SEV guests fail to boot on a system that supports the PCID feature.
While emulating the RSM instruction, KVM reads the guest CR3
and calls kvm_set_cr3(). If the vCPU is in the long mode,
kvm_set_cr3() does a sanity check for the CR3 value. In this case,
it validates whether the value has any reserved bits set. The
reserved bit range is 63:cpuid_maxphysaddr(). When AMD memory
encryption is enabled, the memory encryption bit is set in the CR3
value. The memory encryption bit may fall within the KVM reserved
bit range, causing the KVM emulation failure.
Introduce a new field cr3_lm_rsvd_bits in kvm_vcpu_arch which will
cache the reserved bits in the CR3 value. This will be initialized
to rsvd_bits(cpuid_maxphyaddr(vcpu), 63).
If the architecture has any special bits(like AMD SEV encryption bit)
that needs to be masked from the reserved bits, should be cleared
in vendor specific kvm_x86_ops.vcpu_after_set_cpuid handler.
Fixes: a780a3ea62 ("KVM: X86: Fix reserved bits check for MOV to CR3")
Signed-off-by: Babu Moger <babu.moger@amd.com>
Message-Id: <160521947657.32054.3264016688005356563.stgit@bmoger-ubuntu>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Attach struct kvm_mmu_pages to every page in the TDP MMU to track
metadata, facilitate NX reclaim, and enable inproved parallelism of MMU
operations in future patches.
Tested by running kvm-unit-tests and KVM selftests on an Intel Haswell
machine. This series introduced no new failures.
This series can be viewed in Gerrit at:
https://linux-review.googlesource.com/c/virt/kvm/kvm/+/2538
Signed-off-by: Ben Gardon <bgardon@google.com>
Message-Id: <20201014182700.2888246-12-bgardon@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The TDP MMU must be able to allocate paging structure root pages and track
the usage of those pages. Implement a similar, but separate system for root
page allocation to that of the x86 shadow paging implementation. When
future patches add synchronization model changes to allow for parallel
page faults, these pages will need to be handled differently from the
x86 shadow paging based MMU's root pages.
Tested by running kvm-unit-tests and KVM selftests on an Intel Haswell
machine. This series introduced no new failures.
This series can be viewed in Gerrit at:
https://linux-review.googlesource.com/c/virt/kvm/kvm/+/2538
Signed-off-by: Ben Gardon <bgardon@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The TDP MMU offers an alternative mode of operation to the x86 shadow
paging based MMU, optimized for running an L1 guest with TDP. The TDP MMU
will require new fields that need to be initialized and torn down. Add
hooks into the existing KVM MMU initialization process to do that
initialization / cleanup. Currently the initialization and cleanup
fucntions do not do very much, however more operations will be added in
future patches.
Tested by running kvm-unit-tests and KVM selftests on an Intel Haswell
machine. This series introduced no new failures.
This series can be viewed in Gerrit at:
https://linux-review.googlesource.com/c/virt/kvm/kvm/+/2538
Signed-off-by: Ben Gardon <bgardon@google.com>
Message-Id: <20201014182700.2888246-4-bgardon@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
This will be used to signal an error to the userspace, in case
the vendor code failed during handling of this msr. (e.g -ENOMEM)
Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20201001112954.6258-4-mlevitsk@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
As vcpu->arch.cpuid_entries is now allocated dynamically, the only
remaining use for KVM_MAX_CPUID_ENTRIES is to check KVM_SET_CPUID/
KVM_SET_CPUID2 input for sanity. Since it was reported that the
current limit (80) is insufficient for some CPUs, bump
KVM_MAX_CPUID_ENTRIES and use an arbitrary value '256' as the new
limit.
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Message-Id: <20201001130541.1398392-4-vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The current limit for guest CPUID leaves (KVM_MAX_CPUID_ENTRIES, 80)
is reported to be insufficient but before we bump it let's switch to
allocating vcpu->arch.cpuid_entries[] array dynamically. Currently,
'struct kvm_cpuid_entry2' is 40 bytes so vcpu->arch.cpuid_entries is
3200 bytes which accounts for 1/4 of the whole 'struct kvm_vcpu_arch'
but having it pre-allocated (for all vCPUs which we also pre-allocate)
gives us no real benefits.
Another plus of the dynamic allocation is that we now do kvm_check_cpuid()
check before we assign anything to vcpu->arch.cpuid_nent/cpuid_entries so
no changes are made in case the check fails.
