Report to the user ifindex and namespace information of offloaded
programs. If device has disappeared return -ENODEV. Specify the
namespace using dev/inode combination.
CC: Eric W. Biederman <ebiederm@xmission.com>
Signed-off-by: Jakub Kicinski <jakub.kicinski@netronome.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Bound programs are quite useless after their device disappears.
They are simply waiting for reference count to go to zero,
don't list them in BPF_PROG_GET_NEXT_ID by freeing their ID
early.
Note that orphaned offload programs will return -ENODEV on
BPF_OBJ_GET_INFO_BY_FD so user will never see ID 0.
Signed-off-by: Jakub Kicinski <jakub.kicinski@netronome.com>
Reviewed-by: Quentin Monnet <quentin.monnet@netronome.com>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
All bpf offload operations should now be under bpf_devs_lock,
it's safe to free and clear the entire offload structure,
not only the netdev pointer.
__bpf_prog_offload_destroy() will no longer be called multiple
times.
Suggested-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Jakub Kicinski <jakub.kicinski@netronome.com>
Reviewed-by: Quentin Monnet <quentin.monnet@netronome.com>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
To allow verifier instruction callbacks without any extra locking
NETDEV_UNREGISTER notification would wait on a waitqueue for verifier
to finish. This design decision was made when rtnl lock was providing
all the locking. Use the read/write lock instead and remove the
workqueue.
Verifier will now call into the offload code, so dev_ops are moved
to offload structure. Since verifier calls are all under
bpf_prog_is_dev_bound() we no longer need static inline implementations
to please builds with CONFIG_NET=n.
Signed-off-by: Jakub Kicinski <jakub.kicinski@netronome.com>
Reviewed-by: Quentin Monnet <quentin.monnet@netronome.com>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
We currently use aux->offload to indicate that program is bound
to a specific device. This forces us to keep the offload structure
around even after the device is gone. Add a bool member to
struct bpf_prog_aux to indicate if offload was requested.
Suggested-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Jakub Kicinski <jakub.kicinski@netronome.com>
Reviewed-by: Quentin Monnet <quentin.monnet@netronome.com>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
We don't need the RTNL lock for all operations on offload state.
We only need to hold it around ndo calls. The device offload
initialization doesn't require it. The soon-to-come querying
of the offload info will only need it partially. We will also
be able to remove the waitqueue in following patches.
Use struct rw_semaphore because map offload will require sleeping
with the semaphore held for read.
Suggested-by: Kirill Tkhai <ktkhai@virtuozzo.com>
Signed-off-by: Jakub Kicinski <jakub.kicinski@netronome.com>
Reviewed-by: Quentin Monnet <quentin.monnet@netronome.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
net/ipv6/ip6_gre.c is a case of parallel adds.
include/trace/events/tcp.h is a little bit more tricky. The removal
of in-trace-macro ifdefs in 'net' paralleled with moving
show_tcp_state_name and friends over to include/trace/events/sock.h
in 'net-next'.
Signed-off-by: David S. Miller <davem@davemloft.net>
Daniel Borkmann says:
====================
pull-request: bpf-next 2017-12-28
The following pull-request contains BPF updates for your *net-next* tree.
The main changes are:
1) Fix incorrect state pruning related to recognition of zero initialized
stack slots, where stacksafe exploration would mistakenly return a
positive pruning verdict too early ignoring other slots, from Gianluca.
2) Various BPF to BPF calls related follow-up fixes. Fix an off-by-one
in maximum call depth check, and rework maximum stack depth tracking
logic to fix a bypass of the total stack size check reported by Jann.
Also fix a bug in arm64 JIT where prog->jited_len was uninitialized.
Addition of various test cases to BPF selftests, from Alexei.
3) Addition of a BPF selftest to test_verifier that is related to BPF to
BPF calls which demonstrates a late caller stack size increase and
thus out of bounds access. Fixed above in 2). Test case from Jann.
4) Addition of correlating BPF helper calls, BPF to BPF calls as well
as BPF maps to bpftool xlated dump in order to allow for better
BPF program introspection and debugging, from Daniel.
5) Fixing several bugs in BPF to BPF calls kallsyms handling in order
to get it actually to work for subprogs, from Daniel.
6) Extending sparc64 JIT support for BPF to BPF calls and fix a couple
of build errors for libbpf on sparc64, from David.
7) Allow narrower context access for BPF dev cgroup typed programs in
order to adapt to LLVM code generation. Also adjust memlock rlimit
in the test_dev_cgroup BPF selftest, from Yonghong.
8) Add netdevsim Kconfig entry to BPF selftests since test_offload.py
relies on netdevsim device being available, from Jakub.
9) Reduce scope of xdp_do_generic_redirect_map() to being static,
from Xiongwei.
10) Minor cleanups and spelling fixes in BPF verifier, from Colin.
====================
Signed-off-by: David S. Miller <davem@davemloft.net>
were getting corrupted. In the process I found three bugs. One was the
culprit, but the other two scared me. After deeper investigation, they
were not as major as I thought they were, due to a signed compared to
an unsigned that prevented a negative number from doing actual harm.
The two bigger bugs:
- Mask the ring buffer data page length. There are data flags at the
high bits of the length field. These were not cleared via the
length function, and the length could return a negative number.
(Although the number returned was unsigned, but was assigned to a
signed number) Luckily, this value was compared to PAGE_SIZE which is
unsigned and kept it from entering the path that could have caused damage.
- Check the page usage before reusing the ring buffer reader page.
TCP increments the page ref when passing the page off to the network.
The page is passed back to the ring buffer for use on free. But
the page could still be in use by the TCP stack.
