This branch contains platform-related driver updates for ARM and ARM64.
Highlights:
- ARM SCMI (System Control & Management Interface) driver cleanups
- Hisilicon support for LPC bus w/ ACPI
- Reset driver updates for several platforms: Uniphier,
- Rockchip power domain bindings and hardware descriptions for several SoCs.
- Tegra memory controller reset improvements
-----BEGIN PGP SIGNATURE-----
iQJDBAABCAAtFiEElf+HevZ4QCAJmMQ+jBrnPN6EHHcFAlsfB94PHG9sb2ZAbGl4
b20ubmV0AAoJEIwa5zzehBx3k2IP/i9T71QoanZ3k6o/d+YUqmTuUiA+EJWFANry
8KSjBKmYDON/GLgRCiNZR8P0NZ3d1LgFk5gZDdhMrOtoGtd8k8q0KyqLxjKAWHt6
opSrGucmE1gy9FvJdUkK+y148vM+Ea4SXRVOZxbLV5qm3inPwnopJjgKAfnhIn4X
QmkSca90CyEc3kPdBdfMeAKL+7SRb4mbFHAXXVE7QiWvjrEjUkvtNVTazf5Nroc4
PbI97zSFrmSFO4ZK0jZHCd4R2xhsJwzDQ/UKHC9C9/IdFMLfnJ7dxIf97QYn41Kl
H46FneMZZZ1FibN+Mj5hC/tByE8FrMtWh636z031s6kkamSqLiBAZFlGpHABxQJs
3tN1vBP40R7hzm76yQAC4Uopr5xOtmLr6KBMBBRr+Axf9jHMS4m/WP1chwZFpFjI
Awxc0VCjBUm+haHvK85J4eHrzbWPjG+8aV5Ar5DHVo8et3MzCdX0ycoDeUT787qc
qzEcCjGPbXHBR1aXUX8stRW5x8zoGH/4IUYMo5IGadiFuXSna6ERG9IHq3fAU5Fp
ZzNNKedtodn9NoMr3NJJk1ndyrUr0lpXwlVqFeksRTa+INk2FHKd0cQfxwV33kS9
wHXw+v323uxa3Tz2TXKS7PavY5yr6fZ0dLC2+xEDqHq6bsLxo1DnBEnaola+Jg+u
9hKEuSff
=xs+f
-----END PGP SIGNATURE-----
Merge tag 'armsoc-drivers' of git://git.kernel.org/pub/scm/linux/kernel/git/arm/arm-soc
Pull ARM SoC driver updates from Olof Johansson:
"This contains platform-related driver updates for ARM and ARM64.
Highlights:
- ARM SCMI (System Control & Management Interface) driver cleanups
- Hisilicon support for LPC bus w/ ACPI
- Reset driver updates for several platforms: Uniphier,
- Rockchip power domain bindings and hardware descriptions for
several SoCs.
- Tegra memory controller reset improvements"
* tag 'armsoc-drivers' of git://git.kernel.org/pub/scm/linux/kernel/git/arm/arm-soc: (59 commits)
ARM: tegra: fix compile-testing PCI host driver
soc: rockchip: power-domain: add power domain support for px30
dt-bindings: power: add binding for px30 power domains
dt-bindings: power: add PX30 SoCs header for power-domain
soc: rockchip: power-domain: add power domain support for rk3228
dt-bindings: power: add binding for rk3228 power domains
dt-bindings: power: add RK3228 SoCs header for power-domain
soc: rockchip: power-domain: add power domain support for rk3128
dt-bindings: power: add binding for rk3128 power domains
dt-bindings: power: add RK3128 SoCs header for power-domain
soc: rockchip: power-domain: add power domain support for rk3036
dt-bindings: power: add binding for rk3036 power domains
dt-bindings: power: add RK3036 SoCs header for power-domain
dt-bindings: memory: tegra: Remove Tegra114 SATA and AFI reset definitions
memory: tegra: Remove Tegra114 SATA and AFI reset definitions
memory: tegra: Register SMMU after MC driver became ready
soc: mediatek: remove unneeded semicolon
soc: mediatek: add a fixed wait for SRAM stable
soc: mediatek: introduce a CAPS flag for scp_domain_data
soc: mediatek: reuse regmap_read_poll_timeout helpers
...
Hwqueue has collect statistics in heavy use queue_pop/queu_push functions
for cache efficiency and make push/pop faster use percpu variables.
For performance reasons, driver should keep descriptor in software handler
as short as possible and quickly return it back to hardware queue.
Descriptors coming into driver from hardware after pop and return back
by push to reduce descriptor lifetime in driver collect statistics on percpu.
Signed-off-by: Vasyl Gomonovych <gomonovych@gmail.com>
Signed-off-by: Santosh Shilimkar <santosh.shilimkar@oracle.com>
Navigator Subsystem (NAVSS) available on K2G SoC has a cut down
version of QMSS with less number of queues, internal linking ram
with lesser number of buffers etc. It doesn't have status and
explicit push register space as in QMSS available on other K2 SoCs.