Opportunistically remove unneeded 'out' labels from
kvm_vcpu_ioctl_set_cpuid()/kvm_vcpu_ioctl_set_cpuid2() and return
directly whenever possible.
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Message-Id: <20201001130541.1398392-3-vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
KVM unconditionally provides PV features to the guest, regardless of the
configured CPUID. An unwitting guest that doesn't check
KVM_CPUID_FEATURES before use could access paravirt features that
userspace did not intend to provide. Fix this by checking the guest's
CPUID before performing any paravirtual operations.
Introduce a capability, KVM_CAP_ENFORCE_PV_FEATURE_CPUID, to gate the
aforementioned enforcement. Migrating a VM from a host w/o this patch to
a host with this patch could silently change the ABI exposed to the
guest, warranting that we default to the old behavior and opt-in for
the new one.
Reviewed-by: Jim Mattson <jmattson@google.com>
Reviewed-by: Peter Shier <pshier@google.com>
Signed-off-by: Oliver Upton <oupton@google.com>
Change-Id: I202a0926f65035b872bfe8ad15307c026de59a98
Message-Id: <20200818152429.1923996-4-oupton@google.com>
Reviewed-by: Wanpeng Li <wanpengli@tencent.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
It's not desireable to have all MSRs always handled by KVM kernel space. Some
MSRs would be useful to handle in user space to either emulate behavior (like
uCode updates) or differentiate whether they are valid based on the CPU model.
To allow user space to specify which MSRs it wants to see handled by KVM,
this patch introduces a new ioctl to push filter rules with bitmaps into
KVM. Based on these bitmaps, KVM can then decide whether to reject MSR access.
With the addition of KVM_CAP_X86_USER_SPACE_MSR it can also deflect the
denied MSR events to user space to operate on.
If no filter is populated, MSR handling stays identical to before.
Signed-off-by: Alexander Graf <graf@amazon.com>
Message-Id: <20200925143422.21718-8-graf@amazon.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
In the following commits we will add pieces of MSR filtering.
To ensure that code compiles even with the feature half-merged, let's add
a few stubs and struct definitions before the real patches start.
Signed-off-by: Alexander Graf <graf@amazon.com>
Message-Id: <20200925143422.21718-4-graf@amazon.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
MSRs are weird. Some of them are normal control registers, such as EFER.
Some however are registers that really are model specific, not very
interesting to virtualization workloads, and not performance critical.
Others again are really just windows into package configuration.
Out of these MSRs, only the first category is necessary to implement in
kernel space. Rarely accessed MSRs, MSRs that should be fine tunes against
certain CPU models and MSRs that contain information on the package level
are much better suited for user space to process. However, over time we have
accumulated a lot of MSRs that are not the first category, but still handled
by in-kernel KVM code.
This patch adds a generic interface to handle WRMSR and RDMSR from user
space. With this, any future MSR that is part of the latter categories can
be handled in user space.
Furthermore, it allows us to replace the existing "ignore_msrs" logic with
something that applies per-VM rather than on the full system. That way you
can run productive VMs in parallel to experimental ones where you don't care
about proper MSR handling.
Signed-off-by: Alexander Graf <graf@amazon.com>
Reviewed-by: Jim Mattson <jmattson@google.com>
Message-Id: <20200925143422.21718-3-graf@amazon.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Rename the "shared_msrs" mechanism, which is used to defer restoring
MSRs that are only consumed when running in userspace, to a more banal
but less likely to be confusing "user_return_msrs".
The "shared" nomenclature is confusing as it's not obvious who is
sharing what, e.g. reasonable interpretations are that the guest value
is shared by vCPUs in a VM, or that the MSR value is shared/common to
guest and host, both of which are wrong.
"shared" is also misleading as the MSR value (in hardware) is not
guaranteed to be shared/reused between VMs (if that's indeed the correct
interpretation of the name), as the ability to share values between VMs
is simply a side effect (albiet a very nice side effect) of deferring
restoration of the host value until returning from userspace.
"user_return" avoids the above confusion by describing the mechanism
itself instead of its effects.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Message-Id: <20200923180409.32255-2-sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Extend the kvm_exit tracepoint to align it with kvm_nested_vmexit in
terms of what information is captured. On SVM, add interrupt info and
error code, while on VMX it add IDT vectoring and error code. This
sets the stage for macrofying the kvm_exit tracepoint definition so that
it can be reused for kvm_nested_vmexit without loss of information.
