This fix was intended for 4.13, but didn't get in because both
maintainers were on vacation.
Paul Mackerras:
"It adds mutual exclusion between list_add_rcu and list_del_rcu calls
on the kvm->arch.spapr_tce_tables list. Without this, userspace could
potentially trigger corruption of the list and cause a host crash or
worse."
If the host has protection keys disabled, we cannot read and write the
guest PKRU---RDPKRU and WRPKRU fail with #GP(0) if CR4.PKE=0. Block
the PKU cpuid bit in that case.
This ensures that guest_CR4.PKE=1 implies host_CR4.PKE=1.
Fixes: 1be0e61c1f
Cc: stable@vger.kernel.org
Reviewed-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
This patch exposes 5 level page table feature to the VM.
At the same time, the canonical virtual address checking is
extended to support both 48-bits and 57-bits address width.
Signed-off-by: Yu Zhang <yu.c.zhang@linux.intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Extends the shadow paging code, so that 5 level shadow page
table can be constructed if VM is running in 5 level paging
mode.
Also extends the ept code, so that 5 level ept table can be
constructed if maxphysaddr of VM exceeds 48 bits. Unlike the
shadow logic, KVM should still use 4 level ept table for a VM
whose physical address width is less than 48 bits, even when
the VM is running in 5 level paging mode.
Signed-off-by: Yu Zhang <yu.c.zhang@linux.intel.com>
[Unconditionally reset the MMU context in kvm_cpuid_update.
Changing MAXPHYADDR invalidates the reserved bit bitmasks.
- Paolo]
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Return false in kvm_cpuid() when it fails to find the cpuid
entry. Also, this routine(and its caller) is optimized with
a new argument - check_limit, so that the check_cpuid_limit()
fall back can be avoided.
Signed-off-by: Yu Zhang <yu.c.zhang@linux.intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
If "i" is the last element in the vcpu->arch.cpuid_entries[] array, it
potentially can be exploited the vulnerability. this will out-of-bounds
read and write. Luckily, the effect is small:
/* when no next entry is found, the current entry[i] is reselected */
for (j = i + 1; ; j = (j + 1) % nent) {
struct kvm_cpuid_entry2 *ej = &vcpu->arch.cpuid_entries[j];
if (ej->function == e->function) {
It reads ej->maxphyaddr, which is user controlled. However...
ej->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
After cpuid_entries there is
int maxphyaddr;
struct x86_emulate_ctxt emulate_ctxt; /* 16-byte aligned */
So we have:
- cpuid_entries at offset 1B50 (6992)
- maxphyaddr at offset 27D0 (6992 + 3200 = 10192)
- padding at 27D4...27DF
- emulate_ctxt at 27E0
And it writes in the padding. Pfew, writing the ops field of emulate_ctxt
would have been much worse.
This patch fixes it by modding the index to avoid the out-of-bounds
access. Worst case, i == j and ej->function == e->function,
the loop can bail out.
Reported-by: Moguofang <moguofang@huawei.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Guofang Mo <moguofang@huawei.com>
Cc: stable@vger.kernel.org
Signed-off-by: Wanpeng Li <wanpeng.li@hotmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Hardware support for faulting on the cpuid instruction is not required to
emulate it, because cpuid triggers a VM exit anyways. KVM handles the relevant
MSRs (MSR_PLATFORM_INFO and MSR_MISC_FEATURES_ENABLE) and upon a
cpuid-induced VM exit checks the cpuid faulting state and the CPL.
kvm_require_cpl is even kind enough to inject the GP fault for us.
Signed-off-by: Kyle Huey <khuey@kylehuey.com>
Reviewed-by: David Matlack <dmatlack@google.com>
[Return "1" from kvm_emulate_cpuid, it's not void. - Paolo]
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
But first update usage sites with the new header dependency.
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The FPU is always active now when running KVM.
Reviewed-by: David Matlack <dmatlack@google.com>
Reviewed-by: Bandan Das <bsd@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
This reverts commit bc6134942d.
