Commit Graph

5175 Commits

Author SHA1 Message Date
Luc Van Oostenryck
67831edf8a arm64: fix endianness annotation in get_kaslr_seed()
In the flattened device tree format, all integer properties are
in big-endian order.
Here the property "kaslr-seed" is read from the fdt and then
correctly converted to native order (via fdt64_to_cpu()) but the
pointer used for this is not annotated as being for big-endian.

Fix this by declaring the pointer as fdt64_t instead of u64
(fdt64_t being itself typedefed to __be64).

Signed-off-by: Luc Van Oostenryck <luc.vanoostenryck@gmail.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
2017-06-29 16:32:43 +01:00
Luc Van Oostenryck
50a4b05609 arm64: add missing conversion to __wsum in ip_fast_csum()
ARM64 implementation of ip_fast_csum() do most of the work
in 128 or 64 bit and call csum_fold() to finalize. csum_fold()
itself take a __wsum argument, to insure that this value is
always a 32bit native-order value.

Fix this by adding the sadly needed '__force' to cast the native
'sum' to the type '__wsum'.

Signed-off-by: Luc Van Oostenryck <luc.vanoostenryck@gmail.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
2017-06-29 16:32:43 +01:00
Luc Van Oostenryck
f0cda7e6dc arm64: fix endianness annotation in acpi_parking_protocol.c
Here both variables 'cpu_id' and 'entry_point' are read via
read[lq]_relaxed(), from a little-endian annotated pointer
and then used as a native endian value.

This is correct since the read[lq]() family of function
internally do a little-to-native endian conversion.

But in this case, it is wrong to declare these variable as
little-endian since there are native ones.

Fix this by changing the declaration of these variables
as 'u32' or 'u64' instead of '__le32' / '__le64'.

Signed-off-by: Luc Van Oostenryck <luc.vanoostenryck@gmail.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
2017-06-29 11:33:15 +01:00
Luc Van Oostenryck
c0d109de4c arm64: use readq() instead of readl() to read 64bit entry_point
Here the entrypoint, declared as a 64 bit integer, is read from
a pointer to 64bit integer but the read is done via readl_relaxed()
which is for 32bit quantities.

All the high bits will thus be lost which change the meaning
of the test against zero done later.

Fix this by using readq_relaxed() instead as it should be for
64bit quantities.

Signed-off-by: Luc Van Oostenryck <luc.vanoostenryck@gmail.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
2017-06-29 11:33:01 +01:00
Luc Van Oostenryck
02129ae5fe arm64: fix endianness annotation for reloc_insn_movw() & reloc_insn_imm()
Here the functions reloc_insn_movw() & reloc_insn_imm() are used
to read, modify and write back ARM instructions, which are always
stored in memory in little-endian order. These values are thus
correctly converted to/from native order but the pointers used to
hold their addresses are declared as for native order values.

Fix this by declaring the pointers as __le32* and remove the
casts that are now unneeded.

Signed-off-by: Luc Van Oostenryck <luc.vanoostenryck@gmail.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
2017-06-29 11:09:39 +01:00
Luc Van Oostenryck
57c138357d arm64: fix endianness annotation for aarch64_insn_write()
aarch64_insn_write() is used to write an instruction.
As on ARM64 in-memory instructions are always stored
in little-endian order, this function, taking the instruction
opcode in native order, correctly convert it to little-endian
before sending it to an helper function __aarch64_insn_write()
which will do the effective write.

This is all good, but the variable and argument holding the
converted value are not annotated for a little-endian value
but left for native values.

Fix this by adjusting the prototype of the helper and
directly using the result of cpu_to_le32() without passing
by an intermediate variable (which was not a distinct one
but the same as the one holding the native value).

Signed-off-by: Luc Van Oostenryck <luc.vanoostenryck@gmail.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
2017-06-29 11:02:42 +01:00
Luc Van Oostenryck
65de142143 arm64: fix endianness annotation in aarch64_insn_read()
The function arch64_insn_read() is used to read an instruction.
On AM64 instructions are always stored in little-endian order
and thus the function correctly do a little-to-native endian
conversion to the value just read.

However, the variable used to hold the value before the conversion
is not declared for a little-endian value but for a native one.

Fix this by using the correct type for the declaration: __le32

Note: This only works because the function reading the value,
      probe_kernel_read((), takes a void pointer and void pointers
      are endian-agnostic. Otherwise probe_kernel_read() should
      also be properly annotated (or worse, need to be specialized).

Signed-off-by: Luc Van Oostenryck <luc.vanoostenryck@gmail.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
2017-06-29 11:02:42 +01:00
Luc Van Oostenryck
6cf5d4af83 arm64: fix endianness annotation in call_undef_hook()
Here we're reading thumb or ARM instructions, which are always
stored in memory in little-endian order. These values are thus
correctly converted to native order but the intermediate value
should be annotated as for little-endian values.

Fix this by declaring the intermediate var as __le32 or __le16.

Signed-off-by: Luc Van Oostenryck <luc.vanoostenryck@gmail.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
2017-06-29 11:02:42 +01:00
Luc Van Oostenryck
a5018b0e6f arm64: fix endianness annotation for debug-monitors.c
Here we're reading thumb or ARM instructions, which are always
stored in memory in little-endian order. These values are thus
correctly converted to native order but the intermediate value
should be annotated as for little-endian values.

Fix this by declaring the intermediate var as __le32 or __le16.