Opportunistically stuff a zero for VM_EXIT_INTR_INFO if the VM-Enter
failed, as the field is guaranteed to be invalid. Note, it'd be
possible to further filter the interrupt/exception fields based on the
VM-Exit reason, but the helper is intended only for tracepoints, i.e.
an extra VMREAD or two is a non-issue, the failed VM-Enter case is just
low hanging fruit.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Message-Id: <20200923201349.16097-5-sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Replace the existing kvm_x86_ops.need_emulation_on_page_fault() with a
more generic is_emulatable(), and unconditionally call the new function
in x86_emulate_instruction().
KVM will use the generic hook to support multiple security related
technologies that prevent emulation in one way or another. Similar to
the existing AMD #NPF case where emulation of the current instruction is
not possible due to lack of information, AMD's SEV-ES and Intel's SGX
and TDX will introduce scenarios where emulation is impossible due to
the guest's register state being inaccessible. And again similar to the
existing #NPF case, emulation can be initiated by kvm_mmu_page_fault(),
i.e. outside of the control of vendor-specific code.
While the cause and architecturally visible behavior of the various
cases are different, e.g. SGX will inject a #UD, AMD #NPF is a clean
resume or complete shutdown, and SEV-ES and TDX "return" an error, the
impact on the common emulation code is identical: KVM must stop
emulation immediately and resume the guest.
Query is_emulatable() in handle_ud() as well so that the
force_emulation_prefix code doesn't incorrectly modify RIP before
calling emulate_instruction() in the absurdly unlikely scenario that
KVM encounters forced emulation in conjunction with "do not emulate".
Cc: Tom Lendacky <thomas.lendacky@amd.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Message-Id: <20200915232702.15945-1-sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The 'flags' field of 'struct mmu_notifier_range' is used to indicate
whether invalidate_range_{start,end}() are permitted to block. In the
case of kvm_mmu_notifier_invalidate_range_start(), this field is not
forwarded on to the architecture-specific implementation of
kvm_unmap_hva_range() and therefore the backend cannot sensibly decide
whether or not to block.
Add an extra 'flags' parameter to kvm_unmap_hva_range() so that
architectures are aware as to whether or not they are permitted to block.
Cc: <stable@vger.kernel.org>
Cc: Marc Zyngier <maz@kernel.org>
Cc: Suzuki K Poulose <suzuki.poulose@arm.com>
Cc: James Morse <james.morse@arm.com>
Signed-off-by: Will Deacon <will@kernel.org>
Message-Id: <20200811102725.7121-2-will@kernel.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Capture the max TDP level during kvm_configure_mmu() instead of using a
kvm_x86_ops hook to do it at every vCPU creation.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Message-Id: <20200716034122.5998-10-sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Calculate the desired TDP level on the fly using the max TDP level and
MAXPHYADDR instead of doing the same when CPUID is updated. This avoids
the hidden dependency on cpuid_maxphyaddr() in vmx_get_tdp_level() and
also standardizes the "use 5-level paging iff MAXPHYADDR > 48" behavior
across x86.
Suggested-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Message-Id: <20200716034122.5998-8-sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Use the shadow_root_level from the current MMU as the root level for the
PGD, i.e. for VMX's EPTP. This eliminates the weird dependency between
VMX and the MMU where both must independently calculate the same root
level for things to work correctly. Temporarily keep VMX's calculation
of the level and use it to WARN if the incoming level diverges.
Opportunistically refactor kvm_mmu_load_pgd() to avoid indentation hell,
and rename a 'cr3' param in the load_mmu_pgd prototype that managed to
survive the cr3 purge.
No functional change intended.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Message-Id: <20200716034122.5998-6-sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
This patch adds a new capability KVM_CAP_SMALLER_MAXPHYADDR which
allows userspace to query if the underlying architecture would
support GUEST_MAXPHYADDR < HOST_MAXPHYADDR and hence act accordingly
(e.g. qemu can decide if it should warn for -cpu ..,phys-bits=X)
The complications in this patch are due to unexpected (but documented)
behaviour we see with NPF vmexit handling in AMD processor. If
SVM is modified to add guest physical address checks in the NPF
and guest #PF paths, we see the followning error multiple times in
the 'access' test in kvm-unit-tests:
test pte.p pte.36 pde.p: FAIL: pte 2000021 expected 2000001
Dump mapping: address: 0x123400000000
------L4: 24c3027
------L3: 24c4027
------L2: 24c5021
------L1: 1002000021
This is because the PTE's accessed bit is set by the CPU hardware before
the NPF vmexit. This is handled completely by hardware and cannot be fixed
in software.