Minor bugs:
- Related to the first bug. No need to clear out the unused ring buffer
data before sending to user space. It is now done by the ring buffer
code itself.
- Reset pointers after free on error path. There were some cases in
the error path that pointers were freed but not set to NULL, and could
have them freed again, having a pointer freed twice.
-----BEGIN PGP SIGNATURE-----
iQHIBAABCgAyFiEEPm6V/WuN2kyArTUe1a05Y9njSUkFAlpD9O8UHHJvc3RlZHRA
Z29vZG1pcy5vcmcACgkQ1a05Y9njSUnC0Av9EqzJjJXlZuleCSiuh1umx33esgZv
gOYTOXH9QLdKFHLpwVzeCsrhrLXNhbUfrGMQ0ERcpvVacHCKVwRyzx0nfI5W3rbt
9sCsNsVR2SCVpzSWOvP9iJM0J/myFdZtYmGLC2BBJerXZFwl9Ciw+1bF7MFprb4v
6r+49YrYMAR/H/obT3Aoh/XCOz0W0czk9ECGPhuwqAjWoNPwSgpbTdqpR92bJf85
hGYppIX9d+4Gv4pZ2lfXDKrgiAPvHpp5I/znLDY8cG7GhcBjyXaetBb+XlfHI6D4
jTS59f13CqcEhyFE5x2qwQBr9TTh043EKviixDud+nI1L7aNhDIBtb6tYrAmGWWh
Rj1268gFjspi3pYTjI8cHXXCJSdQiAqFesiFLviU1c17PgjbBAnmkcsFSgOPxHqc
j225jravcXtUqQq5J0qKR6Sn3LObfYJQk6tqpN6gWN76P75QgUms5W4+/NiEI0a3
0LVjapxHZkDEYNRGmI+d0CvIJ3BWyb781Siw
=xhPf
-----END PGP SIGNATURE-----
Merge tag 'trace-v4.15-rc4' of git://git.kernel.org/pub/scm/linux/kernel/git/rostedt/linux-trace
Pull tracing fixes from Steven Rostedt:
"While doing tests on tracing over the network, I found that the
packets were getting corrupted.
In the process I found three bugs.
One was the culprit, but the other two scared me. After deeper
investigation, they were not as major as I thought they were, due to a
signed compared to an unsigned that prevented a negative number from
doing actual harm.
The two bigger bugs:
- Mask the ring buffer data page length. There are data flags at the
high bits of the length field. These were not cleared via the
length function, and the length could return a negative number.
(Although the number returned was unsigned, but was assigned to a
signed number) Luckily, this value was compared to PAGE_SIZE which
is unsigned and kept it from entering the path that could have
caused damage.
- Check the page usage before reusing the ring buffer reader page.
TCP increments the page ref when passing the page off to the
network. The page is passed back to the ring buffer for use on
free. But the page could still be in use by the TCP stack.
Minor bugs:
- Related to the first bug. No need to clear out the unused ring
buffer data before sending to user space. It is now done by the
ring buffer code itself.
- Reset pointers after free on error path. There were some cases in
the error path that pointers were freed but not set to NULL, and
could have them freed again, having a pointer freed twice"
* tag 'trace-v4.15-rc4' of git://git.kernel.org/pub/scm/linux/kernel/git/rostedt/linux-trace:
tracing: Fix possible double free on failure of allocating trace buffer
tracing: Fix crash when it fails to alloc ring buffer
ring-buffer: Do no reuse reader page if still in use
tracing: Remove extra zeroing out of the ring buffer page
ring-buffer: Mask out the info bits when returning buffer page length
Jing Xia and Chunyan Zhang reported that on failing to allocate part of the
tracing buffer, memory is freed, but the pointers that point to them are not
initialized back to NULL, and later paths may try to free the freed memory
again. Jing and Chunyan fixed one of the locations that does this, but
missed a spot.
Link: http://lkml.kernel.org/r/20171226071253.8968-1-chunyan.zhang@spreadtrum.com
Cc: stable@vger.kernel.org
Fixes: 737223fbca ("tracing: Consolidate buffer allocation code")
Reported-by: Jing Xia <jing.xia@spreadtrum.com>
Reported-by: Chunyan Zhang <chunyan.zhang@spreadtrum.com>
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Double free of the ring buffer happens when it fails to alloc new
ring buffer instance for max_buffer if TRACER_MAX_TRACE is configured.
The root cause is that the pointer is not set to NULL after the buffer
is freed in allocate_trace_buffers(), and the freeing of the ring
buffer is invoked again later if the pointer is not equal to Null,
as:
instance_mkdir()
|-allocate_trace_buffers()
|-allocate_trace_buffer(tr, &tr->trace_buffer...)
|-allocate_trace_buffer(tr, &tr->max_buffer...)
// allocate fail(-ENOMEM),first free
// and the buffer pointer is not set to null
|-ring_buffer_free(tr->trace_buffer.buffer)
// out_free_tr
|-free_trace_buffers()
|-free_trace_buffer(&tr->trace_buffer);
//if trace_buffer is not null, free again
|-ring_buffer_free(buf->buffer)
|-rb_free_cpu_buffer(buffer->buffers[cpu])
// ring_buffer_per_cpu is null, and
// crash in ring_buffer_per_cpu->pages
Link: http://lkml.kernel.org/r/20171226071253.8968-1-chunyan.zhang@spreadtrum.com
Cc: stable@vger.kernel.org
Fixes: 737223fbca ("tracing: Consolidate buffer allocation code")
Signed-off-by: Jing Xia <jing.xia@spreadtrum.com>
Signed-off-by: Chunyan Zhang <chunyan.zhang@spreadtrum.com>
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
To free the reader page that is allocated with ring_buffer_alloc_read_page(),
ring_buffer_free_read_page() must be called. For faster performance, this
page can be reused by the ring buffer to avoid having to free and allocate
new pages.