Signed-off-by: Luc Van Oostenryck <luc.vanoostenryck@gmail.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
2017-06-29 11:02:41 +01:00
Will Deacon
3edb1dd13c Merge branch 'aarch64/for-next/ras-apei' into aarch64/for-next/core
Merge in arm64 ACPI RAS support (APEI/GHES) from Tyler Baicar.
2017-06-26 10:54:27 +01:00
Will Deacon
9ad95c46c1 Merge branch 'perf/updates' into aarch64/for-next/core
Merge in arm64 perf updates:

  * xgene system PMUv3 support
  * 16-bit events for ARMv8.1
2017-06-26 10:50:50 +01:00
Luc Van Oostenryck
bcde519e8c arm64: pass endianness info to sparse
ARM64 depends on the macro __AARCH64EB__ being defined or not
to correctly select or define endian-specific macros, structures
or pieces of code.

This macro is predefined by the compiler but sparse knows nothing
about it and thus may pre-process files differently from what
gcc would.

Fix this by passing '-D__AARCH64EL__' or '-D__AARCH64EB__' to
sparse depending of the endianness of the kernel, like defined
by GCC.

Note: In most case it won't change anything since most arm64 use
      little-endian (but an allyesconfig would use big-endian!).

CC: Catalin Marinas <catalin.marinas@arm.com>
CC: Will Deacon <will.deacon@arm.com>
CC: linux-arm-kernel@lists.infradead.org
Signed-off-by: Luc Van Oostenryck <luc.vanoostenryck@gmail.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
2017-06-26 10:15:06 +01:00
Mark Rutland
8486e54d30 arm64: ftrace: fix !CONFIG_ARM64_MODULE_PLTS kernels
When a kernel is built without CONFIG_ARM64_MODULE_PLTS, we don't
generate the expected branch instruction in ftrace_make_nop(). This
means we pass zero (rather than a valid branch) to ftrace_modify_code()
as the expected instruction to validate. This causes us to return
-EINVAL to the core ftrace code for a valid case, resulting in a splat
at boot time.

This was an unintended effect of commit:

  687644209a ("arm64: ftrace: fix building without CONFIG_MODULES")

... which incorrectly moved the generation of the branch instruction
into the ifdef for CONFIG_ARM64_MODULE_PLTS.

This patch fixes the issue by moving the ifdef inside of the relevant
if-else case, and always checking that the branch is in range,
regardless of CONFIG_ARM64_MODULE_PLTS. This ensures that we generate
the expected branch instruction, and also improves our sanity checks.

For consistency, both ftrace_make_nop() and ftrace_make_call() are
updated with this pattern.

Fixes: 687644209a ("arm64: ftrace: fix building without CONFIG_MODULES")
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Reported-by: Marc Zyngier <marc.zyngier@arm.com>
Reviewed-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
2017-06-23 18:21:13 +01:00
Dave Martin
33f082614c arm64: signal: Allow expansion of the signal frame
This patch defines an extra_context signal frame record that can be
used to describe an expanded signal frame, and modifies the context
block allocator and signal frame setup and parsing code to create,
populate, parse and decode this block as necessary.

To avoid abuse by userspace, parse_user_sigframe() attempts to
ensure that:

 * no more than one extra_context is accepted;
 * the extra context data is a sensible size, and properly placed
   and aligned.

The extra_context data is required to start at the first 16-byte
aligned address immediately after the dummy terminator record
following extra_context in rt_sigframe.__reserved[] (as ensured
during signal delivery).  This serves as a sanity-check that the
signal frame has not been moved or copied without taking the extra
data into account.

Signed-off-by: Dave Martin <Dave.Martin@arm.com>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
[will: add __force annotation when casting extra_datap to __user pointer]
Signed-off-by: Will Deacon <will.deacon@arm.com>
2017-06-23 18:20:18 +01:00
Tyler Baicar
621f48e40e arm/arm64: KVM: add guest SEA support
Currently external aborts are unsupported by the guest abort
handling. Add handling for SEAs so that the host kernel reports
SEAs which occur in the guest kernel.

When an SEA occurs in the guest kernel, the guest exits and is
routed to kvm_handle_guest_abort(). Prior to this patch, a print
message of an unsupported FSC would be printed and nothing else
would happen. With this patch, the code gets routed to the APEI
handling of SEAs in the host kernel to report the SEA information.

Signed-off-by: Tyler Baicar <tbaicar@codeaurora.org>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Acked-by: Christoffer Dall <cdall@linaro.org>
Signed-off-by: Will Deacon <will.deacon@arm.com>
2017-06-22 18:22:05 +01:00
Tyler Baicar
7edda0886b acpi: apei: handle SEA notification type for ARMv8
ARM APEI extension proposal added SEA (Synchronous External Abort)
notification type for ARMv8.
Add a new GHES error source handling function for SEA. If an error
source's notification type is SEA, then this function can be registered
into the SEA exception handler. That way GHES will parse and report
SEA exceptions when they occur.
An SEA can interrupt code that had interrupts masked and is treated as
an NMI. To aid this the page of address space for mapping APEI buffers
while in_nmi() is always reserved, and ghes_ioremap_pfn_nmi() is
changed to use the helper methods to find the prot_t to map with in
the same way as ghes_ioremap_pfn_irq().