A CPUID instruction executed in VMX non-root mode always causes a
VM-exit, regardless of the leaf being queried.
Fixes: bc6134942d ("KVM: nested VMX: disable perf cpuid reporting")
Signed-off-by: Jim Mattson <jmattson@google.com>
[The issue solved by bc6134942d has been resolved with ff651cb613
("KVM: nVMX: Add nested msr load/restore algorithm").]
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
Vector population count instructions for dwords and qwords are to be
used in future Intel Xeon & Xeon Phi processors. The bit 14 of
CPUID[level:0x07, ECX] indicates that the new instructions are
supported by a processor.
The spec can be found in the Intel Software Developer Manual (SDM)
or in the Instruction Set Extensions Programming Reference (ISE).
Signed-off-by: Piotr Luc <piotr.luc@intel.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: x86@kernel.org
Cc: kvm@vger.kernel.org
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
x86: userspace can now hide nested VMX features from guests; nested
VMX can now run Hyper-V in a guest; support for AVX512_4VNNIW and
AVX512_FMAPS in KVM; infrastructure support for virtual Intel GPUs.
PPC: support for KVM guests on POWER9; improved support for interrupt
polling; optimizations and cleanups.
s390: two small optimizations, more stuff is in flight and will be
in 4.11.
ARM: support for the GICv3 ITS on 32bit platforms.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2
iQExBAABCAAbBQJYTkP0FBxwYm9uemluaUByZWRoYXQuY29tAAoJEL/70l94x66D
lZIH/iT1n9OQXcuTpYYnQhuCenzI3GZZOIMTbCvK2i5bo0FIJKxVn0EiAAqZSXvO
nO185FqjOgLuJ1AD1kJuxzye5suuQp4HIPWWgNHcexLuy43WXWKZe0IQlJ4zM2Xf
u31HakpFmVDD+Cd1qN3yDXtDrRQ79/xQn2kw7CWb8olp+pVqwbceN3IVie9QYU+3
gCz0qU6As0aQIwq2PyalOe03sO10PZlm4XhsoXgWPG7P18BMRhNLTDqhLhu7A/ry
qElVMANT7LSNLzlwNdpzdK8rVuKxETwjlc1UP8vSuhrwad4zM2JJ1Exk26nC2NaG
D0j4tRSyGFIdx6lukZm7HmiSHZ0=
=mkoB
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull KVM updates from Paolo Bonzini:
"Small release, the most interesting stuff is x86 nested virt
improvements.
x86:
- userspace can now hide nested VMX features from guests
- nested VMX can now run Hyper-V in a guest
- support for AVX512_4VNNIW and AVX512_FMAPS in KVM
- infrastructure support for virtual Intel GPUs.
PPC:
- support for KVM guests on POWER9
- improved support for interrupt polling
- optimizations and cleanups.
s390:
- two small optimizations, more stuff is in flight and will be in
4.11.
ARM:
- support for the GICv3 ITS on 32bit platforms"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (94 commits)
arm64: KVM: pmu: Reset PMSELR_EL0.SEL to a sane value before entering the guest
KVM: arm/arm64: timer: Check for properly initialized timer on init
KVM: arm/arm64: vgic-v2: Limit ITARGETSR bits to number of VCPUs
KVM: x86: Handle the kthread worker using the new API
KVM: nVMX: invvpid handling improvements
KVM: nVMX: check host CR3 on vmentry and vmexit
KVM: nVMX: introduce nested_vmx_load_cr3 and call it on vmentry
KVM: nVMX: propagate errors from prepare_vmcs02
KVM: nVMX: fix CR3 load if L2 uses PAE paging and EPT
KVM: nVMX: load GUEST_EFER after GUEST_CR0 during emulated VM-entry
KVM: nVMX: generate MSR_IA32_CR{0,4}_FIXED1 from guest CPUID
KVM: nVMX: fix checks on CR{0,4} during virtual VMX operation
KVM: nVMX: support restore of VMX capability MSRs
KVM: nVMX: generate non-true VMX MSRs based on true versions
KVM: x86: Do not clear RFLAGS.TF when a singlestep trap occurs.