The issue arises when the page is used with a splice pipe into the
networking code. The networking code may up the page counter for the page,
and keep it active while sending it is queued to go to the network. The
incrementing of the page ref does not prevent it from being reused in the
ring buffer, and this can cause the page that is being sent out to the
network to be modified before it is sent by reading new data.
Add a check to the page ref counter, and only reuse the page if it is not
being used anywhere else.
Cc: stable@vger.kernel.org
Fixes: 73a757e631 ("ring-buffer: Return reader page back into existing ring buffer")
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
The ring_buffer_read_page() takes care of zeroing out any extra data in the
page that it returns. There's no need to zero it out again from the
consumer. It was removed from one consumer of this function, but
read_buffers_splice_read() did not remove it, and worse, it contained a
nasty bug because of it.
Cc: stable@vger.kernel.org
Fixes: 2711ca237a ("ring-buffer: Move zeroing out excess in page to ring buffer code")
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Two info bits were added to the "commit" part of the ring buffer data page
when returned to be consumed. This was to inform the user space readers that
events have been missed, and that the count may be stored at the end of the
page.
What wasn't handled, was the splice code that actually called a function to
return the length of the data in order to zero out the rest of the page
before sending it up to user space. These data bits were returned with the
length making the value negative, and that negative value was not checked.
It was compared to PAGE_SIZE, and only used if the size was less than
PAGE_SIZE. Luckily PAGE_SIZE is unsigned long which made the compare an
unsigned compare, meaning the negative size value did not end up causing a
large portion of memory to be randomly zeroed out.
Cc: stable@vger.kernel.org
Fixes: 66a8cb95ed ("ring-buffer: Add place holder recording of dropped events")
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
fix off by one error in max call depth check
and add a test
Fixes: f4d7e40a5b ("bpf: introduce function calls (verification)")
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Instead of computing max stack depth for current call chain
during the main verifier pass track stack depth of each
function independently and after do_check() is done do
another pass over all instructions analyzing depth
of all possible call stacks.
Fixes: f4d7e40a5b ("bpf: introduce function calls (verification)")
Reported-by: Jann Horn <jannh@google.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Pull x86 PTI preparatory patches from Thomas Gleixner:
"Todays Advent calendar window contains twentyfour easy to digest
patches. The original plan was to have twenty three matching the date,
but a late fixup made that moot.
- Move the cpu_entry_area mapping out of the fixmap into a separate
address space. That's necessary because the fixmap becomes too big
with NRCPUS=8192 and this caused already subtle and hard to
diagnose failures.
The top most patch is fresh from today and cures a brain slip of
that tall grumpy german greybeard, who ignored the intricacies of
32bit wraparounds.
- Limit the number of CPUs on 32bit to 64. That's insane big already,
but at least it's small enough to prevent address space issues with
the cpu_entry_area map, which have been observed and debugged with
the fixmap code
- A few TLB flush fixes in various places plus documentation which of
the TLB functions should be used for what.
- Rename the SYSENTER stack to CPU_ENTRY_AREA stack as it is used for
more than sysenter now and keeping the name makes backtraces
confusing.
- Prevent LDT inheritance on exec() by moving it to arch_dup_mmap(),
which is only invoked on fork().
- Make vysycall more robust.
- A few fixes and cleanups of the debug_pagetables code. Check
PAGE_PRESENT instead of checking the PTE for 0 and a cleanup of the
C89 initialization of the address hint array which already was out
of sync with the index enums.
- Move the ESPFIX init to a different place to prepare for PTI.
- Several code moves with no functional change to make PTI
integration simpler and header files less convoluted.
- Documentation fixes and clarifications"
* 'x86-pti-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (24 commits)
x86/cpu_entry_area: Prevent wraparound in setup_cpu_entry_area_ptes() on 32bit
init: Invoke init_espfix_bsp() from mm_init()
x86/cpu_entry_area: Move it out of the fixmap
x86/cpu_entry_area: Move it to a separate unit
x86/mm: Create asm/invpcid.h
x86/mm: Put MMU to hardware ASID translation in one place
x86/mm: Remove hard-coded ASID limit checks
x86/mm: Move the CR3 construction functions to tlbflush.h
x86/mm: Add comments to clarify which TLB-flush functions are supposed to flush what
x86/mm: Remove superfluous barriers
x86/mm: Use __flush_tlb_one() for kernel memory
x86/microcode: Dont abuse the TLB-flush interface
x86/uv: Use the right TLB-flush API
x86/entry: Rename SYSENTER_stack to CPU_ENTRY_AREA_entry_stack
x86/doc: Remove obvious weirdnesses from the x86 MM layout documentation
x86/mm/64: Improve the memory map documentation
x86/ldt: Prevent LDT inheritance on exec
x86/ldt: Rework locking
arch, mm: Allow arch_dup_mmap() to fail
x86/vsyscall/64: Warn and fail vsyscall emulation in NATIVE mode
...
Commit cc2b14d510 ("bpf: teach verifier to recognize zero initialized
stack") introduced a very relaxed check when comparing stacks of different
states, effectively returning a positive result in many cases where it
shouldn't.
This can create problems in cases such as this following C pseudocode:
long var;
long *x = bpf_map_lookup(...);
if (!x)
return;
if (*x != 0xbeef)
var = 0;
else
var = 1;
/* This is the key part, calling a helper causes an explored state
* to be saved with the information that "var" is on the stack as
* STACK_ZERO, since the helper is first met by the verifier after
* the "var = 0" assignment. This state will however be wrongly used
* also for the "var = 1" case, so the verifier assumes "var" is always
* 0 and will replace the NULL assignment with nops, because the
* search pruning prevents it from exploring the faulty branch.