Signed-off-by: Tyler Baicar <tbaicar@codeaurora.org>
CC: Jonathan (Zhixiong) Zhang <zjzhang@codeaurora.org>
Reviewed-by: James Morse <james.morse@arm.com>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
2017-06-22 18:22:03 +01:00
Tyler Baicar
32015c2356 arm64: exception: handle Synchronous External Abort
SEA exceptions are often caused by an uncorrected hardware
error, and are handled when data abort and instruction abort
exception classes have specific values for their Fault Status
Code.
When SEA occurs, before killing the process, report the error
in the kernel logs.
Update fault_info[] with specific SEA faults so that the
new SEA handler is used.

Signed-off-by: Tyler Baicar <tbaicar@codeaurora.org>
CC: Jonathan (Zhixiong) Zhang <zjzhang@codeaurora.org>
Reviewed-by: James Morse <james.morse@arm.com>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
[will: use NULL instead of 0 when assigning si_addr]
Signed-off-by: Will Deacon <will.deacon@arm.com>
2017-06-22 18:21:46 +01:00
Mark Rutland
8effeaaf2c arm64: dump cpu_hwcaps at panic time
When debugging a kernel panic(), it can be useful to know which CPU
features have been detected by the kernel, as some code paths can depend
on these (and may have been patched at runtime).

This patch adds a notifier to dump the detected CPU caps (as a hex
string) at panic(), when we log other information useful for debugging.
On a Juno R1 system running v4.12-rc5, this looks like:

[  615.431249] Kernel panic - not syncing: Fatal exception in interrupt
[  615.437609] SMP: stopping secondary CPUs
[  615.441872] Kernel Offset: disabled
[  615.445372] CPU features: 0x02086
[  615.448522] Memory Limit: none

A developer can decode this by looking at the corresponding
<asm/cpucaps.h> bits. For example, the above decodes as:

* bit  1: ARM64_WORKAROUND_DEVICE_LOAD_ACQUIRE
* bit  2: ARM64_WORKAROUND_845719
* bit  7: ARM64_WORKAROUND_834220
* bit 13: ARM64_HAS_32BIT_EL0

Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Acked-by: Steve Capper <steve.capper@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Suzuki K Poulose <suzuki.poulose@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
2017-06-22 15:58:20 +01:00
Dave Martin
936eb65ca2 arm64: ptrace: Flush user-RW TLS reg to thread_struct before reading
When reading current's user-writable TLS register (which occurs
when dumping core for native tasks), it is possible that userspace
has modified it since the time the task was last scheduled out.
The new TLS register value is not guaranteed to have been written
immediately back to thread_struct in this case.

As a result, a coredump can capture stale data for this register.
Reading the register for a stopped task via ptrace is unaffected.

For native tasks, this patch explicitly flushes the TPIDR_EL0
register back to thread_struct before dumping when operating on
current, thus ensuring that coredump contents are up to date.  For
compat tasks, the TLS register is not user-writable and so cannot
be out of sync, so no flush is required in compat_tls_get().

Signed-off-by: Dave Martin <Dave.Martin@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
2017-06-22 15:58:20 +01:00
Dave Martin
e1d5a8fb73 arm64: ptrace: Flush FPSIMD regs back to thread_struct before reading
When reading the FPSIMD state of current (which occurs when dumping
core), it is possible that userspace has modified the FPSIMD
registers since the time the task was last scheduled out.  Such
changes are not guaranteed to be reflected immedately in
thread_struct.

As a result, a coredump can contain stale values for these
registers.  Reading the registers of a stopped task via ptrace is
unaffected.

This patch explicitly flushes the CPU state back to thread_struct
before dumping when operating on current, thus ensuring that
coredump contents are up to date.

Signed-off-by: Dave Martin <Dave.Martin@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
2017-06-22 15:58:19 +01:00
Dave Martin
af66b2d88a arm64: ptrace: Fix VFP register dumping in compat coredumps
Currently, VFP registers are omitted from coredumps for compat
processes, due to a bug in the REGSET_COMPAT_VFP regset
implementation.

compat_vfp_get() needs to transfer non-contiguous data from
thread_struct.fpsimd_state, and uses put_user() to handle the
offending trailing word (FPSCR).  This fails when copying to a
kernel address (i.e., kbuf && !ubuf), which is what happens when
dumping core.  As a result, the ELF coredump core code silently
omits the NT_ARM_VFP note from the dump.

It would be possible to work around this with additional special
case code for the put_user(), but since user_regset_copyout() is
explicitly designed to handle this scenario it is cleaner to port
the put_user() to a user_regset_copyout() call, which this patch
does.

Signed-off-by: Dave Martin <Dave.Martin@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
2017-06-22 15:58:19 +01:00
Luc Van Oostenryck
f5d284900c arm64: pass machine size to sparse
When using sparse on the arm64 tree we get many thousands of
warnings like 'constant ... is so big it is unsigned long long'
or 'shift too big (32) for type unsigned long'. This happens
because by default sparse considers the machine as 32bit and
defines the size of the types accordingly.

Fix this by passing the '-m64' flag to sparse so that
sparse can correctly define longs as being 64bit.

CC: Catalin Marinas <catalin.marinas@arm.com>
CC: Will Deacon <will.deacon@arm.com>
CC: linux-arm-kernel@lists.infradead.org
Signed-off-by: Luc Van Oostenryck <luc.vanoostenryck@gmail.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
2017-06-20 16:47:16 +01:00
Dave Martin
bb4322f743 arm64: signal: factor out signal frame record allocation
This patch factors out the allocator for signal frame optional
records into a separate function, to ensure consistency and
facilitate later expansion.