Therefore, availability of the new capability depends on a boolean variable
allow_smaller_maxphyaddr which is set individually by VMX and SVM init
routines. On VMX it's always set to true, on SVM it's only set to true
when NPT is not enabled.
CC: Tom Lendacky <thomas.lendacky@amd.com>
CC: Babu Moger <babu.moger@amd.com>
Signed-off-by: Mohammed Gamal <mgamal@redhat.com>
Message-Id: <20200710154811.418214-10-mgamal@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
We would like to introduce a callback to update the #PF intercept
when CPUID changes. Just reuse update_bp_intercept since VMX is
already using update_exception_bitmap instead of a bespoke function.
While at it, remove an unnecessary assignment in the SVM version,
which is already done in the caller (kvm_arch_vcpu_ioctl_set_guest_debug)
and has nothing to do with the exception bitmap.
Reviewed-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Also no point of it being inline since it's always called through
function pointers. So remove that.
Signed-off-by: Mohammed Gamal <mgamal@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20200710154811.418214-3-mgamal@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Move x86's 'struct kvm_mmu_memory_cache' to common code in anticipation
of moving the entire x86 implementation code to common KVM and reusing
it for arm64 and MIPS. Add a new architecture specific asm/kvm_types.h
to control the existence and parameters of the struct. The new header
is needed to avoid a chicken-and-egg problem with asm/kvm_host.h as all
architectures define instances of the struct in their vCPU structs.
Add an asm-generic version of kvm_types.h to avoid having empty files on
PPC and s390 in the long term, and for arm64 and mips in the short term.
Suggested-by: Christoffer Dall <christoffer.dall@arm.com>
Reviewed-by: Ben Gardon <bgardon@google.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Message-Id: <20200703023545.8771-15-sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Add a gfp_zero flag to 'struct kvm_mmu_memory_cache' and use it to
control __GFP_ZERO instead of hardcoding a call to kmem_cache_zalloc().
A future patch needs such a flag for the __get_free_page() path, as
gfn arrays do not need/want the allocator to zero the memory. Convert
the kmem_cache paths to __GFP_ZERO now so as to avoid a weird and
inconsistent API in the future.
No functional change intended.
Reviewed-by: Ben Gardon <bgardon@google.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Message-Id: <20200703023545.8771-11-sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Use separate caches for allocating shadow pages versus gfn arrays. This
sets the stage for specifying __GFP_ZERO when allocating shadow pages
without incurring extra cost for gfn arrays.
No functional change intended.
Reviewed-by: Ben Gardon <bgardon@google.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Message-Id: <20200703023545.8771-10-sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Track the kmem_cache used for non-page KVM MMU memory caches instead of
passing in the associated kmem_cache when filling the cache. This will
allow consolidating code and other cleanups.
No functional change intended.
Reviewed-by: Ben Gardon <bgardon@google.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Message-Id: <20200703023545.8771-2-sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Move the functions which are inside the RCU off region into the
non-instrumentable text section.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Alexandre Chartre <alexandre.chartre@oracle.com>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Acked-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20200708195322.037311579@linutronix.de>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The name of callback cpuid_update() is misleading that it's not about
updating CPUID settings of vcpu but updating the configurations of vcpu
based on the CPUIDs. So rename it to vcpu_after_set_cpuid().
Signed-off-by: Xiaoyao Li <xiaoyao.li@intel.com>
Message-Id: <20200709043426.92712-5-xiaoyao.li@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Instead of creating the mask for guest CR4 reserved bits in kvm_valid_cr4(),
do it in kvm_update_cpuid() so that it can be reused instead of creating it
each time kvm_valid_cr4() is called.
Suggested-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Krish Sadhukhan <krish.sadhukhan@oracle.com>
Message-Id: <1594168797-29444-2-git-send-email-krish.sadhukhan@oracle.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Make 'struct kvm_mmu_page' MMU-only, nothing outside of the MMU should
be poking into the gory details of shadow pages.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Message-Id: <20200622202034.15093-5-sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Both the vcpu_vmx structure and the vcpu_svm structure have a
'last_cpu' field. Move the common field into the kvm_vcpu_arch
structure. For clarity, rename it to 'last_vmentry_cpu.'