*/
bpf_ktime_get_ns();
if (var)
*(long *)0 = 0xbeef;
Fix the issue by making sure that the stack is fully explored before
returning a positive comparison result.
Also attach a couple tests that highlight the bad behavior. In the first
test, without this fix instructions 16 and 17 are replaced with nops
instead of being rejected by the verifier.
The second test, instead, allows a program to make a potentially illegal
read from the stack.
Fixes: cc2b14d510 ("bpf: teach verifier to recognize zero initialized stack")
Signed-off-by: Gianluca Borello <g.borello@gmail.com>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
In order to sanitize the LDT initialization on x86 arch_dup_mmap() must be
allowed to fail. Fix up all instances.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Andy Lutomirsky <luto@kernel.org>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Borislav Petkov <bpetkov@suse.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: David Laight <David.Laight@aculab.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: Eduardo Valentin <eduval@amazon.com>
Cc: Greg KH <gregkh@linuxfoundation.org>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Will Deacon <will.deacon@arm.com>
Cc: aliguori@amazon.com
Cc: dan.j.williams@intel.com
Cc: hughd@google.com
Cc: keescook@google.com
Cc: kirill.shutemov@linux.intel.com
Cc: linux-mm@kvack.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Lots of overlapping changes. Also on the net-next side
the XDP state management is handled more in the generic
layers so undo the 'net' nfp fix which isn't applicable
in net-next.
Include a necessary change by Jakub Kicinski, with log message:
====================
cls_bpf no longer takes care of offload tracking. Make sure
netdevsim performs necessary checks. This fixes a warning
caused by TC trying to remove a filter it has not added.
Signed-off-by: Jakub Kicinski <jakub.kicinski@netronome.com>
Reviewed-by: Quentin Monnet <quentin.monnet@netronome.com>
====================
Signed-off-by: David S. Miller <davem@davemloft.net>
Pull networking fixes from David Miller"
"What's a holiday weekend without some networking bug fixes? [1]
1) Fix some eBPF JIT bugs wrt. SKB pointers across helper function
calls, from Daniel Borkmann.
2) Fix regression from errata limiting change to marvell PHY driver,
from Zhao Qiang.
3) Fix u16 overflow in SCTP, from Xin Long.
4) Fix potential memory leak during bridge newlink, from Nikolay
Aleksandrov.
5) Fix BPF selftest build on s390, from Hendrik Brueckner.
6) Don't append to cfg80211 automatically generated certs file,
always write new ones from scratch. From Thierry Reding.
7) Fix sleep in atomic in mac80211 hwsim, from Jia-Ju Bai.
8) Fix hang on tg3 MTU change with certain chips, from Brian King.
9) Add stall detection to arc emac driver and reset chip when this
happens, from Alexander Kochetkov.
10) Fix MTU limitng in GRE tunnel drivers, from Xin Long.
11) Fix stmmac timestamping bug due to mis-shifting of field. From
Fredrik Hallenberg.
12) Fix metrics match when deleting an ipv4 route. The kernel sets
some internal metrics bits which the user isn't going to set when
it makes the delete request. From Phil Sutter.
13) mvneta driver loop over RX queues limits on "txq_number" :-) Fix
from Yelena Krivosheev.
14) Fix double free and memory corruption in get_net_ns_by_id, from
Eric W. Biederman.
15) Flush ipv4 FIB tables in the reverse order. Some tables can share
their actual backing data, in particular this happens for the MAIN
and LOCAL tables. We have to kill the LOCAL table first, because
it uses MAIN's backing memory. Fix from Ido Schimmel.
16) Several eBPF verifier value tracking fixes, from Edward Cree, Jann
Horn, and Alexei Starovoitov.
17) Make changes to ipv6 autoflowlabel sysctl really propagate to
sockets, unless the socket has set the per-socket value
explicitly. From Shaohua Li.
18) Fix leaks and double callback invocations of zerocopy SKBs, from
Willem de Bruijn"
[1] Is this a trick question? "Relaxing"? "Quiet"? "Fine"? - Linus.
* git://git.kernel.org/pub/scm/linux/kernel/git/davem/net: (77 commits)
skbuff: skb_copy_ubufs must release uarg even without user frags
skbuff: orphan frags before zerocopy clone
net: reevalulate autoflowlabel setting after sysctl setting
openvswitch: Fix pop_vlan action for double tagged frames
ipv6: Honor specified parameters in fibmatch lookup
bpf: do not allow root to mangle valid pointers
selftests/bpf: add tests for recent bugfixes
bpf: fix integer overflows
bpf: don't prune branches when a scalar is replaced with a pointer
bpf: force strict alignment checks for stack pointers
bpf: fix missing error return in check_stack_boundary()
bpf: fix 32-bit ALU op verification
bpf: fix incorrect tracking of register size truncation
bpf: fix incorrect sign extension in check_alu_op()
bpf/verifier: fix bounds calculation on BPF_RSH
ipv4: Fix use-after-free when flushing FIB tables
s390/qeth: fix error handling in checksum cmd callback
tipc: remove joining group member from congested list
selftests: net: Adding config fragment CONFIG_NUMA=y
nfp: bpf: keep track of the offloaded program
...
Right now kallsyms handling is not working with JITed subprogs.
The reason is that when in 1c2a088a66 ("bpf: x64: add JIT support
for multi-function programs") in jit_subprogs() they are passed
to bpf_prog_kallsyms_add(), then their prog type is 0, which BPF
core will think it's a cBPF program as only cBPF programs have a
0 type. Thus, they need to inherit the type from the main prog.