No overrun checking is currently done, because the allocation is in
user memory and anyway the kernel never tries to allocate enough
space in the signal frame yet for an overrun to occur.  This
behaviour will be refined in future patches.

The approach taken in this patch to allocation of the terminator
record is not very clean: this will also be replaced in subsequent
patches.

For future extension, a comment is added in sigcontext.h
documenting the current static allocations in __reserved[].  This
will be important for determining under what circumstances
userspace may or may not see an expanded signal frame.

Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Dave Martin <Dave.Martin@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
2017-06-20 12:42:59 +01:00
Dave Martin
bb4891a6c3 arm64: signal: factor frame layout and population into separate passes
In preparation for expanding the signal frame, this patch refactors
the signal frame setup code in setup_sigframe() into two separate
passes.

The first pass, setup_sigframe_layout(), determines the size of the
signal frame and its internal layout, including the presence and
location of optional records.  The resulting knowledge is used to
allocate and locate the user stack space required for the signal
frame and to determine which optional records to include.

The second pass, setup_sigframe(), is called once the stack frame
is allocated in order to populate it with the necessary context
information.

As a result of these changes, it becomes more natural to represent
locations in the signal frame by a base pointer and an offset,
since the absolute address of each location is not known during the
layout pass.  To be more consistent with this logic,
parse_user_sigframe() is refactored to describe signal frame
locations in a similar way.

This change has no effect on the signal ABI, but will make it
easier to expand the signal frame in future patches.

Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Dave Martin <Dave.Martin@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
2017-06-20 12:42:59 +01:00
Dave Martin
47ccb02868 arm64: signal: Refactor sigcontext parsing in rt_sigreturn
Currently, rt_sigreturn does very limited checking on the
sigcontext coming from userspace.

Future additions to the sigcontext data will increase the potential
for surprises.  Also, it is not clear whether the sigcontext
extension records are supposed to occur in a particular order.

To allow the parsing code to be extended more easily, this patch
factors out the sigcontext parsing into a separate function, and
adds extra checks to validate the well-formedness of the sigcontext
structure.

Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Dave Martin <Dave.Martin@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
2017-06-20 12:42:58 +01:00
Dave Martin
20987de3c2 arm64: signal: split frame link record from sigcontext structure
In order to be able to increase the amount of the data currently
written to the __reserved[] array in the signal frame, it is
necessary to overwrite the locations currently occupied by the
{fp,lr} frame link record pushed at the top of the signal stack.

In order for this to work, this patch detaches the frame link
record from struct rt_sigframe and places it separately at the top
of the signal stack.  This will allow subsequent patches to insert
data between it and __reserved[].

This change relies on the non-ABI status of the placement of the
frame record with respect to struct sigframe: this status is
undocumented, but the placement is not declared or described in the
user headers, and known unwinder implementations (libgcc,
libunwind, gdb) appear not to rely on it.

Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Dave Martin <Dave.Martin@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
2017-06-20 12:42:58 +01:00
Ard Biesheuvel
8f36094802 arm64: mm: select CONFIG_ARCH_PROC_KCORE_TEXT
To avoid issues with the /proc/kcore code getting confused about the
kernels block mappings in the VMALLOC region, enable the existing
facility that describes the [_text, _end) interval as a separate
KCORE_TEXT region, which supersedes the KCORE_VMALLOC region that
it intersects with on arm64.

Reported-by: Tan Xiaojun <tanxiaojun@huawei.com>
Tested-by: Tan Xiaojun <tanxiaojun@huawei.com>
Tested-by: Mark Rutland <mark.rutland@arm.com>
Acked-by: Mark Rutland <mark.rutland@arm.com>
Reviewed-by: Laura Abbott <labbott@redhat.com>
Reviewed-by: Jiri Olsa <jolsa@kernel.org>
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Will Deacon <will.deacon@arm.com>
2017-06-20 12:42:58 +01:00
Dustin Brown
e27c7fa015 arm64: Export save_stack_trace_tsk()
The kernel watchdog is a great debugging tool for finding tasks that
consume a disproportionate amount of CPU time in contiguous chunks. One
can imagine building a similar watchdog for arbitrary driver threads
using save_stack_trace_tsk() and print_stack_trace(). However, this is
not viable for dynamically loaded driver modules on ARM platforms
because save_stack_trace_tsk() is not exported for those architectures.
Export save_stack_trace_tsk() for the ARM64 architecture to align with
x86 and support various debugging use cases such as arbitrary driver
thread watchdog timers.

Signed-off-by: Dustin Brown <dustinb@codeaurora.org>
Signed-off-by: Will Deacon <will.deacon@arm.com>
2017-06-15 11:52:35 +01:00
Lorenzo Pieralisi
c6bb8f89fa ARM64/irqchip: Update ACPI_IORT symbol selection logic
ACPI IORT is an ACPI addendum to describe the connection topology of
devices with IOMMUs and interrupt controllers on ARM64 ACPI systems.

Currently the ACPI IORT Kbuild symbol is selected whenever the Kbuild
symbol ARM_GIC_V3_ITS is enabled, which in turn is selected by ARM64
Kbuild defaults. This makes the logic behind ACPI_IORT selection a bit
twisted and not easy to follow. On ARM64 systems enabling ACPI the
kbuild symbol ACPI_IORT should always be selected in that it is a kernel
layer provided to the ARM64 arch code to parse and enable ACPI firmware
bindings.