KVM: x86: Add kvm_skip_emulated_instruction and use it.
KVM: VMX: Move skip_emulated_instruction out of nested_vmx_check_vmcs12
KVM: VMX: Reorder some skip_emulated_instruction calls
KVM: x86: Add a return value to kvm_emulate_cpuid
KVM: PPC: Book3S: Move prototypes for KVM functions into kvm_ppc.h
...
kvm_skip_emulated_instruction calls both
kvm_x86_ops->skip_emulated_instruction and kvm_vcpu_check_singlestep,
skipping the emulated instruction and generating a trap if necessary.
Replacing skip_emulated_instruction calls with
kvm_skip_emulated_instruction is straightforward, except for:
- ICEBP, which is already inside a trap, so avoid triggering another trap.
- Instructions that can trigger exits to userspace, such as the IO insns,
MOVs to CR8, and HALT. If kvm_skip_emulated_instruction does trigger a
KVM_GUESTDBG_SINGLESTEP exit, and the handling code for
IN/OUT/MOV CR8/HALT also triggers an exit to userspace, the latter will
take precedence. The singlestep will be triggered again on the next
instruction, which is the current behavior.
- Task switch instructions which would require additional handling (e.g.
the task switch bit) and are instead left alone.
- Cases where VMLAUNCH/VMRESUME do not proceed to the next instruction,
which do not trigger singlestep traps as mentioned previously.
Signed-off-by: Kyle Huey <khuey@kylehuey.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
Once skipping the emulated instruction can potentially trigger an exit to
userspace (via KVM_GUESTDBG_SINGLESTEP) kvm_emulate_cpuid will need to
propagate a return value.
Signed-off-by: Kyle Huey <khuey@kylehuey.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
From the Intel SDM, volume 3, section 10.4.3, "Enabling or Disabling the
Local APIC,"
When IA32_APIC_BASE[11] is 0, the processor is functionally equivalent
to an IA-32 processor without an on-chip APIC. The CPUID feature flag
for the APIC (see Section 10.4.2, "Presence of the Local APIC") is
also set to 0.
Signed-off-by: Jim Mattson <jmattson@google.com>
[Changed subject tag from nVMX to x86.]
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
Add two new AVX512 subfeatures support for KVM guest.
AVX512_4VNNIW:
Vector instructions for deep learning enhanced word variable precision.
AVX512_4FMAPS:
Vector instructions for deep learning floating-point single precision.
Reviewed-by: Borislav Petkov <bp@suse.de>
Signed-off-by: He Chen <he.chen@linux.intel.com>
Signed-off-by: Luwei Kang <luwei.kang@intel.com>
[Changed subject tags.]
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
The use of local variable *function* is not necessary here. Remove
it to avoid compiling warning with -Wunused-but-set-variable option.
Signed-off-by: Jiang Biao <jiang.biao2@zte.com.cn>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Expose AVX512DQ, AVX512BW, AVX512VL feature to guest.
Its spec can be found at:
https://software.intel.com/sites/default/files/managed/b4/3a/319433-024.pdf
Signed-off-by: Luwei Kang <luwei.kang@intel.com>
[Resolved a trivial conflict with removed F(PCOMMIT).]
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
Pull x86 header cleanups from Ingo Molnar:
"This tree is a cleanup of the x86 tree reducing spurious uses of
module.h - which should improve build performance a bit"
* 'x86-headers-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86, crypto: Restore MODULE_LICENSE() to glue_helper.c so it loads
x86/apic: Remove duplicated include from probe_64.c
x86/ce4100: Remove duplicated include from ce4100.c
x86/headers: Include spinlock_types.h in x8664_ksyms_64.c for missing spinlock_t
x86/platform: Delete extraneous MODULE_* tags fromm ts5500
x86: Audit and remove any remaining unnecessary uses of module.h
x86/kvm: Audit and remove any unnecessary uses of module.h
x86/xen: Audit and remove any unnecessary uses of module.h
x86/platform: Audit and remove any unnecessary uses of module.h
x86/lib: Audit and remove any unnecessary uses of module.h
x86/kernel: Audit and remove any unnecessary uses of module.h
x86/mm: Audit and remove any unnecessary uses of module.h
x86: Don't use module.h just for AUTHOR / LICENSE tags
This reverts commit 8b3e34e46a.
