELRSR saving to its own function
KVM: arm/arm64: vgic-v2: Save maintenance interrupt state only if required
KVM: arm/arm64: vgic-v2: Avoid accessing GICH registers
KVM: s390: allocate only one DMA page per VM
KVM: s390: enable STFLE interpretation only if enabled for the guest
KVM: s390: wake up when the VCPU cpu timer expires
KVM: s390: step the VCPU timer while in enabled wait
KVM: s390: protect VCPU cpu timer with a seqcount
KVM: s390: step VCPU cpu timer during kvm_run ioctl
...
To configure the virtual PMUv3 overflow interrupt number, we use the
vcpu kvm_device ioctl, encapsulating the KVM_ARM_VCPU_PMU_V3_IRQ
attribute within the KVM_ARM_VCPU_PMU_V3_CTRL group.
After configuring the PMUv3, call the vcpu ioctl with attribute
KVM_ARM_VCPU_PMU_V3_INIT to initialize the PMUv3.
Signed-off-by: Shannon Zhao <shannon.zhao@linaro.org>
Acked-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Andrew Jones <drjones@redhat.com>
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Calling return copy_to_user(...) in an ioctl will not
do the right thing if there's a pagefault:
copy_to_user returns the number of bytes not copied
in this case.
Fix up kvm to do
return copy_to_user(...)) ? -EFAULT : 0;
everywhere.
Cc: stable@vger.kernel.org
Acked-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Having the system register numbers as #defines has been a pain
since day one, as the ordering is pretty fragile, and moving
things around leads to renumbering and epic conflict resolutions.
Now that we're mostly acessing the sysreg file in C, an enum is
a much better type to use, and we can clean things up a bit.
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Acked-by: Christoffer Dall <christoffer.dall@linaro.org>
It would add guest exit statistics to debugfs, this can be helpful
while measuring KVM performance.
[ Renamed some of the field names - Christoffer ]
Signed-off-by: Amit Singh Tomar <amittomer25@gmail.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
This patch adds a generic ARM v8 KVM target cpu type for use
by the new CPUs which eventualy ends up using the common sys_reg
table. For backward compatibility the existing targets have been
preserved. Any new target CPU that can be covered by generic v8
sys_reg tables should make use of the new generic target.
Signed-off-by: Suzuki K. Poulose <suzuki.poulose@arm.com>
Acked-by: Marc Zyngier <Marc.Zyngier@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
This includes trace points for:
kvm_arch_setup_guest_debug
kvm_arch_clear_guest_debug
I've also added some generic register setting trace events and also a
trace point to dump the array of hardware registers.
Acked-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Alex Bennée <alex.bennee@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Finally advertise the KVM capability for SET_GUEST_DEBUG. Once arm
support is added this check can be moved to the common
kvm_vm_ioctl_check_extension() code.
Signed-off-by: Alex Bennée <alex.bennee@linaro.org>
Acked-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
This adds support for single-stepping the guest. To do this we need to
manipulate the guests PSTATE.SS and MDSCR_EL1.SS bits to trigger
stepping. We take care to preserve MDSCR_EL1 and trap access to it to
ensure we don't affect the apparent state of the guest.
As we have to enable trapping of all software debug exceptions we
suppress the ability of the guest to single-step itself. If we didn't we
would have to deal with the exception arriving while the guest was in
kernelspace when the guest is expecting to single-step userspace. This
is something we don't want to unwind in the kernel. Once the host is no
longer debugging the guest its ability to single-step userspace is
restored.
Signed-off-by: Alex Bennée <alex.bennee@linaro.org>
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
This adds support for SW breakpoints inserted by userspace.
We do this by trapping all guest software debug exceptions to the
hypervisor (MDCR_EL2.TDE). The exit handler sets an exit reason of
KVM_EXIT_DEBUG with the kvm_debug_exit_arch structure holding the
exception syndrome information.
It will be up to userspace to extract the PC (via GET_ONE_REG) and
determine if the debug event was for a breakpoint it inserted. If not
userspace will need to re-inject the correct exception restart the
hypervisor to deliver the debug exception to the guest.
Any other guest software debug exception (e.g. single step or HW
assisted breakpoints) will cause an error and the VM to be killed. This
is addressed by later patches which add support for the other debug
types.
Signed-off-by: Alex Bennée <alex.bennee@linaro.org>
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>