Make the ACPI_IORT selection explicit in ARM64 Kbuild and remove the
selection from ARM_GIC_V3_ITS entry, making the ACPI_IORT selection
logic clearer to follow.

Acked-by: Hanjun Guo <hanjun.guo@linaro.org>
Signed-off-by: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Hanjun Guo <hanjun.guo@linaro.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
2017-06-15 11:41:21 +01:00
Olav Haugan
577dfe16b8 arm64/dma-mapping: Remove extraneous null-pointer checks
The current null-pointer check in __dma_alloc_coherent and
__dma_free_coherent is not needed anymore since the
__dma_alloc/__dma_free functions won't be called if !dev (dummy ops will
be called instead).

Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Olav Haugan <ohaugan@codeaurora.org>
Signed-off-by: Will Deacon <will.deacon@arm.com>
2017-06-15 11:40:22 +01:00
Jonathan (Zhixiong) Zhang
c484f2564d arm64: kconfig: allow support for memory failure handling
Declare ARCH_SUPPORTS_MEMORY_FAILURE, as arm64 does support
memory failure recovery attempt.

Signed-off-by: Jonathan (Zhixiong) Zhang <zjzhang@codeaurora.org>
Signed-off-by: Tyler Baicar <tbaicar@codeaurora.org>
(Dropped changes to ACPI APEI Kconfig and updated commit log)
Signed-off-by: Punit Agrawal <punit.agrawal@arm.com>
Acked-by: Steve Capper <steve.capper@arm.com>
Tested-by: Manoj Iyer <manoj.iyer@canonical.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
2017-06-12 16:04:29 +01:00
Punit Agrawal
0e3a902639 arm64: mm: Update perf accounting to handle poison faults
Re-organise the perf accounting for fault handling in preparation for
enabling handling of hardware poison faults in subsequent commits. The
change updates perf accounting to be inline with the behaviour on
x86.

With this update, the perf fault accounting -

  * Always report PERF_COUNT_SW_PAGE_FAULTS

  * Doesn't report anything else for VM_FAULT_ERROR (which includes
    hwpoison faults)

  * Reports PERF_COUNT_SW_PAGE_FAULTS_MAJ if it's a major
    fault (indicated by VM_FAULT_MAJOR)

  * Otherwise, reports PERF_COUNT_SW_PAGE_FAULTS_MIN

Signed-off-by: Punit Agrawal <punit.agrawal@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
2017-06-12 16:04:29 +01:00
Jonathan (Zhixiong) Zhang
e7c600f149 arm64: hwpoison: add VM_FAULT_HWPOISON[_LARGE] handling
Add VM_FAULT_HWPOISON[_LARGE] handling to the arm64 page fault
handler. Handling of VM_FAULT_HWPOISON[_LARGE] is very similar
to VM_FAULT_OOM, the only difference is that a different si_code
(BUS_MCEERR_AR) is passed to user space and si_addr_lsb field is
initialized.

Signed-off-by: Jonathan (Zhixiong) Zhang <zjzhang@codeaurora.org>
Signed-off-by: Tyler Baicar <tbaicar@codeaurora.org>
(fix new __do_user_fault call-site)
Signed-off-by: Punit Agrawal <punit.agrawal@arm.com>
Acked-by: Steve Capper <steve.capper@arm.com>
Tested-by: Manoj Iyer <manoj.iyer@canonical.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
2017-06-12 16:04:29 +01:00
Punit Agrawal
f02ab08afb arm64: hugetlb: Fix huge_pte_offset to return poisoned page table entries
When memory failure is enabled, a poisoned hugepage pte is marked as a
swap entry. huge_pte_offset() does not return the poisoned page table
entries when it encounters PUD/PMD hugepages.

This behaviour of huge_pte_offset() leads to error such as below when
munmap is called on poisoned hugepages.

[  344.165544] mm/pgtable-generic.c:33: bad pmd 000000083af00074.

Fix huge_pte_offset() to return the poisoned pte which is then
appropriately handled by the generic layer code.

Signed-off-by: Punit Agrawal <punit.agrawal@arm.com>
Acked-by: Steve Capper <steve.capper@arm.com>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Cc: David Woods <dwoods@mellanox.com>
Tested-by: Manoj Iyer <manoj.iyer@canonical.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
2017-06-12 16:04:28 +01:00
Will Deacon
687644209a arm64: ftrace: fix building without CONFIG_MODULES
When CONFIG_MODULES is disabled, we cannot dereference a module pointer:

arch/arm64/kernel/ftrace.c: In function 'ftrace_make_call':
arch/arm64/kernel/ftrace.c:107:36: error: dereferencing pointer to incomplete type 'struct module'
   trampoline = (unsigned long *)mod->arch.ftrace_trampoline;

Also, the within_module() function is not defined:

arch/arm64/kernel/ftrace.c: In function 'ftrace_make_nop':
arch/arm64/kernel/ftrace.c:171:8: error: implicit declaration of function 'within_module'; did you mean 'init_module'? [-Werror=implicit-function-declaration]

This addresses both by adding replacing the IS_ENABLED(CONFIG_ARM64_MODULE_PLTS)
checks with #ifdef versions.