Given the deprecation of the pcommit instruction, the relevant VMX
features and CPUID bits are not going to be rolled into the SDM. Remove
their usage from KVM.
Cc: Xiao Guangrong <guangrong.xiao@linux.intel.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Ross Zwisler <ross.zwisler@linux.intel.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Historically a lot of these existed because we did not have
a distinction between what was modular code and what was providing
support to modules via EXPORT_SYMBOL and friends. That changed
when we forked out support for the latter into the export.h file.
This means we should be able to reduce the usage of module.h
in code that is obj-y Makefile or bool Kconfig. In the case of
kvm where it is modular, we can extend that to also include files
that are building basic support functionality but not related
to loading or registering the final module; such files also have
no need whatsoever for module.h
The advantage in removing such instances is that module.h itself
sources about 15 other headers; adding significantly to what we feed
cpp, and it can obscure what headers we are effectively using.
Since module.h was the source for init.h (for __init) and for
export.h (for EXPORT_SYMBOL) we consider each instance for the
presence of either and replace as needed.
Several instances got replaced with moduleparam.h since that was
really all that was required for those particular files.
Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
Acked-by: Paolo Bonzini <pbonzini@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: kvm@vger.kernel.org
Link: http://lkml.kernel.org/r/20160714001901.31603-8-paul.gortmaker@windriver.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
This ensures that the guest doesn't see XSAVE extensions
(e.g. xgetbv1 or xsavec) that the host lacks.
Cc: stable@vger.kernel.org
Reviewed-by: Radim Krčmář <rkrcmar@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
X86_FEATURE_PKU is referred to as "PKU" in the hardware documentation:
CPUID.7.0.ECX[3]:PKU. X86_FEATURE_OSPKE is software support for pkeys,
enumerated with CPUID.7.0.ECX[4]:OSPKE, and it reflects the setting of
CR4.PKE(bit 22).
This patch disables CPUID:PKU without ept, because pkeys is not yet
implemented for shadow paging.
Signed-off-by: Huaitong Han <huaitong.han@intel.com>
Reviewed-by: Xiao Guangrong <guangrong.xiao@linux.intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
This patch removes magic number with enum cpuid_leafs.
Signed-off-by: Huaitong Han <huaitong.han@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
When eager FPU is disabled, KVM will still see the MPX bit in CPUID and
presumably the MPX vmentry and vmexit controls. However, it will not
be able to expose the MPX XSAVE features to the guest, because the guest's
accessible XSAVE features are always a subset of host_xcr0.
In this case, we should disable the MPX CPUID bit, the BNDCFGS MSR,
and the MPX vmentry and vmexit controls for nested virtualization.
It is then unnecessary to enable guest eager FPU if the guest has the
MPX CPUID bit set.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
handling.
PPC: Mostly bug fixes.
ARM: No big features, but many small fixes and prerequisites including:
- a number of fixes for the arch-timer
- introducing proper level-triggered semantics for the arch-timers
- a series of patches to synchronously halt a guest (prerequisite for
IRQ forwarding)
- some tracepoint improvements
- a tweak for the EL2 panic handlers
- some more VGIC cleanups getting rid of redundant state
x86: quite a few changes:
- support for VT-d posted interrupts (i.e. PCI devices can inject
interrupts directly into vCPUs). This introduces a new component (in
virt/lib/) that connects VFIO and KVM together. The same infrastructure
will be used for ARM interrupt forwarding as well.
- more Hyper-V features, though the main one Hyper-V synthetic interrupt
controller will have to wait for 4.5. These will let KVM expose Hyper-V
devices.