Once that is fixed, they are indeed added to the BPF kallsyms
infra, but their tag is 0. Therefore, since intention is to add
them as bpf_prog_F_<tag>, we need to pass them to bpf_prog_calc_tag()
first. And once this is resolved, there is a use-after-free on
prog cleanup: we remove the kallsyms entry from the main prog,
later walk all subprogs and call bpf_jit_free() on them. However,
the kallsyms linkage was never released on them. Thus, do that
for all subprogs right in __bpf_prog_put() when refcount hits 0.
Fixes: 1c2a088a66 ("bpf: x64: add JIT support for multi-function programs")
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Do not allow root to convert valid pointers into unknown scalars.
In particular disallow:
ptr &= reg
ptr <<= reg
ptr += ptr
and explicitly allow:
ptr -= ptr
since pkt_end - pkt == length
1.
This minimizes amount of address leaks root can do.
In the future may need to further tighten the leaks with kptr_restrict.
2.
If program has such pointer math it's likely a user mistake and
when verifier complains about it right away instead of many instructions
later on invalid memory access it's easier for users to fix their progs.
3.
when register holding a pointer cannot change to scalar it allows JITs to
optimize better. Like 32-bit archs could use single register for pointers
instead of a pair required to hold 64-bit scalars.
4.
reduces architecture dependent behavior. Since code:
r1 = r10;
r1 &= 0xff;
if (r1 ...)
will behave differently arm64 vs x64 and offloaded vs native.
A significant chunk of ptr mangling was allowed by
commit f1174f77b5 ("bpf/verifier: rework value tracking")
yet some of it was allowed even earlier.
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
There were various issues related to the limited size of integers used in
the verifier:
- `off + size` overflow in __check_map_access()
- `off + reg->off` overflow in check_mem_access()
- `off + reg->var_off.value` overflow or 32-bit truncation of
`reg->var_off.value` in check_mem_access()
- 32-bit truncation in check_stack_boundary()
Make sure that any integer math cannot overflow by not allowing
pointer math with large values.
Also reduce the scope of "scalar op scalar" tracking.
Fixes: f1174f77b5 ("bpf/verifier: rework value tracking")
Reported-by: Jann Horn <jannh@google.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
This could be made safe by passing through a reference to env and checking
for env->allow_ptr_leaks, but it would only work one way and is probably
not worth the hassle - not doing it will not directly lead to program
rejection.
Fixes: f1174f77b5 ("bpf/verifier: rework value tracking")
Signed-off-by: Jann Horn <jannh@google.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Force strict alignment checks for stack pointers because the tracking of
stack spills relies on it; unaligned stack accesses can lead to corruption
of spilled registers, which is exploitable.
Fixes: f1174f77b5 ("bpf/verifier: rework value tracking")
Signed-off-by: Jann Horn <jannh@google.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
32-bit ALU ops operate on 32-bit values and have 32-bit outputs.
Adjust the verifier accordingly.
Fixes: f1174f77b5 ("bpf/verifier: rework value tracking")
Signed-off-by: Jann Horn <jannh@google.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Properly handle register truncation to a smaller size.
The old code first mirrors the clearing of the high 32 bits in the bitwise
tristate representation, which is correct. But then, it computes the new
arithmetic bounds as the intersection between the old arithmetic bounds and
the bounds resulting from the bitwise tristate representation. Therefore,
when coerce_reg_to_32() is called on a number with bounds
[0xffff'fff8, 0x1'0000'0007], the verifier computes
[0xffff'fff8, 0xffff'ffff] as bounds of the truncated number.
This is incorrect: The truncated number could also be in the range [0, 7],
and no meaningful arithmetic bounds can be computed in that case apart from
the obvious [0, 0xffff'ffff].
Starting with v4.14, this is exploitable by unprivileged users as long as
the unprivileged_bpf_disabled sysctl isn't set.
Debian assigned CVE-2017-16996 for this issue.
v2:
- flip the mask during arithmetic bounds calculation (Ben Hutchings)
v3:
- add CVE number (Ben Hutchings)
Fixes: b03c9f9fdc ("bpf/verifier: track signed and unsigned min/max values")
Signed-off-by: Jann Horn <jannh@google.com>
Acked-by: Edward Cree <ecree@solarflare.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Distinguish between
BPF_ALU64|BPF_MOV|BPF_K (load 32-bit immediate, sign-extended to 64-bit)
and BPF_ALU|BPF_MOV|BPF_K (load 32-bit immediate, zero-padded to 64-bit);
only perform sign extension in the first case.
Starting with v4.14, this is exploitable by unprivileged users as long as
the unprivileged_bpf_disabled sysctl isn't set.
Debian assigned CVE-2017-16995 for this issue.
v3:
- add CVE number (Ben Hutchings)
Fixes: 484611357c ("bpf: allow access into map value arrays")
Signed-off-by: Jann Horn <jannh@google.com>
Acked-by: Edward Cree <ecree@solarflare.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Incorrect signed bounds were being computed.
If the old upper signed bound was positive and the old lower signed bound was
negative, this could cause the new upper signed bound to be too low,
leading to security issues.