Suggested-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Jim Mattson <jmattson@google.com>
Reviewed-by: Oliver Upton <oupton@google.com>
Reviewed-by: Peter Shier <pshier@google.com>
Message-Id: <20200603235623.245638-6-jmattson@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Move .write_log_dirty() into kvm_x86_nested_ops to help differentiate it
from the non-nested dirty log hooks. And because it's a nested-only
operation.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Message-Id: <20200622215832.22090-5-sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Explicitly pass the L2 GPA to kvm_arch_write_log_dirty(), which for all
intents and purposes is vmx_write_pml_buffer(), instead of having the
latter pull the GPA from vmcs.GUEST_PHYSICAL_ADDRESS. If the dirty bit
update is the result of KVM emulation (rare for L2), then the GPA in the
VMCS may be stale and/or hold a completely unrelated GPA.
Fixes: c5f983f6e8 ("nVMX: Implement emulated Page Modification Logging")
Cc: stable@vger.kernel.org
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Message-Id: <20200622215832.22090-2-sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The following race can cause lost map update events:
cpu1 cpu2
apic_map_dirty = true
------------------------------------------------------------
kvm_recalculate_apic_map:
pass check
mutex_lock(&kvm->arch.apic_map_lock);
if (!kvm->arch.apic_map_dirty)
and in process of updating map
-------------------------------------------------------------
other calls to
apic_map_dirty = true might be too late for affected cpu
-------------------------------------------------------------
apic_map_dirty = false
-------------------------------------------------------------
kvm_recalculate_apic_map:
bail out on
if (!kvm->arch.apic_map_dirty)
To fix it, record the beginning of an update of the APIC map in
apic_map_dirty. If another APIC map change switches apic_map_dirty
back to DIRTY during the update, kvm_recalculate_apic_map should not
make it CLEAN, and the other caller will go through the slow path.
Reported-by: Igor Mammedov <imammedo@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
'Page not present' event may or may not get injected depending on
guest's state. If the event wasn't injected, there is no need to
inject the corresponding 'page ready' event as the guest may get
confused. E.g. Linux thinks that the corresponding 'page not present'
event wasn't delivered *yet* and allocates a 'dummy entry' for it.
This entry is never freed.
Note, 'wakeup all' events have no corresponding 'page not present'
event and always get injected.
s390 seems to always be able to inject 'page not present', the
change is effectively a nop.
Suggested-by: Vivek Goyal <vgoyal@redhat.com>
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Message-Id: <20200610175532.779793-2-vkuznets@redhat.com>
Fixes: https://bugzilla.kernel.org/show_bug.cgi?id=208081
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Make x86_fpu_cache static now that FPU allocation and destruction is
handled entirely by common x86 code.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Message-Id: <20200608180218.20946-1-sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
- Move the arch-specific code into arch/arm64/kvm
- Start the post-32bit cleanup
- Cherry-pick a few non-invasive pre-NV patches
x86:
- Rework of TLB flushing
- Rework of event injection, especially with respect to nested virtualization
- Nested AMD event injection facelift, building on the rework of generic code
and fixing a lot of corner cases
- Nested AMD live migration support
- Optimization for TSC deadline MSR writes and IPIs
- Various cleanups
- Asynchronous page fault cleanups (from tglx, common topic branch with tip tree)
- Interrupt-based delivery of asynchronous "page ready" events (host side)
- Hyper-V MSRs and hypercalls for guest debugging
- VMX preemption timer fixes
s390:
- Cleanups
Generic:
- switch vCPU thread wakeup from swait to rcuwait
The other architectures, and the guest side of the asynchronous page fault
work, will come next week.