- nested virtualization now supports VPID (same as PCID but for vCPUs)
which makes it quite a bit faster
- for future hardware that supports NVDIMM, there is support for clflushopt,
clwb, pcommit
- support for "split irqchip", i.e. LAPIC in kernel + IOAPIC/PIC/PIT in
userspace, which reduces the attack surface of the hypervisor
- obligatory smattering of SMM fixes
- on the guest side, stable scheduler clock support was rewritten to not
require help from the hypervisor.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2.0.22 (GNU/Linux)
iQEcBAABAgAGBQJWO2IQAAoJEL/70l94x66D/K0H/3AovAgYmJQToZlimsktMk6a
f2xhdIqfU5lIQQh5uNBCfL3o9o8H9Py1ym7aEw3fmztPHHJYc91oTatt2UEKhmEw
VtZHp/dFHt3hwaIdXmjRPEXiYctraKCyrhaUYdWmUYkoKi7lW5OL5h+S7frG2U6u
p/hFKnHRZfXHr6NSgIqvYkKqtnc+C0FWY696IZMzgCksOO8jB1xrxoSN3tANW3oJ
PDV+4og0fN/Fr1capJUFEc/fejREHneANvlKrLaa8ht0qJQutoczNADUiSFLcMPG
iHljXeDsv5eyjMtUuIL8+MPzcrIt/y4rY41ZPiKggxULrXc6H+JJL/e/zThZpXc=
=iv2z
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull KVM updates from Paolo Bonzini:
"First batch of KVM changes for 4.4.
s390:
A bunch of fixes and optimizations for interrupt and time handling.
PPC:
Mostly bug fixes.
ARM:
No big features, but many small fixes and prerequisites including:
- a number of fixes for the arch-timer
- introducing proper level-triggered semantics for the arch-timers
- a series of patches to synchronously halt a guest (prerequisite
for IRQ forwarding)
- some tracepoint improvements
- a tweak for the EL2 panic handlers
- some more VGIC cleanups getting rid of redundant state
x86:
Quite a few changes:
- support for VT-d posted interrupts (i.e. PCI devices can inject
interrupts directly into vCPUs). This introduces a new
component (in virt/lib/) that connects VFIO and KVM together.
The same infrastructure will be used for ARM interrupt
forwarding as well.
- more Hyper-V features, though the main one Hyper-V synthetic
interrupt controller will have to wait for 4.5. These will let
KVM expose Hyper-V devices.
- nested virtualization now supports VPID (same as PCID but for
vCPUs) which makes it quite a bit faster
- for future hardware that supports NVDIMM, there is support for
clflushopt, clwb, pcommit
- support for "split irqchip", i.e. LAPIC in kernel +
IOAPIC/PIC/PIT in userspace, which reduces the attack surface of
the hypervisor
- obligatory smattering of SMM fixes
- on the guest side, stable scheduler clock support was rewritten
to not require help from the hypervisor"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (123 commits)
KVM: VMX: Fix commit which broke PML
KVM: x86: obey KVM_X86_QUIRK_CD_NW_CLEARED in kvm_set_cr0()
KVM: x86: allow RSM from 64-bit mode
KVM: VMX: fix SMEP and SMAP without EPT
KVM: x86: move kvm_set_irq_inatomic to legacy device assignment
KVM: device assignment: remove pointless #ifdefs
KVM: x86: merge kvm_arch_set_irq with kvm_set_msi_inatomic
KVM: x86: zero apic_arb_prio on reset
drivers/hv: share Hyper-V SynIC constants with userspace
KVM: x86: handle SMBASE as physical address in RSM
KVM: x86: add read_phys to x86_emulate_ops
KVM: x86: removing unused variable
KVM: don't pointlessly leave KVM_COMPAT=y in non-KVM configs
KVM: arm/arm64: Merge vgic_set_lr() and vgic_sync_lr_elrsr()
KVM: arm/arm64: Clean up vgic_retire_lr() and surroundings
KVM: arm/arm64: Optimize away redundant LR tracking
KVM: s390: use simple switch statement as multiplexer
KVM: s390: drop useless newline in debugging data
KVM: s390: SCA must not cross page boundaries
KVM: arm: Do not indent the arguments of DECLARE_BITMAP
...