Fixes: b03c9f9fdc ("bpf/verifier: track signed and unsigned min/max values")
Reported-by: Jann Horn <jannh@google.com>
Signed-off-by: Edward Cree <ecree@solarflare.com>
Acked-by: Alexei Starovoitov <ast@kernel.org>
[jannh@google.com: changed description to reflect bug impact]
Signed-off-by: Jann Horn <jannh@google.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
The tools/testing/selftests/bpf test program
test_dev_cgroup fails with the following error
when compiled with llvm 6.0. (I did not try
with earlier versions.)
libbpf: load bpf program failed: Permission denied
libbpf: -- BEGIN DUMP LOG ---
libbpf:
0: (61) r2 = *(u32 *)(r1 +4)
1: (b7) r0 = 0
2: (55) if r2 != 0x1 goto pc+8
R0=inv0 R1=ctx(id=0,off=0,imm=0) R2=inv1 R10=fp0
3: (69) r2 = *(u16 *)(r1 +0)
invalid bpf_context access off=0 size=2
...
The culprit is the following statement in dev_cgroup.c:
short type = ctx->access_type & 0xFFFF;
This code is typical as the ctx->access_type is assigned
as below in kernel/bpf/cgroup.c:
struct bpf_cgroup_dev_ctx ctx = {
.access_type = (access << 16) | dev_type,
.major = major,
.minor = minor,
};
The compiler converts it to u16 access while
the verifier cgroup_dev_is_valid_access rejects
any non u32 access.
This patch permits the field access_type to be accessible
with type u16 and u8 as well.
Signed-off-by: Yonghong Song <yhs@fb.com>
Tested-by: Roman Gushchin <guro@fb.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Function skip_callee is local to the source and does not need to
be in global scope, so make it static. Also return NULL rather than 0.
Cleans up two sparse warnings:
symbol 'skip_callee' was not declared. Should it be static?
Using plain integer as NULL pointer
Signed-off-by: Colin Ian King <colin.king@canonical.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Trivial fix to spelling mistake in error message text.
Signed-off-by: Colin Ian King <colin.king@canonical.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Daniel Borkmann says:
====================
pull-request: bpf-next 2017-12-18
The following pull-request contains BPF updates for your *net-next* tree.
The main changes are:
1) Allow arbitrary function calls from one BPF function to another BPF function.
As of today when writing BPF programs, __always_inline had to be used in
the BPF C programs for all functions, unnecessarily causing LLVM to inflate
code size. Handle this more naturally with support for BPF to BPF calls
such that this __always_inline restriction can be overcome. As a result,
it allows for better optimized code and finally enables to introduce core
BPF libraries in the future that can be reused out of different projects.
x86 and arm64 JIT support was added as well, from Alexei.
2) Add infrastructure for tagging functions as error injectable and allow for
BPF to return arbitrary error values when BPF is attached via kprobes on
those. This way of injecting errors generically eases testing and debugging
without having to recompile or restart the kernel. Tags for opting-in for
this facility are added with BPF_ALLOW_ERROR_INJECTION(), from Josef.
3) For BPF offload via nfp JIT, add support for bpf_xdp_adjust_head() helper
call for XDP programs. First part of this work adds handling of BPF
capabilities included in the firmware, and the later patches add support
to the nfp verifier part and JIT as well as some small optimizations,
from Jakub.
4) The bpftool now also gets support for basic cgroup BPF operations such
as attaching, detaching and listing current BPF programs. As a requirement
for the attach part, bpftool can now also load object files through
'bpftool prog load'. This reuses libbpf which we have in the kernel tree
as well. bpftool-cgroup man page is added along with it, from Roman.
5) Back then commit e87c6bc385 ("bpf: permit multiple bpf attachments for
a single perf event") added support for attaching multiple BPF programs
to a single perf event. Given they are configured through perf's ioctl()
interface, the interface has been extended with a PERF_EVENT_IOC_QUERY_BPF
command in this work in order to return an array of one or multiple BPF
prog ids that are currently attached, from Yonghong.
6) Various minor fixes and cleanups to the bpftool's Makefile as well
as a new 'uninstall' and 'doc-uninstall' target for removing bpftool
itself or prior installed documentation related to it, from Quentin.
7) Add CONFIG_CGROUP_BPF=y to the BPF kernel selftest config file which is
required for the test_dev_cgroup test case to run, from Naresh.
8) Fix reporting of XDP prog_flags for nfp driver, from Jakub.
9) Fix libbpf's exit code from the Makefile when libelf was not found in
the system, also from Jakub.
====================
Signed-off-by: David S. Miller <davem@davemloft.net>
Daniel Borkmann says:
====================
pull-request: bpf 2017-12-17
The following pull-request contains BPF updates for your *net* tree.
The main changes are:
1) Fix a corner case in generic XDP where we have non-linear skbs
but enough tailroom in the skb to not miss to linearizing there,
from Song.
2) Fix BPF JIT bugs in s390x and ppc64 to not recache skb data when
BPF context is not skb, from Daniel.
3) Fix a BPF JIT bug in sparc64 where recaching skb data after helper
call would use the wrong register for the skb, from Daniel.
====================
Signed-off-by: David S. Miller <davem@davemloft.net>
Pull timer fix from Thomas Gleixner:
"A single bugfix which prevents arbitrary sigev_notify values in
posix-timers"
* 'timers-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
posix-timer: Properly check sigevent->sigev_notify
Things got moved around between the original bpf_override_return patches
and the final version, and now the ftrace kprobe dispatcher assumes if
you modified the ip that you also enabled preemption. Make a comment of
this and enable preemption, this fixes the lockdep splat that happened
when using this feature.
Fixes: 9802d86585 ("bpf: add a bpf_override_function helper")
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Typical JIT does several passes over bpf instructions to
compute total size and relative offsets of jumps and calls.
With multitple bpf functions calling each other all relative calls
will have invalid offsets intially therefore we need to additional
last pass over the program to emit calls with correct offsets.