-----BEGIN PGP SIGNATURE-----
iQFIBAABCAAyFiEE8TM4V0tmI4mGbHaCv/vSX3jHroMFAl7VJcYUHHBib256aW5p
QHJlZGhhdC5jb20ACgkQv/vSX3jHroPf6QgAq4wU5wdd1lTGz/i3DIhNVJNJgJlp
ozLzRdMaJbdbn5RpAK6PEBd9+pt3+UlojpFB3gpJh2Nazv2OzV4yLQgXXXyyMEx1
5Hg7b4UCJYDrbkCiegNRv7f/4FWDkQ9dx++RZITIbxeskBBCEI+I7GnmZhGWzuC4
7kj4ytuKAySF2OEJu0VQF6u0CvrNYfYbQIRKBXjtOwuRK4Q6L63FGMJpYo159MBQ
asg3B1jB5TcuGZ9zrjL5LkuzaP4qZZHIRs+4kZsH9I6MODHGUxKonrkablfKxyKy
CFK+iaHCuEXXty5K0VmWM3nrTfvpEjVjbMc7e1QGBQ5oXsDM0pqn84syRg==
=v7Wn
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull kvm updates from Paolo Bonzini:
"ARM:
- Move the arch-specific code into arch/arm64/kvm
- Start the post-32bit cleanup
- Cherry-pick a few non-invasive pre-NV patches
x86:
- Rework of TLB flushing
- Rework of event injection, especially with respect to nested
virtualization
- Nested AMD event injection facelift, building on the rework of
generic code and fixing a lot of corner cases
- Nested AMD live migration support
- Optimization for TSC deadline MSR writes and IPIs
- Various cleanups
- Asynchronous page fault cleanups (from tglx, common topic branch
with tip tree)
- Interrupt-based delivery of asynchronous "page ready" events (host
side)
- Hyper-V MSRs and hypercalls for guest debugging
- VMX preemption timer fixes
s390:
- Cleanups
Generic:
- switch vCPU thread wakeup from swait to rcuwait
The other architectures, and the guest side of the asynchronous page
fault work, will come next week"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (256 commits)
KVM: selftests: fix rdtsc() for vmx_tsc_adjust_test
KVM: check userspace_addr for all memslots
KVM: selftests: update hyperv_cpuid with SynDBG tests
x86/kvm/hyper-v: Add support for synthetic debugger via hypercalls
x86/kvm/hyper-v: enable hypercalls regardless of hypercall page
x86/kvm/hyper-v: Add support for synthetic debugger interface
x86/hyper-v: Add synthetic debugger definitions
KVM: selftests: VMX preemption timer migration test
KVM: nVMX: Fix VMX preemption timer migration
x86/kvm/hyper-v: Explicitly align hcall param for kvm_hyperv_exit
KVM: x86/pmu: Support full width counting
KVM: x86/pmu: Tweak kvm_pmu_get_msr to pass 'struct msr_data' in
KVM: x86: announce KVM_FEATURE_ASYNC_PF_INT
KVM: x86: acknowledgment mechanism for async pf page ready notifications
KVM: x86: interrupt based APF 'page ready' event delivery
KVM: introduce kvm_read_guest_offset_cached()
KVM: rename kvm_arch_can_inject_async_page_present() to kvm_arch_can_dequeue_async_page_present()
KVM: x86: extend struct kvm_vcpu_pv_apf_data with token info
Revert "KVM: async_pf: Fix #DF due to inject "Page not Present" and "Page Ready" exceptions simultaneously"
KVM: VMX: Replace zero-length array with flexible-array
...