Fixes: e71a4e1beb ("arm64: ftrace: add support for far branches to dynamic ftrace")
Reported-by: Arnd Bergmann <arnd@arndb.de>
Acked-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Will Deacon <will.deacon@arm.com>
2017-06-12 14:43:25 +01:00
Will Deacon
1eb34b6e51 arm64: fault: Print info about page table structure when dumping pte
Whilst debugging a remote crash, I noticed that show_pte is unhelpful
when it comes to describing the structure of the page table being walked.
This is easily fixed by printing out the page table (swapper vs user),
page size and virtual address size when displaying the PGD address.

Acked-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
2017-06-12 12:33:54 +01:00
Kristina Martsenko
83016b2042 arm64: mm: print file name of faulting vma
Print out the name of the file associated with the vma that faulted.
This is usually the executable or shared library name. We already print
out the task name, but also printing the library name is useful for
pinpointing bugs to libraries.

Also print the base address and size of the vma, which together with the
PC (printed by __show_regs) gives the offset into the library.

Fault prints now look like:
test[2361]: unhandled level 2 translation fault (11) at 0x00000012, esr 0x92000006, in libfoo.so[ffffa0145000+1000]

This is already done on x86, for more details see commit 03252919b7
("x86: print which shared library/executable faulted in segfault etc.
messages v3").

Acked-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Kristina Martsenko <kristina.martsenko@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
2017-06-12 12:33:37 +01:00
Kristina Martsenko
bf396c09c2 arm64: mm: don't print out page table entries on EL0 faults
When we take a fault from EL0 that can't be handled, we print out the
page table entries associated with the faulting address. This allows
userspace to print out any current page table entries, including kernel
(TTBR1) entries. Exposing kernel mappings like this could pose a
security risk, so don't print out page table information on EL0 faults.
(But still print it out for EL1 faults.) This also follows the same
behaviour as x86, printing out page table entries on kernel mode faults
but not user mode faults.

Acked-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Kristina Martsenko <kristina.martsenko@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
2017-06-12 12:33:37 +01:00
Kristina Martsenko
67ce16ec15 arm64: mm: print out correct page table entries
When we take a fault that can't be handled, we print out the page table
entries associated with the faulting address. In some cases we currently
print out the wrong entries. For a faulting TTBR1 address, we sometimes
print out TTBR0 table entries instead, and for a faulting TTBR0 address
we sometimes print out TTBR1 table entries. Fix this by choosing the
tables based on the faulting address.

Acked-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Kristina Martsenko <kristina.martsenko@arm.com>
[will: zero-extend addrs to 64-bit, don't walk swapper w/ TTBR0 addr]
Signed-off-by: Will Deacon <will.deacon@arm.com>
2017-06-12 12:33:37 +01:00
Ard Biesheuvel
e71a4e1beb arm64: ftrace: add support for far branches to dynamic ftrace
Currently, dynamic ftrace support in the arm64 kernel assumes that all
core kernel code is within range of ordinary branch instructions that
occur in module code, which is usually the case, but is no longer
guaranteed now that we have support for module PLTs and address space
randomization.

Since on arm64, all patching of branch instructions involves function
calls to the same entry point [ftrace_caller()], we can emit the modules
with a trampoline that has unlimited range, and patch both the trampoline
itself and the branch instruction to redirect the call via the trampoline.

Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
[will: minor clarification to smp_wmb() comment]
Signed-off-by: Will Deacon <will.deacon@arm.com>
2017-06-07 11:52:02 +01:00
Ard Biesheuvel
f8af0b364e arm64: ftrace: don't validate branch via PLT in ftrace_make_nop()
When turning branch instructions into NOPs, we attempt to validate the
action by comparing the old value at the call site with the opcode of
a direct relative branch instruction pointing at the old target.

However, these call sites are statically initialized to call _mcount(),
and may be redirected via a PLT entry if the module is loaded far away
from the kernel text, leading to false negatives and spurious errors.

So skip the validation if CONFIG_ARM64_MODULE_PLTS is configured.

Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Will Deacon <will.deacon@arm.com>
2017-06-07 11:50:34 +01:00
Kees Cook
dbbb08f500 arm64, vdso: Define vdso_{start,end} as array
Adjust vdso_{start|end} to be char arrays to avoid compile-time analysis
that flags "too large" memcmp() calls with CONFIG_FORTIFY_SOURCE.

Cc: Jisheng Zhang <jszhang@marvell.com>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Suggested-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Kees Cook <keescook@chromium.org>
Signed-off-by: Will Deacon <will.deacon@arm.com>
2017-06-06 17:49:55 +01:00
Will Deacon
8dd0ee651d arm64: cpufeature: Fix CPU_OUT_OF_SPEC taint for uniform systems
Commit 3fde2999fa ("arm64: cpufeature: Don't dump useless backtrace on
CPU_OUT_OF_SPEC") changed the cpufeature detection code to use add_taint
instead of WARN_TAINT_ONCE when detecting a heterogeneous system with
mismatched feature support. Unfortunately, this resulted in all systems
getting the taint, regardless of any feature mismatch.

This patch fixes the problem by conditionalising the taint on detecting
a feature mismatch.