So define reg indices specific to QMSS on K2G. This patch introduces
"ti,66ak2g-navss-qm" compatibility to identify QMSS on K2G NAVSS
and to customize the dts handling code. Per Device manual,
descriptors with index less than or equal to regions0_size is in region 0
in the case of K2 QMSS where as for QMSS on K2G, descriptors with index
less than regions0_size is in region 0. So update the size accordingly in
the regions0_size bits of the linking ram size 0 register.
Signed-off-by: Murali Karicheri <m-karicheri2@ti.com>
Signed-off-by: WingMan Kwok <w-kwok2@ti.com>
Reviewed-by: Rob Herring <robh@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
The knav_qmss driver is currently broken when CONFIG_LPAE is
set, which is a bit surprising because I'd expect that any serious
users of this platforms would have more than 2GB of RAM and require
LPAE.
The compiler clearly warns about an incorrect use of dma_addr_t
in the debug kernel messages:
ti/knav_qmss_queue.c: In function 'knav_queue_setup_region':
ti/knav_qmss_queue.c:1025:117: warning: format '%x' expects argument of type 'unsigned int', but argument 9 has type 'dma_addr_t {aka long long unsigned int}' [-Wformat=]
ti/knav_qmss_queue.c:1025:117: warning: format '%x' expects argument of type 'unsigned int', but argument 10 has type 'dma_addr_t {aka long long unsigned int}' [-Wformat=]
ti/knav_qmss_queue.c: In function 'knav_queue_setup_link_ram':
ti/knav_qmss_queue.c:1175:118: warning: format '%x' expects argument of type 'unsigned int', but argument 4 has type 'dma_addr_t {aka long long unsigned int}' [-Wformat=]
This patch changes all the debugging output to use the correct
%pad format string that works with both 32-bit and 64-bit dma_addr_t.
As the variable naming is somewhat confusing here, I also change
all *_phys names to *_dma when they refer to bus addresses that
are used for DMA rather than a physical memory address as seen from
the CPU. This is particularly important on keystone, because the
two things are not the same there.
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
acc channels are available only if accumulator PDSP is loaded and
running in the SoC. As this requires firmware and user may not have
firmware in the file system, make the accumulator queue support
available in qmss driver optional. To use accumulator queus user needs
to add firmware to the file system and boot up kernel.
Signed-off-by: Murali Karicheri <m-karicheri2@ti.com>
Signed-off-by: Santosh Shilimkar <ssantosh@kernel.org>
Currently firmware file name is included in the DTS. This is not scalable
as user has to change the DTS if they need upgrade to a new firmware.
Instead, add the firmware file name in the driver itself. As long as there
is no API change, new firmware upgrade is easy and require no driver
change. User is expected to copy the firmware image to the file system
and add a sym link to the new firmware for doing an upgrade. Driver add
a array of firmware file names to search for the available firmware blobs.
This scheme also prepare the driver for future changes to API if ever
happens. In such case it is assumed that driver needs to change to
accommodate the new firmware and new firmware file name will get added to
the array.
Also update the DT document to remove the firmware attribute and add
description about firmware in the driver documentation.
Signed-off-by: Murali Karicheri <m-karicheri2@ti.com>
Acked-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Santosh Shilimkar <ssantosh@kernel.org>
Use list_first_entry_or_null() for first_region() and first_queue_range().
list_first_entry() expects the list is not empty, so first_region() and
first_queue_range() never return NULL.
Thus use list_first_entry_or_null() instead.
Signed-off-by: Axel Lin <axel.lin@ingics.com>
Signed-off-by: Santosh Shilimkar <ssantosh@kernel.org>
The QMSS (Queue Manager Sub System) found on Keystone SOCs is one of
the main hardware sub system which forms the backbone of the Keystone
Multi-core Navigator. QMSS consist of queue managers, packed-data structure
processors(PDSP), linking RAM, descriptor pools and infrastructure
Packet DMA.
The Queue Manager is a hardware module that is responsible for accelerating
management of the packet queues. Packets are queued/de-queued by writing or
reading descriptor address to a particular memory mapped location. The PDSPs
perform QMSS related functions like accumulation, QoS, or event management.
Linking RAM registers are used to link the descriptors which are stored in
descriptor RAM. Descriptor RAM is configurable as internal or external memory.
The QMSS driver manages the PDSP setups, linking RAM regions,
queue pool management (allocation, push, pop and notify) and descriptor
pool management. The specifics on the device tree bindings for
QMSS can be found in:
Documentation/devicetree/bindings/soc/keystone-navigator-qmss.txt
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Kumar Gala <galak@codeaurora.org>
Cc: Olof Johansson <olof@lixom.net>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Grant Likely <grant.likely@linaro.org>
Cc: Rob Herring <robh+dt@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Sandeep Nair <sandeep_n@ti.com>
Signed-off-by: Santosh Shilimkar <santosh.shilimkar@ti.com>