-----BEGIN PGP SIGNATURE-----
iQFHBAABCAAxFiEEIbPD0id6easf0xsudhRwX5BBoF4FAl7WhbkTHHdlaS5saXVA
a2VybmVsLm9yZwAKCRB2FHBfkEGgXlUnB/0R8dBVSeRfNmyJaadBWKFc/LffwKLD
CQ8PVv22ffkCaEYV2tpnhS6NmkERLNdson4Uo02tVUsjOJ4CrWHTn7aKqYWZyA+O
qv/PiD9TBXJVYMVP2kkyaJlK5KoqeAWBr2kM16tT0cxQmlhE7g0Xo2wU9vhRbU+4
i4F0jffe4lWps65TK392CsPr6UEv1HSel191Py5zLzYqChT+L8WfahmBt3chhsV5
TIUJYQvBwxecFRla7yo+4sUn37ZfcTqD1hCWSr0zs4psW0ge7d80kuaNZS+EqxND
fGm3Bp1BlUuDKsJ/D+AaHLCR47PUZ9t9iMDjZS/ovYglLFwi+h3tAV+W
=LwVR
-----END PGP SIGNATURE-----
Merge tag 'hyperv-next-signed' of git://git.kernel.org/pub/scm/linux/kernel/git/hyperv/linux
Pull hyper-v updates from Wei Liu:
- a series from Andrea to support channel reassignment
- a series from Vitaly to clean up Vmbus message handling
- a series from Michael to clean up and augment hyperv-tlfs.h
- patches from Andy to clean up GUID usage in Hyper-V code
- a few other misc patches
* tag 'hyperv-next-signed' of git://git.kernel.org/pub/scm/linux/kernel/git/hyperv/linux: (29 commits)
Drivers: hv: vmbus: Resolve more races involving init_vp_index()
Drivers: hv: vmbus: Resolve race between init_vp_index() and CPU hotplug
vmbus: Replace zero-length array with flexible-array
Driver: hv: vmbus: drop a no long applicable comment
hyper-v: Switch to use UUID types directly
hyper-v: Replace open-coded variant of %*phN specifier
hyper-v: Supply GUID pointer to printf() like functions
hyper-v: Use UUID API for exporting the GUID (part 2)
asm-generic/hyperv: Add definitions for Get/SetVpRegister hypercalls
x86/hyperv: Split hyperv-tlfs.h into arch dependent and independent files
x86/hyperv: Remove HV_PROCESSOR_POWER_STATE #defines
KVM: x86: hyperv: Remove duplicate definitions of Reference TSC Page
drivers: hv: remove redundant assignment to pointer primary_channel
scsi: storvsc: Re-init stor_chns when a channel interrupt is re-assigned
Drivers: hv: vmbus: Introduce the CHANNELMSG_MODIFYCHANNEL message type
Drivers: hv: vmbus: Synchronize init_vp_index() vs. CPU hotplug
Drivers: hv: vmbus: Remove the unused HV_LOCALIZED channel affinity logic
PCI: hv: Prepare hv_compose_msi_msg() for the VMBus-channel-interrupt-to-vCPU reassignment functionality
Drivers: hv: vmbus: Use a spin lock for synchronizing channel scheduling vs. channel removal
hv_utils: Always execute the fcopy and vss callbacks in a tasklet
...
Add support for Hyper-V synthetic debugger (syndbg) interface.
The syndbg interface is using MSRs to emulate a way to send/recv packets
data.
The debug transport dll (kdvm/kdnet) will identify if Hyper-V is enabled
and if it supports the synthetic debugger interface it will attempt to
use it, instead of trying to initialize a network adapter.
Reviewed-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Jon Doron <arilou@gmail.com>
Message-Id: <20200529134543.1127440-4-arilou@gmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Intel CPUs have a new alternative MSR range (starting from MSR_IA32_PMC0)
for GP counters that allows writing the full counter width. Enable this
range from a new capability bit (IA32_PERF_CAPABILITIES.FW_WRITE[bit 13]).
The guest would query CPUID to get the counter width, and sign extends
the counter values as needed. The traditional MSRs always limit to 32bit,
even though the counter internally is larger (48 or 57 bits).
When the new capability is set, use the alternative range which do not
have these restrictions. This lowers the overhead of perf stat slightly
because it has to do less interrupts to accumulate the counter value.
Signed-off-by: Like Xu <like.xu@linux.intel.com>
Message-Id: <20200529074347.124619-3-like.xu@linux.intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
If two page ready notifications happen back to back the second one is not
delivered and the only mechanism we currently have is
kvm_check_async_pf_completion() check in vcpu_run() loop. The check will
only be performed with the next vmexit when it happens and in some cases
it may take a while. With interrupt based page ready notification delivery
the situation is even worse: unlike exceptions, interrupts are not handled
immediately so we must check if the slot is empty. This is slow and
unnecessary. Introduce dedicated MSR_KVM_ASYNC_PF_ACK MSR to communicate
the fact that the slot is free and host should check its notification
queue. Mandate using it for interrupt based 'page ready' APF event
delivery.
As kvm_check_async_pf_completion() is going away from vcpu_run() we need
a way to communicate the fact that vcpu->async_pf.done queue has
transitioned from empty to non-empty state. Introduce
kvm_arch_async_page_present_queued() and KVM_REQ_APF_READY to do the job.
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Message-Id: <20200525144125.143875-7-vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Concerns were expressed around APF delivery via synthetic #PF exception as
in some cases such delivery may collide with real page fault. For 'page
ready' notifications we can easily switch to using an interrupt instead.