For example in case of three bpf functions:
main:
call foo
call bpf_map_lookup
exit
foo:
call bar
exit
bar:
exit
We will call bpf_int_jit_compile() indepedently for main(), foo() and bar()
x64 JIT typically does 4-5 passes to converge.
After these initial passes the image for these 3 functions
will be good except call targets, since start addresses of
foo() and bar() are unknown when we were JITing main()
(note that call bpf_map_lookup will be resolved properly
during initial passes).
Once start addresses of 3 functions are known we patch
call_insn->imm to point to right functions and call
bpf_int_jit_compile() again which needs only one pass.
Additional safety checks are done to make sure this
last pass doesn't produce image that is larger or smaller
than previous pass.
When constant blinding is on it's applied to all functions
at the first pass, since doing it once again at the last
pass can change size of the JITed code.
Tested on x64 and arm64 hw with JIT on/off, blinding on/off.
x64 jits bpf-to-bpf calls correctly while arm64 falls back to interpreter.
All other JITs that support normal BPF_CALL will behave the same way
since bpf-to-bpf call is equivalent to bpf-to-kernel call from
JITs point of view.
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
global bpf_jit_enable variable is tested multiple times in JITs,
blinding and verifier core. The malicious root can try to toggle
it while loading the programs. This race condition was accounted
for and there should be no issues, but it's safer to avoid
this race condition.
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
though bpf_call is still the same call instruction and
calling convention 'bpf to bpf' and 'bpf to helper' is the same
the interpreter has to oparate on 'struct bpf_insn *'.
To distinguish these two cases add a kernel internal opcode and
mark call insns with it.
This opcode is seen by interpreter only. JITs will never see it.
Also add tiny bit of debug code to aid interpreter debugging.
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
programs with function calls are often passing various
pointers via stack. When all calls are inlined llvm
flattens stack accesses and optimizes away extra branches.
When functions are not inlined it becomes the job of
the verifier to recognize zero initialized stack to avoid
exploring paths that program will not take.
The following program would fail otherwise:
ptr = &buffer_on_stack;
*ptr = 0;
...
func_call(.., ptr, ...) {
if (..)
*ptr = bpf_map_lookup();
}
...
if (*ptr != 0) {
// Access (*ptr)->field is valid.
// Without stack_zero tracking such (*ptr)->field access
// will be rejected
}
since stack slots are no longer uniform invalid | spill | misc
add liveness marking to all slots, but do it in 8 byte chunks.
So if nothing was read or written in [fp-16, fp-9] range
it will be marked as LIVE_NONE.
If any byte in that range was read, it will be marked LIVE_READ
and stacksafe() check will perform byte-by-byte verification.
If all bytes in the range were written the slot will be
marked as LIVE_WRITTEN.
This significantly speeds up state equality comparison
and reduces total number of states processed.
before after
bpf_lb-DLB_L3.o 2051 2003
bpf_lb-DLB_L4.o 3287 3164
bpf_lb-DUNKNOWN.o 1080 1080
bpf_lxc-DDROP_ALL.o 24980 12361
bpf_lxc-DUNKNOWN.o 34308 16605
bpf_netdev.o 15404 10962
bpf_overlay.o 7191 6679
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Allow arbitrary function calls from bpf function to another bpf function.
To recognize such set of bpf functions the verifier does:
1. runs control flow analysis to detect function boundaries
2. proceeds with verification of all functions starting from main(root) function
It recognizes that the stack of the caller can be accessed by the callee
(if the caller passed a pointer to its stack to the callee) and the callee
can store map_value and other pointers into the stack of the caller.
3. keeps track of the stack_depth of each function to make sure that total
stack depth is still less than 512 bytes
4. disallows pointers to the callee stack to be stored into the caller stack,
since they will be invalid as soon as the callee returns
5. to reuse all of the existing state_pruning logic each function call
is considered to be independent call from the verifier point of view.
The verifier pretends to inline all function calls it sees are being called.
It stores the callsite instruction index as part of the state to make sure
that two calls to the same callee from two different places in the caller
will be different from state pruning point of view
6. more safety checks are added to liveness analysis
Implementation details:
. struct bpf_verifier_state is now consists of all stack frames that
led to this function
. struct bpf_func_state represent one stack frame. It consists of
registers in the given frame and its stack
. propagate_liveness() logic had a premature optimization where
mark_reg_read() and mark_stack_slot_read() were manually inlined
with loop iterating over parents for each register or stack slot.
Undo this optimization to reuse more complex mark_*_read() logic
. skip_callee() logic is not necessary from safety point of view,
but without it mark_*_read() markings become too conservative,
since after returning from the funciton call a read of r6-r9
will incorrectly propagate the read marks into callee causing
inefficient pruning later
. mark_*_read() logic is now aware of control flow which makes it
more complex. In the future the plan is to rewrite liveness
to be hierarchical. So that liveness can be done within
basic block only and control flow will be responsible for
propagation of liveness information along cfg and between calls.
. tail_calls and ld_abs insns are not allowed in the programs with
bpf-to-bpf calls
. returning stack pointers to the caller or storing them into stack
frame of the caller is not allowed
Testing:
. no difference in cilium processed_insn numbers
. large number of tests follows in next patches
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: John Fastabend <john.fastabend@gmail.com>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Allow arbitrary function calls from bpf function to another bpf function.
Since the beginning of bpf all bpf programs were represented as a single function
and program authors were forced to use always_inline for all functions
in their C code. That was causing llvm to unnecessary inflate the code size
and forcing developers to move code to header files with little code reuse.
With a bit of additional complexity teach verifier to recognize
arbitrary function calls from one bpf function to another as long as
all of functions are presented to the verifier as a single bpf program.