Pass PCOMMIT CPU feature to guest to enable PCOMMIT instruction
Currently we do not catch pcommit instruction for L1 guest and
allow L1 to catch this instruction for L2 if, as required by the spec,
L1 can enumerate the PCOMMIT instruction via CPUID:
| IA32_VMX_PROCBASED_CTLS2[53] (which enumerates support for the
| 1-setting of PCOMMIT exiting) is always the same as
| CPUID.07H:EBX.PCOMMIT[bit 22]. Thus, software can set PCOMMIT exiting
| to 1 if and only if the PCOMMIT instruction is enumerated via CPUID
The spec can be found at
https://software.intel.com/sites/default/files/managed/0d/53/319433-022.pdf
Signed-off-by: Xiao Guangrong <guangrong.xiao@linux.intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Pass these CPU features to guest to enable them in guest
They are needed by nvdimm drivers
Signed-off-by: Xiao Guangrong <guangrong.xiao@linux.intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
There are two concepts that have some confusing naming:
1. Extended State Component numbers (currently called
XFEATURE_BIT_*)
2. Extended State Component masks (currently called XSTATE_*)
The numbers are (currently) from 0-9. State component 3 is the
bounds registers for MPX, for instance.
But when we want to enable "state component 3", we go set a bit
in XCR0. The bit we set is 1<<3. We can check to see if a
state component feature is enabled by looking at its bit.
The current 'xfeature_bit's are at best xfeature bit _numbers_.
Calling them bits is at best inconsistent with ending the enum
list with 'XFEATURES_NR_MAX'.
This patch renames the enum to be 'xfeature'. These also
happen to be what the Intel documentation calls a "state
component".
We also want to differentiate these from the "XSTATE_*" macros.
The "XSTATE_*" macros are a mask, and we rename them to match.
These macros are reasonably widely used so this patch is a
wee bit big, but this really is just a rename.
The only non-mechanical part of this is the
s/XSTATE_EXTEND_MASK/XFEATURE_MASK_EXTEND/
We need a better name for it, but that's another patch.
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: dave@sr71.net
Cc: linux-kernel@vger.kernel.org
Link: http://lkml.kernel.org/r/20150902233126.38653250@viggo.jf.intel.com
[ Ported to v4.3-rc1. ]
Signed-off-by: Ingo Molnar <mingo@kernel.org>
fpu_activate is called outside of vcpu_load(), which means it should not
touch VMCS, but fpu_activate needs to. Avoid the call by moving it to a
point where we know that the guest needs eager FPU and VMCS is loaded.
This will get rid of the following trace
vmwrite error: reg 6800 value 0 (err 1)
[<ffffffff8162035b>] dump_stack+0x19/0x1b
[<ffffffffa046c701>] vmwrite_error+0x2c/0x2e [kvm_intel]
[<ffffffffa045f26f>] vmcs_writel+0x1f/0x30 [kvm_intel]
[<ffffffffa04617e5>] vmx_fpu_activate.part.61+0x45/0xb0 [kvm_intel]
[<ffffffffa0461865>] vmx_fpu_activate+0x15/0x20 [kvm_intel]
[<ffffffffa0560b91>] kvm_arch_vcpu_create+0x51/0x70 [kvm]
[<ffffffffa0548011>] kvm_vm_ioctl+0x1c1/0x760 [kvm]
[<ffffffff8118b55a>] ? handle_mm_fault+0x49a/0xec0
[<ffffffff811e47d5>] do_vfs_ioctl+0x2e5/0x4c0
[<ffffffff8127abbe>] ? file_has_perm+0xae/0xc0
[<ffffffff811e4a51>] SyS_ioctl+0xa1/0xc0
[<ffffffff81630949>] system_call_fastpath+0x16/0x1b
(Note: we also unconditionally activate FPU in vmx_vcpu_reset(), so the
removed code added nothing.)