Acked-by: Mark Rutland <mark.rutland@arm.com>
Reported-by: Heiner Kallweit <hkallweit1@gmail.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
2017-06-05 11:40:23 +01:00
Linus Torvalds
b939c51445 ACPI-related fixes for arm64:
- GICC MADT entry validity check fix
 
 - Skip IRQ registration with pmu=off in an ACPI guest
 
 - struct acpi_pci_root_ops freeing on error path
 -----BEGIN PGP SIGNATURE-----
 Version: GnuPG v1
 
 iQIcBAABAgAGBQJZMZyaAAoJEGvWsS0AyF7xIQIQAIdbwi6/NWKAa3p7ZOte8hHz
 wTiDbW0swAdWHxgwrSkIJLHWsEKj1Tc2xvTgrWyc1ygxVh6GipgRyJtVVgcLyo00
 2vpxp7e3JOHBzKEbapDjAI4vMV0IARa9GCD5+Zbd0TXC8cxlhrWW4K94P5KjNbOf
 piTKvXrudCPU+plwaNHjROgiZmaKPV4H9Nwlo9AQ+cYHLD8zUn4Xu6vnZsYS40pZ
 WVJ5a9LDD7PRfG4ox1Ie/b8G1DlT7sqv4j/HRXXVBEt9NtOAnKheaKMarolhGgzO
 5OlBIEiR+T7HZrSKCrvpsZZF2WhKIZHBuiwXNOHj5yKiU6LTyT2gZ0R5+EA9V9e7
 h447uf4DyqxlK4vNvtn+JL2pBv8oVJHAuxinp2PW1N8IriRU0XyGnWV4nIw9QkN9
 H+i8pDGcXapo64oIPasnTNB0rTIOd5sdQ41fKKE/lgIrOeGHhIVbgHGrJ2yp/0yu
 WUpIsMZY0Ng5yTyxeiq3aLjOiaAVevsBumoievaG2IUbIBEfxk+NGMFFTfJKjvxZ
 JFswluTk/SydX325E1QDdhiWCpeeeGTQTFgjLNK9hVCOhtYmupROD/0vg5e20Ldh
 tWADqnOyvrfMZoetp9kgyh3ElHN1wxBint3w7NgB5oPTEjg7CFywQeEvTc6ZcB6X
 yjf8lTnbnf3IrVARYuk2
 =uGlu
 -----END PGP SIGNATURE-----

Merge tag 'arm64-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux

Pull arm64 fixes from Catalin Marinas:
 "ACPI-related fixes for arm64:

   - GICC MADT entry validity check fix

   - Skip IRQ registration with pmu=off in an ACPI guest

   - struct acpi_pci_root_ops freeing on error path"

* tag 'arm64-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux:
  ARM64/ACPI: Fix BAD_MADT_GICC_ENTRY() macro implementation
  drivers/perf: arm_pmu_acpi: avoid perf IRQ init when guest PMU is off
  ARM64: PCI: Fix struct acpi_pci_root_ops allocation failure path
2017-06-02 12:06:27 -07:00
Lorenzo Pieralisi
cb7cf772d8 ARM64/ACPI: Fix BAD_MADT_GICC_ENTRY() macro implementation
The BAD_MADT_GICC_ENTRY() macro checks if a GICC MADT entry passes
muster from an ACPI specification standpoint. Current macro detects the
MADT GICC entry length through ACPI firmware version (it changed from 76
to 80 bytes in the transition from ACPI 5.1 to ACPI 6.0 specification)
but always uses (erroneously) the ACPICA (latest) struct (ie struct
acpi_madt_generic_interrupt - that is 80-bytes long) length to check if
the current GICC entry memory record exceeds the MADT table end in
memory as defined by the MADT table header itself, which may result in
false negatives depending on the ACPI firmware version and how the MADT
entries are laid out in memory (ie on ACPI 5.1 firmware MADT GICC
entries are 76 bytes long, so by adding 80 to a GICC entry start address
in memory the resulting address may well be past the actual MADT end,
triggering a false negative).

Fix the BAD_MADT_GICC_ENTRY() macro by reshuffling the condition checks
and update them to always use the firmware version specific MADT GICC
entry length in order to carry out boundary checks.

Fixes: b6cfb27737 ("ACPI / ARM64: add BAD_MADT_GICC_ENTRY() macro")
Reported-by: Julien Grall <julien.grall@arm.com>
Acked-by: Will Deacon <will.deacon@arm.com>
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
Cc: Julien Grall <julien.grall@arm.com>
Cc: Hanjun Guo <hanjun.guo@linaro.org>
Cc: Al Stone <ahs3@redhat.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2017-06-02 15:13:52 +01:00
Ard Biesheuvel
1151f838cb arm64: kernel: restrict /dev/mem read() calls to linear region
When running lscpu on an AArch64 system that has SMBIOS version 2.0
tables, it will segfault in the following way:

  Unable to handle kernel paging request at virtual address ffff8000bfff0000
  pgd = ffff8000f9615000
  [ffff8000bfff0000] *pgd=0000000000000000
  Internal error: Oops: 96000007 [#1] PREEMPT SMP
  Modules linked in:
  CPU: 0 PID: 1284 Comm: lscpu Not tainted 4.11.0-rc3+ #103
  Hardware name: QEMU QEMU Virtual Machine, BIOS 0.0.0 02/06/2015
  task: ffff8000fa78e800 task.stack: ffff8000f9780000
  PC is at __arch_copy_to_user+0x90/0x220
  LR is at read_mem+0xcc/0x140

This is caused by the fact that lspci issues a read() on /dev/mem at the
offset where it expects to find the SMBIOS structure array. However, this
region is classified as EFI_RUNTIME_SERVICE_DATA (as per the UEFI spec),
and so it is omitted from the linear mapping.

So let's restrict /dev/mem read/write access to those areas that are
covered by the linear region.