New program layout:
r6 = r1 // some code
..
r1 = .. // arg1
r2 = .. // arg2
call pc+1 // function call pc-relative
exit
.. = r1 // access arg1
.. = r2 // access arg2
..
call pc+20 // second level of function call
...
It allows for better optimized code and finally allows to introduce
the core bpf libraries that can be reused in different projects,
since programs are no longer limited by single elf file.
With function calls bpf can be compiled into multiple .o files.
This patch is the first step. It detects programs that contain
multiple functions and checks that calls between them are valid.
It splits the sequence of bpf instructions (one program) into a set
of bpf functions that call each other. Calls to only known
functions are allowed. In the future the verifier may allow
calls to unresolved functions and will do dynamic linking.
This logic supports statically linked bpf functions only.
Such function boundary detection could have been done as part of
control flow graph building in check_cfg(), but it's cleaner to
separate function boundary detection vs control flow checks within
a subprogram (function) into logically indepedent steps.
Follow up patches may split check_cfg() further, but not check_subprogs().
Only allow bpf-to-bpf calls for root only and for non-hw-offloaded programs.
These restrictions can be relaxed in the future.
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
[ Note, this is a Git cherry-pick of the following commit:
506458efaf ("locking/barriers: Convert users of lockless_dereference() to READ_ONCE()")
... for easier x86 PTI code testing and back-porting. ]
READ_ONCE() now has an implicit smp_read_barrier_depends() call, so it
can be used instead of lockless_dereference() without any change in
semantics.
Signed-off-by: Will Deacon <will.deacon@arm.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1508840570-22169-4-git-send-email-will.deacon@arm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Three sets of overlapping changes, two in the packet scheduler
and one in the meson-gxl PHY driver.
Signed-off-by: David S. Miller <davem@davemloft.net>
Pull networking fixes from David Miller:
1) Clamp timeouts to INT_MAX in conntrack, from Jay Elliot.
2) Fix broken UAPI for BPF_PROG_TYPE_PERF_EVENT, from Hendrik
Brueckner.
3) Fix locking in ieee80211_sta_tear_down_BA_sessions, from Johannes
Berg.
4) Add missing barriers to ptr_ring, from Michael S. Tsirkin.
5) Don't advertise gigabit in sh_eth when not available, from Thomas
Petazzoni.
6) Check network namespace when delivering to netlink taps, from Kevin
Cernekee.
7) Kill a race in raw_sendmsg(), from Mohamed Ghannam.
8) Use correct address in TCP md5 lookups when replying to an incoming
segment, from Christoph Paasch.
9) Add schedule points to BPF map alloc/free, from Eric Dumazet.
10) Don't allow silly mtu values to be used in ipv4/ipv6 multicast, also
from Eric Dumazet.
11) Fix SKB leak in tipc, from Jon Maloy.
12) Disable MAC learning on OVS ports of mlxsw, from Yuval Mintz.
13) SKB leak fix in skB_complete_tx_timestamp(), from Willem de Bruijn.
14) Add some new qmi_wwan device IDs, from Daniele Palmas.
15) Fix static key imbalance in ingress qdisc, from Jiri Pirko.
* git://git.kernel.org/pub/scm/linux/kernel/git/davem/net: (76 commits)
net: qcom/emac: Reduce timeout for mdio read/write
net: sched: fix static key imbalance in case of ingress/clsact_init error
net: sched: fix clsact init error path
ip_gre: fix wrong return value of erspan_rcv
net: usb: qmi_wwan: add Telit ME910 PID 0x1101 support
pkt_sched: Remove TC_RED_OFFLOADED from uapi
net: sched: Move to new offload indication in RED
net: sched: Add TCA_HW_OFFLOAD
net: aquantia: Increment driver version
net: aquantia: Fix typo in ethtool statistics names
net: aquantia: Update hw counters on hw init
net: aquantia: Improve link state and statistics check interval callback
net: aquantia: Fill in multicast counter in ndev stats from hardware
net: aquantia: Fill ndev stat couters from hardware
net: aquantia: Extend stat counters to 64bit values
net: aquantia: Fix hardware DMA stream overload on large MRRS
net: aquantia: Fix actual speed capabilities reporting
sock: free skb in skb_complete_tx_timestamp on error
s390/qeth: update takeover IPs after configuration change
s390/qeth: lock IP table while applying takeover changes
...
Pull locking fixes from Ingo Molnar:
"Misc fixes:
- Fix a S390 boot hang that was caused by the lock-break logic.
Remove lock-break to begin with, as review suggested it was
unreasonably fragile and our confidence in its continued good
health is lower than our confidence in its removal.
- Remove the lockdep cross-release checking code for now, because of
unresolved false positive warnings. This should make lockdep work
well everywhere again.
- Get rid of the final (and single) ACCESS_ONCE() straggler and
remove the API from v4.15.
- Fix a liblockdep build warning"
* 'locking-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
tools/lib/lockdep: Add missing declaration of 'pr_cont()'
checkpatch: Remove ACCESS_ONCE() warning
compiler.h: Remove ACCESS_ONCE()
tools/include: Remove ACCESS_ONCE()
tools/perf: Convert ACCESS_ONCE() to READ_ONCE()
locking/lockdep: Remove the cross-release locking checks
locking/core: Remove break_lock field when CONFIG_GENERIC_LOCKBREAK=y
locking/core: Fix deadlock during boot on systems with GENERIC_LOCKBREAK
Pull scheduler fixes from Ingo Molnar:
"Two fixes: a crash fix for an ARM SoC platform, and kernel-doc
warnings fixes"
* 'sched-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
sched/rt: Do not pull from current CPU if only one CPU to pull
sched/core: Fix kernel-doc warnings after code movement