Fixes: c447e76b4c ("kvm/fpu: Enable eager restore kvm FPU for MPX")
Cc: <stable@vger.kernel.org>
Reported-by: Vlastimil Holer <vlastimil.holer@gmail.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
for silicon that no one owns: these are really new features for
everyone.
* ARM: several features are in progress but missed the 4.2 deadline.
So here is just a smattering of bug fixes, plus enabling the VFIO
integration.
* s390: Some fixes/refactorings/optimizations, plus support for
2GB pages.
* x86: 1) host and guest support for marking kvmclock as a stable
scheduler clock. 2) support for write combining. 3) support for
system management mode, needed for secure boot in guests. 4) a bunch
of cleanups required for 2+3. 5) support for virtualized performance
counters on AMD; 6) legacy PCI device assignment is deprecated and
defaults to "n" in Kconfig; VFIO replaces it. On top of this there are
also bug fixes and eager FPU context loading for FPU-heavy guests.
* Common code: Support for multiple address spaces; for now it is
used only for x86 SMM but the s390 folks also have plans.
There are some x86 conflicts, one with the rc8 pull request and
the rest with Ingo's FPU rework.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2.0.22 (GNU/Linux)
iQEcBAABAgAGBQJViYzhAAoJEL/70l94x66Dda0H/1IepMbfEy+o849d5G71fNTs
F8Y8qUP2GZuL7T53FyFUGSBw+AX7kimu9ia4gR/PmDK+QYsdosYeEjwlsolZfTBf
sHuzNtPoJhi5o1o/ur4NGameo0WjGK8f1xyzr+U8z74QDQyQv/QYCdK/4isp4BJL
ugHNHkuROX6Zng4i7jc9rfaSRg29I3GBxQUYpMkEnD3eMYMUBWGm6Rs8pHgGAMvL
vqzntgW00WNxehTqcAkmD/Wv+txxhkvIadZnjgaxH49e9JeXeBKTIR5vtb7Hns3s
SuapZUyw+c95DIipXq4EznxxaOrjbebOeFgLCJo8+XMXZum8RZf/ob24KroYad0=
=YsAR
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull first batch of KVM updates from Paolo Bonzini:
"The bulk of the changes here is for x86. And for once it's not for
silicon that no one owns: these are really new features for everyone.
Details:
- ARM:
several features are in progress but missed the 4.2 deadline.
So here is just a smattering of bug fixes, plus enabling the
VFIO integration.
- s390:
Some fixes/refactorings/optimizations, plus support for 2GB
pages.
- x86:
* host and guest support for marking kvmclock as a stable
scheduler clock.
* support for write combining.
* support for system management mode, needed for secure boot in
guests.
* a bunch of cleanups required for the above
* support for virtualized performance counters on AMD
* legacy PCI device assignment is deprecated and defaults to "n"
in Kconfig; VFIO replaces it
On top of this there are also bug fixes and eager FPU context
loading for FPU-heavy guests.
- Common code:
Support for multiple address spaces; for now it is used only for
x86 SMM but the s390 folks also have plans"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (124 commits)
KVM: s390: clear floating interrupt bitmap and parameters
KVM: x86/vPMU: Enable PMU handling for AMD PERFCTRn and EVNTSELn MSRs
KVM: x86/vPMU: Implement AMD vPMU code for KVM
KVM: x86/vPMU: Define kvm_pmu_ops to support vPMU function dispatch
KVM: x86/vPMU: introduce kvm_pmu_msr_idx_to_pmc
KVM: x86/vPMU: reorder PMU functions
KVM: x86/vPMU: whitespace and stylistic adjustments in PMU code
KVM: x86/vPMU: use the new macros to go between PMC, PMU and VCPU
KVM: x86/vPMU: introduce pmu.h header
KVM: x86/vPMU: rename a few PMU functions
KVM: MTRR: do not map huge page for non-consistent range
KVM: MTRR: simplify kvm_mtrr_get_guest_memory_type
KVM: MTRR: introduce mtrr_for_each_mem_type
KVM: MTRR: introduce fixed_mtrr_addr_* functions
KVM: MTRR: sort variable MTRRs
KVM: MTRR: introduce var_mtrr_range
KVM: MTRR: introduce fixed_mtrr_segment table
KVM: MTRR: improve kvm_mtrr_get_guest_memory_type
KVM: MTRR: do not split 64 bits MSR content
KVM: MTRR: clean up mtrr default type
...