Reported-by: Alexander Graf <agraf@suse.de>
Fixes: 4dffbfc48d ("arm64/efi: mark UEFI reserved regions as MEMBLOCK_NOMAP")
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Will Deacon <will.deacon@arm.com>
2017-06-01 18:26:26 +01:00
Shaokun Zhang
fe7296e192 arm64: perf: Extend event config for ARMv8.1
Perf has supported ARMv8.1 feature with 16-bit evtCount filed [see c210ae8
arm64: perf: Extend event mask for ARMv8.1], event config should be
extended to 16-bit too, otherwise, if use -e event_name whose event_code
is more than 0x3ff, pmu_config_term will return -EINVAL because function
pmu_format_max_value depends on event config.

This patch extends event config to 16-bit.

Signed-off-by: Shaokun Zhang <zhangshaokun@hisilicon.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
2017-05-30 12:15:14 +01:00
Lorenzo Pieralisi
db46a72b97 ARM64/PCI: Set root bus NUMA node on ACPI systems
PCI core requires the NUMA node for the struct pci_host_bridge.dev to
be set by using the pcibus_to_node(struct pci_bus*) API, that on ARM64
systems relies on the struct pci_host_bridge->bus.dev NUMA node.

The struct pci_host_bridge.dev NUMA node is then propagated through
the PCI device hierarchy as PCI devices (and bridges) are enumerated
under it.

Therefore, in order to set-up the PCI NUMA hierarchy appropriately, the
struct pci_host_bridge->bus.dev NUMA node must be set before core
code calls pcibus_to_node(struct pci_bus*) on it so that PCI core can
retrieve the NUMA node for the struct pci_host_bridge.dev device and can
propagate it through the PCI bus tree.

On ARM64 ACPI based systems the struct pci_host_bridge->bus.dev NUMA
node can be set-up in pcibios_root_bridge_prepare() by parsing the root
bridge ACPI device firmware binding.

Add code to the pcibios_root_bridge_prepare() that, when booting with
ACPI, parse the root bridge ACPI device companion NUMA binding and set
the corresponding struct pci_host_bridge->bus.dev NUMA node
appropriately.

Cc: Bjorn Helgaas <bhelgaas@google.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Reviewed-by: Robert Richter <rrichter@cavium.com>
Tested-by: Robert Richter <rrichter@cavium.com>
Signed-off-by: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
2017-05-30 11:45:21 +01:00
Will Deacon
5f16a046f8 arm64: futex: Fix undefined behaviour with FUTEX_OP_OPARG_SHIFT usage
FUTEX_OP_OPARG_SHIFT instructs the futex code to treat the 12-bit oparg
field as a shift value, potentially leading to a left shift value that
is negative or with an absolute value that is significantly larger then
the size of the type. UBSAN chokes with:

================================================================================
UBSAN: Undefined behaviour in ./arch/arm64/include/asm/futex.h:60:13
shift exponent -1 is negative
CPU: 1 PID: 1449 Comm: syz-executor0 Not tainted 4.11.0-rc4-00005-g977eb52-dirty #11
Hardware name: linux,dummy-virt (DT)
Call trace:
[<ffff200008094778>] dump_backtrace+0x0/0x538 arch/arm64/kernel/traps.c:73
[<ffff200008094cd0>] show_stack+0x20/0x30 arch/arm64/kernel/traps.c:228
[<ffff200008c194a8>] __dump_stack lib/dump_stack.c:16 [inline]
[<ffff200008c194a8>] dump_stack+0x120/0x188 lib/dump_stack.c:52
[<ffff200008cc24b8>] ubsan_epilogue+0x18/0x98 lib/ubsan.c:164
[<ffff200008cc3098>] __ubsan_handle_shift_out_of_bounds+0x250/0x294 lib/ubsan.c:421
[<ffff20000832002c>] futex_atomic_op_inuser arch/arm64/include/asm/futex.h:60 [inline]
[<ffff20000832002c>] futex_wake_op kernel/futex.c:1489 [inline]
[<ffff20000832002c>] do_futex+0x137c/0x1740 kernel/futex.c:3231
[<ffff200008320504>] SYSC_futex kernel/futex.c:3281 [inline]
[<ffff200008320504>] SyS_futex+0x114/0x268 kernel/futex.c:3249
[<ffff200008084770>] el0_svc_naked+0x24/0x28
================================================================================
syz-executor1 uses obsolete (PF_INET,SOCK_PACKET)
sock: process `syz-executor0' is using obsolete setsockopt SO_BSDCOMPAT

This patch attempts to fix some of this by:

  * Making encoded_op an unsigned type, so we can shift it left even if
    the top bit is set.

  * Casting to signed prior to shifting right when extracting oparg
    and cmparg

  * Consider only the bottom 5 bits of oparg when using it as a left-shift
    value.

Whilst I think this catches all of the issues, I'd much prefer to remove
this stuff, as I think it's unused and the bugs are copy-pasted between
a bunch of architectures.

Reviewed-by: Robin Murphy <robin.murphy@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
2017-05-30 11:07:42 +01:00
Kefeng Wang
690e95dd4d arm64: check return value of of_flat_dt_get_machine_name
It's useless to print machine name and setup arch-specific system
identifiers if of_flat_dt_get_machine_name() return NULL, especially
when ACPI-based boot.

Reviewed-by: Geert Uytterhoeven <geert+renesas@glider.be>
Signed-off-by: Kefeng Wang <wangkefeng.wang@huawei.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
2017-05-30 11:07:42 +01:00