Introduce new MSR_KVM_ASYNC_PF_INT mechanism and deprecate the legacy one.
One notable difference between the two mechanisms is that interrupt may not
get handled immediately so whenever we would like to deliver next event
(regardless of its type) we must be sure the guest had read and cleared
previous event in the slot.
While on it, get rid on 'type 1/type 2' names for APF events in the
documentation as they are causing confusion. Use 'page not present'
and 'page ready' everywhere instead.
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Message-Id: <20200525144125.143875-6-vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
An innocent reader of the following x86 KVM code:
bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
{
if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED))
return true;
...
may get very confused: if APF mechanism is not enabled, why do we report
that we 'can inject async page present'? In reality, upon injection
kvm_arch_async_page_present() will check the same condition again and,
in case APF is disabled, will just drop the item. This is fine as the
guest which deliberately disabled APF doesn't expect to get any APF
notifications.
Rename kvm_arch_can_inject_async_page_present() to
kvm_arch_can_dequeue_async_page_present() to make it clear what we are
checking: if the item can be dequeued (meaning either injected or just
dropped).
On s390 kvm_arch_can_inject_async_page_present() always returns 'true' so
the rename doesn't matter much.
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Message-Id: <20200525144125.143875-4-vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Currently, APF mechanism relies on the #PF abuse where the token is being
passed through CR2. If we switch to using interrupts to deliver page-ready
notifications we need a different way to pass the data. Extent the existing
'struct kvm_vcpu_pv_apf_data' with token information for page-ready
notifications.
While on it, rename 'reason' to 'flags'. This doesn't change the semantics
as we only have reasons '1' and '2' and these can be treated as bit flags
but KVM_PV_REASON_PAGE_READY is going away with interrupt based delivery
making 'reason' name misleading.
The newly introduced apf_put_user_ready() temporary puts both flags and
token information, this will be changed to put token only when we switch
to interrupt based notifications.
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Message-Id: <20200525144125.143875-3-vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The L1 flags can be found in the save area of svm->nested.hsave, fish
it from there so that there is one fewer thing to migrate.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Now that the int_ctl field is stored in svm->nested.ctl.int_ctl, we can
use it instead of vcpu->arch.hflags to check whether L2 is running
in V_INTR_MASKING mode.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
This allows exceptions injected by the emulator to be properly delivered
as vmexits. The code also becomes simpler, because we can just let all
L0-intercepted exceptions go through the usual path. In particular, our
emulation of the VMX #DB exit qualification is very much simplified,
because the vmexit injection path can use kvm_deliver_exception_payload
to update DR6.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
In case an interrupt arrives after nested.check_events but before the
call to kvm_cpu_has_injectable_intr, we could end up enabling the interrupt
window even if the interrupt is actually going to be a vmexit. This is
useless rather than harmful, but it really complicates reasoning about
SVM's handling of the VINTR intercept. We'd like to never bother with
the VINTR intercept if V_INTR_MASKING=1 && INTERCEPT_INTR=1, because in
that case there is no interrupt window and we can just exit the nested
guest whenever we want.
This patch moves the opening of the interrupt window inside
inject_pending_event. This consolidates the check for pending
interrupt/NMI/SMI in one place, and makes KVM's usage of immediate
exits more consistent, extending it beyond just nested virtualization.
There are two functional changes here. They only affect corner cases,
but overall they simplify the inject_pending_event.
- re-injection of still-pending events will also use req_immediate_exit
instead of using interrupt-window intercepts. This should have no impact
on performance on Intel since it simply replaces an interrupt-window
or NMI-window exit for a preemption-timer exit. On AMD, which has no
equivalent of the preemption time, it may incur some overhead but an
actual effect on performance should only be visible in pathological cases.
- kvm_arch_interrupt_allowed and kvm_vcpu_has_events will return true
if an interrupt, NMI or SMI is blocked by nested_run_pending. This
makes sense because entering the VM will allow it to make progress
and deliver the event.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Take a u32 for the index in has_emulated_msr() to match hardware, which
treats MSR indices as unsigned 32-bit values. Functionally, taking a
signed int doesn't cause problems with the current code base, but could
theoretically cause problems with 32-bit KVM, e.g. if the index were
checked via a less-than statement, which would evaluate incorrectly for
MSR indices with bit 31 set.
Reviewed-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Message-Id: <20200218234012.7110-3-sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>