This will be used for private function used by AMD- and Intel-specific
PMU implementations.
Signed-off-by: Wei Huang <wei@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
There is no reason to deny this feature to guests. We are emulating the
APIC timer, thus are exposing it without stops in power-saving states.
Signed-off-by: Jan Kiszka <jan.kiszka@siemens.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The MPX feature requires eager KVM FPU restore support. We have verified
that MPX cannot work correctly with the current lazy KVM FPU restore
mechanism. Eager KVM FPU restore should be enabled if the MPX feature is
exposed to VM.
Signed-off-by: Yang Zhang <yang.z.zhang@intel.com>
Signed-off-by: Liang Li <liang.z.li@intel.com>
[Also activate the FPU on AMD processors. - Paolo]
Cc: stable@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
'xsave' is an x86 instruction name to most people - but xsave.h is
about a lot more than just the XSAVE instruction: it includes
definitions and support, both internal and external, related to
xstate and xfeatures support.
As a first step in cleaning up the various xstate uses rename this
header to 'fpu/xstate.h' to better reflect what this header file
is about.
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
cpuid_maxphyaddr(), which performs lot of memory accesses is called
extensively across KVM, especially in nVMX code.
This patch adds a cached value of maxphyaddr to vcpu.arch to reduce the
pressure onto CPU cache and simplify the code of cpuid_maxphyaddr()
callers. The cached value is initialized in kvm_arch_vcpu_init() and
reloaded every time CPUID is updated by usermode. It is obvious that
these reloads occur infrequently.
Signed-off-by: Eugene Korenevsky <ekorenevsky@gmail.com>
Message-Id: <20150329205612.GA1223@gnote>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
We reused host EBX and ECX, but KVM might not support all features;
emulated XSAVE size should be smaller.
EBX depends on unknown XCR0, so we default to ECX.
SDM CPUID (EAX = 0DH, ECX = 0):
EBX Bits 31-00: Maximum size (bytes, from the beginning of the
XSAVE/XRSTOR save area) required by enabled features in XCR0. May
be different than ECX if some features at the end of the XSAVE save
area are not enabled.
ECX Bit 31-00: Maximum size (bytes, from the beginning of the
XSAVE/XRSTOR save area) of the XSAVE/XRSTOR save area required by
all supported features in the processor, i.e all the valid bit
fields in XCR0.
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
Tested-by: Wanpeng Li <wanpeng.li@linux.intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
- EAX=0Dh, ECX=1: output registers EBX/ECX/EDX are reserved.
- EAX=0Dh, ECX>1: output register ECX bit 0 is clear for all the CPUID
leaves we support, because variable "supported" comes from XCR0 and not
XSS. Bits above 0 are reserved, so ECX is overall zero. Output register
EDX is reserved.
Source: Intel Architecture Instruction Set Extensions Programming
Reference, ref. number 319433-022
Reviewed-by: Radim Krčmář <rkrcmar@redhat.com>
Tested-by: Wanpeng Li <wanpeng.li@linux.intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
This is the size of the XSAVES area. This starts providing guest support
for XSAVES (with no support yet for supervisor states, i.e. XSS == 0
always in guests for now).
Wanpeng Li suggested testing XSAVEC as well as XSAVES, since in practice
no real processor exists that only has one of them, and there is no
other way for userspace programs to compute the area of the XSAVEC
save area. CPUID(EAX=0xd,ECX=1).EBX provides an upper bound.
Suggested-by: Radim Krčmář <rkrcmar@redhat.com>
Reviewed-by: Radim Krčmář <rkrcmar@redhat.com>
Tested-by: Wanpeng Li <wanpeng.li@linux.intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>